Buzzing through Data: Advancing Bee Species Identification with Machine Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bee Species Determination Using Machine Learning
2.2. Search Strategy
2.3. Bibliographic Analysis
2.4. Detailed Review of Bee Identification/Species Determination Techniques
3. Results
3.1. Bibliographic Analysis
3.2. Dataset Characteristics
3.3. Methods for Bee Species Determination
3.3.1. Publications Utilizing Shallow Learning (SL) Only for Species Determination
3.3.2. Studies Utilizing Deep Learning (DL) Only for Species Determination
3.3.3. Publications Utilizing Both Shallow Learning (SL) and Deep Learning (DL) for Species Determination
3.4. Evaluation Metrics Utilized to Measure Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kurek-Górecka, A.; Górecki, M.; Rzepecka-Stojko, A.; Balwierz, R.; Stojko, J. Bee Products in Dermatology and Skin Care. Molecules 2020, 25, 556. [Google Scholar] [CrossRef] [PubMed]
- Ramírez, V.M.; Calvillo, L.M.; Kevan, P.G. Effects of Human Disturbance and Habitat Fragmentation on Stingless Bees. In Pot-Honey: A Legacy of Stingless Bees; Vit, P., Pedro, S.R.M., Roubik, D., Eds.; Springer: New York, NY, USA, 2013; pp. 269–282. ISBN 978-1-4614-4960-7. [Google Scholar]
- Ferreira, A.I.S.; da Silva, N.F.F.; Mesquita, F.N.; Rosa, T.C.; Monzón, V.H.; Mesquita-Neto, J.N. Automatic Acoustic Recognition of Pollinating Bee Species Can Be Highly Improved by Deep Learning Models Accompanied by Pre-Training and Strong Data Augmentation. Front. Plant Sci. 2023, 14, 1081050. [Google Scholar] [CrossRef] [PubMed]
- Franceschinelli, E.V.; Neto, C.M.S.; Lima, F.G.; Gonçalves, B.B.; Bergamini, L.L.; Bergamini, B.A.R.; Elias, M.A. Native Bees Pollinate Tomato Flowers and Increase Fruit Production. J. Pollinat. Ecol. 2013, 11, 41–45. [Google Scholar] [CrossRef]
- Peet, M.M.; Welles, G. Greenhouse Tomato Production. In Tomatoes; CABI Publishing: Wallingford Oxon, UK, 2005; pp. 257–304. [Google Scholar] [CrossRef]
- David Ward, R. Pollination of Cultivated Plants in the Tropics; Food & Agriculture Org: Rome, Italy, 1995; Volume 118. [Google Scholar]
- Potts, S.G.; Imperatriz-Fonseca, V.; Ngo, H.T.; Aizen, M.A.; Biesmeijer, J.C.; Breeze, T.D.; Dicks, L.V.; Garibaldi, L.A.; Hill, R.; Settele, J.; et al. Safeguarding Pollinators and Their Values to Human Well-Being. Nature 2016, 540, 220–229. [Google Scholar] [CrossRef]
- Thilakarathne, N.N.; Yassin, H.; Bakar, M.S.A.; Abas, P.E. Internet of Things in Smart Agriculture: Challenges, Opportunities and Future Directions. In Proceedings of the 2021 IEEE Asia-Pacific Conference on Computer Science and Data Engineering (CSDE), Brisbane, Australia, 8–10 December 2021; pp. 1–9. [Google Scholar]
- Rathcke, B.J.; Jules, E.S. Habitat Fragmentation and Plant–Pollinator Interactions. Curr. Sci. 1993, 65, 273–277. [Google Scholar]
- Ratnieks, F.L.W.; Carreck, N.L. Clarity on Honey Bee Collapse? Science 2010, 327, 152–153. [Google Scholar] [CrossRef] [PubMed]
- McLellan, A.R. Honeybee Colony Weight as an Index of Honey Production and Nectar Flow: A Critical Evaluation. J. Appl. Ecol. 1977, 14, 401–408. [Google Scholar] [CrossRef]
- Kawakita, S.; Ichikawa, K. Automated Classification of Bees and Hornet Using Acoustic Analysis of Their Flight Sounds. Apidologie 2019, 50, 71–79. [Google Scholar] [CrossRef]
