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Abstract: To comprehend the thermal regulation within the conical gap between a disk and a cone
(TRHNF-DC) for hybrid nanofluid flow, this research introduces a novel application of compu-
tationally intelligent heuristics utilizing backpropagated Levenberg–Marquardt neural networks
(LM-NNs). A unique hybrid nanoliquid comprising aluminum oxide, Al2O3, nanoparticles and
copper, Cu, nanoparticles is specifically addressed. Through the application of similarity transfor-
mations, the mathematical model formulated in terms of partial differential equations (PDEs) is
converted into ordinary differential equations (ODEs). The BVP4C method is employed to generate a
dataset encompassing various TRHNF-DC scenarios by varying magnetic parameters and nanopar-
ticles. Subsequently, the intelligent LM-NN solver is trained, tested, and validated to ascertain the
TRHNF-DC solution under diverse conditions. The accuracy of the LM-NN approach in solving the
TRHNF-DC model is verified through different analyses, demonstrating a high level of accuracy,
with discrepancies ranging from 10−10 to 10−8 when compared with standard solutions. The efficacy
of the framework is further underscored by the close agreement of recommended outcomes with
reference solutions, thereby validating its integrity.

Keywords: hybrid nanofluid; flow dynamics; rotating disk; Levenberg–Marquardt; artificial neural
network; accuracy assessment

1. Introduction

With the swift progress of nanoscience and contemporary scientific domains, nanos-
tructured materials have emerged as a focal point for researchers. Nanofluids, characterized
by the stable dispersion of small particles in the nanometer scale within base fluids, have
emerged. Metal oxides and carbon materials are commonly employed in their creation,
finding applications in thermal engineering, electronic devices, and fiber technology. The
exploration of mass and heat transfer in nanoliquid motion along a rotating disk has
garnered significant attention due to its diverse uses in electronic appliances and heat
exchangers [1].

1.1. Cone–Disk Apparatus

Cone–disk apparatus exhibits versatility in its applications across various domains.
For instance, this apparatus is instrumental in investigating the characteristics and stability
of a particular fluid flow, identified as Oldroyd-B fluid, under specific circumstances [2].
Another application involves employing cone–disk devices for medical uses, as highlighted
in the study by Spruell [3]. These cone–disk tools are integrated into gas turbine cooling
systems, particularly within a conical diffuser [4]. In the realm of gas turbine systems,
these instruments are utilized to improve cooling efficiency, potentially by refining air
compression. The configuration appears pivotal in this endeavor. Choi [5] leads in the
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utilization of nanoparticles comprising metals, oxides, and carbides dispersed in base fluids
to enhance the heat conductivity of these fluids.

1.2. Research Methodologies

Investigations on the dynamics of nanofluid flow in cone–disk apparatus have at-
tracted considerable interest from researchers.Turkilmazoglu [6] utilized a semi-analytical
approach (HAM) to examine streamline motion along a spinning cone, producing thor-
oughly documented and successful results. Following stability analyses of the boundary
layer, Garrett [7] delved into the inherent or convective nature of instability induced by the
rotating cone. Furthermore, Towers et al. [8] scrutinized similarity solutions for compress-
ible laminar flows subject to surface mass flux over an array of rotating cones.

Rasool and Zhang [9] investigated the influence of Darcy–Forchheimer viscoelastic
nanofluid flow constrained by a nonlinear stretching surface, integrating Cattaneo–Christov
heat–mass flux. Shirejini [10] utilized nanofluids to enhance heat transfer rates through
a spinning method. The heat transfer characteristics of an electrically conducting fluid
over a rotating infinite disk were examined by Turkyilmazoglu et al. [11], with applications
spanning computer devices, thermal energy systems, rotating machinery, geothermal
industry, electronic instruments, chemical processes, gas turbines, and medical apparatus.
Kumar [12] employed the finite element method to analyze entropy generation in the
radiative flow of a nanoliquid comprising aluminum oxide and copper nanoparticles
between two coaxially rotating disks. Bhattacharyya [13] modeled heat flux in the flow
of a nanoliquid containing carbon nanotubes between two coaxially stretchable rotating
disks. A numerical study by Nazari et al. [14] simulated the non-Newtonian water/Al2O3
nanoliquid flow with nano-sized particles within a 2D square cavity featuring hot and
cold lid-driven motion. Ahmed [15] scrutinized Maxwell fluid flow with the effects of
homogeneous–heterogeneous reactions between heat conduction and two revolving disks.
Additionally, Rashidi [16] conducted a numerical study to examine fluidic and thermal
responses in variously configured containers filled with an Al2O3/water nanofluid and
featuring a rectangular heated obstruction.

1.3. Magnetohydrodynamics

The core principle of Magnetohydrodynamics (MHD) revolves around controlling
fluid flow. To achieve heightened thermal conductivity and enhanced heat transfer rates
for effective cooling, one must consider the phenomenon of magnetic forces. Magnetic
effects find applications in various medical treatments such as treating malignant tumors,
managing blood pressure, alleviating arthritis, and therapeutic interventions for the brain.
Siddiqui [17] explored the application