- De Nart, D.; Costa, C.; Di Prisco, G.; Carpana, E. Image Recognition Using Convolutional Neural Networks for Classification of Honey Bee Subspecies. Apidologie 2022, 53, 5. [Google Scholar] [CrossRef]
- Gradišek, A.; Slapničar, G.; Šorn, J.; Luštrek, M.; Gams, M.; Grad, J. Predicting Species Identity of Bumblebees through Analysis of Flight Buzzing Sounds. Bioacoustics 2017, 26, 63–76. [Google Scholar] [CrossRef]
- Ruttner, F. Biogeography and Taxonomy of Honeybees.; Springer Science Business Media: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Spiesman, B.J.; Gratton, C.; Hatfield, R.G.; Hsu, W.H.; Jepsen, S.; McCornack, B.; Patel, K.; Wang, G. Assessing the Potential for Deep Learning and Computer Vision to Identify Bumble Bee Species from Images. Sci. Rep. 2021, 11, 7580. [Google Scholar] [CrossRef] [PubMed]
- Halcroft, M.T.; Dollin, A.; Francoy, T.M.; King, J.E.; Riegler, M.; Haigh, A.M.; Spooner-Hart, R.N. Delimiting the Species within the Genus Austroplebeia, an Australian Stingless Bee, Using Multiple Methodologies. Apidologie 2016, 47, 76–89. [Google Scholar] [CrossRef]
- Bouga, M.; Alaux, C.; Bienkowska, M.; Büchler, R.; Carreck, N.L.; Cauia, E.; Chlebo, R.; Dahle, B.; Dall’Olio, R.; De la Rúa, P.; et al. A Review of Methods for Discrimination of Honey Bee Populations as Applied to European Beekeeping. J. Apic. Res. 2011, 50, 51–84. [Google Scholar] [CrossRef]
- Michener, C.D. The Bees of the World; JHU Press: Baltimore, MD, USA, 2000. [Google Scholar]
- Arbuckle, T.; Schröder, S.; Steinhage, V.; Wittmann, D. Biodiversity Informatics in Action: Identification and Monitoring of Bee Species Using ABIS. In Proceedings of the 15th International Symposium Informatics for Environmental Protection, Zurich, Switzerland, 10–12 October 2001. [Google Scholar]
- Murugaiya, R.; Abas, P.E.; De Silva, L.C. Probability Enhanced Entropy (PEE) Novel Feature for Improved Bird Sound Classification. Mach. Intell. Res. 2022, 19, 52–62. [Google Scholar] [CrossRef]
- Shareefa, M.; Moosa, V. The Most-Cited Educational Research Publications on Differentiated Instruction: A Bibliometric Analysis. Eur. J. Educ. Res. 2020, 9, 331–349. [Google Scholar] [CrossRef]
- Ramashini, M.; Abas, P.E.; Mohanchandra, K.; De Silva, L.C. Robust Cepstral Feature for Bird Sound Classification. IJECE 2022, 12, 1477. [Google Scholar] [CrossRef]
- Mueller, J.; Massaron, L. Deep Learning; For Dummies; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2019; ISBN 978-1-119-54303-9. [Google Scholar]
- Ratnayake, A.; Yasin, H.M.; Ghani Naim, A.; Abas, P.E. Classification of Subspecies of Honey Bees Using Convolutional Neural Network. In Proceedings of the 2023 6th International Conference on Applied Computational Intelligence in Information Systems (ACIIS), Bandar Seri Bagawan, Brunei, 23–25 October 2023; pp. 1–6. [Google Scholar]
- Humayun, M.A.; Yassin, H.; Abas, P.E. Estimating Social Background Profiling of Indian Speakers by Acoustic Speech Features: Speech Accent Classification By Acoustic Analysis. J. Sci. Ind. Res. (JSIR) 2023, 82, 851–860. [Google Scholar] [CrossRef]
- Azis, F.A.; Rijal, M.; Suhaimi, H.; Abas, P.E. Patent Landscape of Composting Technology: A Review. Inventions 2022, 7, 38. [Google Scholar] [CrossRef]
- Chadegani, A.A.; Salehi, H.; Yunus, M.M.; Farhadi, H.; Fooladi, M.; Farhadi, M.; Ebrahim, N.A. A Comparison between Two Main Academic Literature Collections: Web of Science and Scopus Databases. ASS 2013, 9, 18–26. [Google Scholar] [CrossRef]
- Perianes-Rodriguez, A.; Waltman, L.; van Eck, N.J. Constructing Bibliometric Networks: A Comparison between Full and Fractional Counting. J. Informetr. 2016, 10, 1178–1195. [Google Scholar] [CrossRef]
- Waltman, L.; van Eck, N.J. Field-Normalized Citation Impact Indicators and the Choice of an Appropriate Counting Method. J. Informetr. 2015, 9, 872–894. [Google Scholar] [CrossRef]
- Zhang, X.; Estoque, R.C.; Xie, H.; Murayama, Y.; Ranagalage, M. Bibliometric Analysis of Highly Cited Articles on Ecosystem Services. PLoS ONE 2019, 14, e0210707. [Google Scholar] [CrossRef] [PubMed]
- Kelley, W.; Valova, I.; Bell, D.; Ameh, O.; Bader, J. Honey Sources: Neural Network Approach to Bee Species Classification. Procedia Comput. Sci. 2021, 192, 650–657. [Google Scholar] [CrossRef]
- Liu, C.; Lin, S. Research on Mini-EfficientDet Identification Algorithm Based on Transfer Learning. J. Phys. Conf. Ser. 2022, 2218, 012039. [Google Scholar] [CrossRef]
- Karthiga, M.; Sountharrajan, S.; Nadhini, S.N.; Suganya, E.; Sankarananth, S. A Deep Learning Approach to Classify the Honeybee Species and Health Identification. In Proceedings of the 2021 Seventh International conference on Bio Signals, Images, and Instrumentation (ICBSII), Chennai, India, 25–27 March 2021; pp. 1–7. [Google Scholar]
- Nasir, A.; Ullah, M.O.; Yousaf, M.H. AI in Apiculture: A Novel Framework for Recognition of Invasive Insects under Unconstrained Flying Conditions for Smart Beehives. Eng. Appl. Artif. Intell. 2023, 119, 105784. [Google Scholar] [CrossRef]
- Nizam, A.; Mohd-Isa, W.-N.; Ali, A. Image Segmentation of Meliponine Bee Using Mask-RCNN. Int. J. Eng. Trends Technol. 2020, 17–21. [Google Scholar] [CrossRef]
- Yoo, J.; Siddiqua, R.; Liu, X.; Ahmed, K.A.; Hossain, M.Z. BeeNet: An End-To-End Deep Network For Bee Surveillance. Procedia Comput. Sci. 2023, 222, 415–424. [Google Scholar] [CrossRef]
- Zhang, J.; Guo, H.; Chen, Z. A Concatenated Approach Based on Transfer Learning and PCA for Classifying Bees and Wasps. J. Phys. Conf. Ser. 2021, 1873, 012058. [Google Scholar] [CrossRef]
- Zhong, Y.; Gao, J.; Lei, Q.; Zhou, Y. A Vision-Based Counting and Recognition System for Flying Insects in Intelligent Agriculture. Sensors 2018, 18, 1489. [Google Scholar] [CrossRef] [PubMed]
- Buschbacher, K.; Ahrens, D.; Espeland, M.; Steinhage, V. Image-Based Species Identification of Wild Bees Using Convolutional Neural Networks. Ecol. Inform. 2020, 55, 101017. [Google Scholar] [CrossRef]
- García, C.A.Y.; Rodrigues, P.J.; Tofilski, A.; Elen, D.; McCormak, G.P.; Oleksa, A.; Henriques, D.; Ilyasov, R.; Kartashev, A.; Bargain, C.; et al. Using the Software DeepWings© to Classify Honey Bees across Europe through Wing Geometric Morphometrics. Insects 2022, 13, 1132. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, C.; Lin, S. DY-RetinaNet Based Identification of Common Species at Beehive Nest Gates. Symmetry 2022, 14, 1157. [Google Scholar] [CrossRef]
- Liu, S.; Shih, F.Y.; Russell, G.; Russell, K.; Phan, H. Classification of Ecological Data by Deep Learning. Int. J. Patt. Recogn. Artif. Intell. 2020, 34, 2052010. [Google Scholar] [CrossRef]
- Rebelo, A.R.; Fagundes, J.M.G.; Digiampietri, L.A.; Francoy, T.M.; Bíscaro, H.H. A Fully Automatic Classification of Bee Species from Wing Images. Apidologie 2021, 52, 1060–1074. [Google Scholar] [CrossRef]
- Rodrigues, P.J.; Gomes, W.; Pinto, M.A. DeepWings©: Automatic Wing Geometric Morphometrics Classification of Honey Bee (Apis Mellifera) Subspecies Using Deep Learning for Detecting Landmarks. Big Data Cogn. Comput. 2022, 6, 70. [Google Scholar] [CrossRef]
- Santana, F.S.; Costa, A.H.R.; Truzzi, F.S.; Silva, F.L.; Santos, S.L.; Francoy, T.M.; Saraiva, A.M. A Reference Process for Automating Bee Species Identification Based on Wing Images and Digital Image Processing. Ecol. Inform. 2014, 24, 248–260. [Google Scholar] [CrossRef]
- da Silva, F.L.; Grassi Sella, M.L.; Francoy, T.M.; Costa, A.H.R. Evaluating Classification and Feature Selection Techniques for Honeybee Subspecies Identification Using Wing Images. Comput. Electron. Agric. 2015, 114, 68–77. [Google Scholar] [CrossRef]
- Parmezan, A.R.S.; Souza, V.M.A.; Seth, A.; Žliobaitė, I.; Batista, G.E.A.P.A. Hierarchical Classification of Pollinating Flying Insects under Changing Environments. Ecol. Inform. 2022, 70, 101751. [Google Scholar] [CrossRef]
- Ribeiro, A.P.; da Silva, N.F.F.; Mesquita, F.N.; Araújo, P.d.C.S.; Rosa, T.C.; Mesquita-Neto, J.N. Machine Learning Approach for Automatic Recognition of Tomato-Pollinating Bees Based on Their Buzzing-Sounds. PLoS Comput. Biol. 2021, 17, e1009426. [Google Scholar] [CrossRef]
- Herrera, C.; Williams, M.; Encarnação, J.; Roura-Pascual, N.; Faulhaber, B.; Jurado-Rivera, J.A.; Leza, M. Automated Detection of the Yellow-Legged Hornet (Vespa Velutina) Using an Optical Sensor with Machine Learning. Pest Manag. Sci. 2023, 79, 1225–1233. [Google Scholar] [CrossRef]
- Arruda, H.; Imperatriz-Fonseca, V.; de Souza, P.; Pessin, G. Identifying Bee Species by Means of the Foraging Pattern Using Machine Learning. In Proceedings of the 2018 International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 8–13 July 2018; pp. 1–6. [Google Scholar]
- Klasen, M.; Ahrens, D.; Eberle, J.; Steinhage, V. Image-Based Automated Species Identification: Can Virtual Data Augmentation Overcome Problems of Insufficient Sampling? Syst. Biol. 2022, 71, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Vujovic, Ž.Ð. Classification Model Evaluation Metrics. IJACSA 2021, 12, 599–606. [Google Scholar] [CrossRef]
Focus | Keywords |
---|---|
Bee Species | Search ((Bee or Apidae or Apis or Meloponine *) and (Species or Genus * or Genera or Type * or Subspecies) not (Artificial Bee Colony)) (Title, Abstract, Keywords) |
Species Determination | Search (Classification or Discrimination or Identification or Taxonomy) (Title, Abstract, Keywords) |
Machine Learning | Search ((Machine Learning) or (Deep Learning) or (Computer Vision) or CNN or (Convolutional Neural Network) or (Artificial Intelligence) or AI or (Neural Network) or NN) (Title, Abstract, Keywords) |
No. | Keyword | Occurrences | Total Link Strength | Cluster |
---|---|---|---|---|
1 | Bee | 9 | 9 | Red |
2 | Machine Learning | 8 | 8 | |
3 | Animal | 4 | 4 | |
4 | Computer Vision | 3 | 3 | |
5 | Pollination | 3 | 3 | |
6 | Taxonomy | 3 | 3 | |
7 | Classification | 11 | 11 | Green |
8 | Apis Mellifera | 5 | 5 | |
9 | Artificial Intelligence | 4 | 4 | |
10 | Learning Systems | 3 | 3 | |
11 | Support Vector Machines | 3 | 3 | |
12 | Deep Learning | 8 | 8 | Yellow |
13 | Convolutional Neural Network | 3 | 3 | |
14 | Ecology | 3 | 3 | |
15 | Transfer Learning | 3 | 2 | |
16 | Apoidea | 4 | 4 | Blue |
17 | Biodiversity | 3 | 3 | |
18 | Hymenoptera | 3 | 3 | |
19 | Pollinator | 3 | 3 | |
20 | Image Classification | 3 | 3 | Purple |
21 | Object Detection | 3 | 3 |
Publication No. | References | Evaluation Metric | Remarks | ||||||
---|---|---|---|---|---|---|---|---|---|
Accuracy/ Probability | AP/ mAP | F1-Score | Precision | Recall | Specificity | AUC | |||
1 | [42] | X | Conducts an ablation study | ||||||
2 | [20] | X | |||||||
3 | [39] | X | X | ||||||
4 | [43] | X | Uses conf. matrix | ||||||
5 | [13] | X | X | X | X | Uses conf. matrix | |||
6 | [49] | X | X | X | X | Uses conf. matrix, macro precision, recall, and F1 score | |||
7 | [51] | X | X | Uses the area under the ROC curve | |||||
8 | [35] | X | X | X | X | Uses conf. matrix | |||
9 | [38] | X | X | X | X | Uses the saliency map and Grad-CAM | |||
10 | [16] | X | X | X | Uses the model speed, top 1 to 5 accuracy, conf. matrix, macro recall and precision | ||||
11 | [47] | X | |||||||
12 | [41] | X | Represented as probability in the paper | ||||||
13 | [12] | X | X | ||||||
14 | [45] | X | Uses positional precision to measure the performance of the identification of landmarks | ||||||
15 | [40] | X | X | X | X | Uses conf. matrix, top 1 and top 5 accuracy | |||
16 | [50] | X | X | X | Uses conf. matrix | ||||
17 | [34] | X | X | X | X | ||||
18 | [3] | X | Uses the macro F1-SCORE and conf. matrix | ||||||
19 | [46] | X | |||||||
20 | [44] | X | Uses the inference time | ||||||
21 | [32] | X | Uses conf. matrix | ||||||
22 | [52] | X | Uses CAM-based heatmaps of specimen images | ||||||
23 | [37] | X | Uses conf. matrix | ||||||
24 | [33] | X | X | Conducts an ablation study | |||||
25 | [48] | X | X | X | X | Uses conf. matrix and training time | |||
26 | [36] | X | Uses the inference time |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ratnayake, A.M.B.; Yasin, H.M.; Naim, A.G.; Abas, P.E. Buzzing through Data: Advancing Bee Species Identification with Machine Learning. Appl. Syst. Innov. 2024, 7, 62. https://doi.org/10.3390/asi7040062
Ratnayake AMB, Yasin HM, Naim AG, Abas PE. Buzzing through Data: Advancing Bee Species Identification with Machine Learning. Applied System Innovation. 2024; 7(4):62. https://doi.org/10.3390/asi7040062
Chicago/Turabian StyleRatnayake, Ashan Milinda Bandara, Hartini Mohd Yasin, Abdul Ghani Naim, and Pg Emeroylariffion Abas. 2024. "Buzzing through Data: Advancing Bee Species Identification with Machine Learning" Applied System Innovation 7, no. 4: 62. https://doi.org/10.3390/asi7040062
APA StyleRatnayake, A. M. B., Yasin, H. M., Naim, A. G., & Abas, P. E. (2024). Buzzing through Data: Advancing Bee Species Identification with Machine Learning. Applied System Innovation, 7(4), 62. https://doi.org/10.3390/asi7040062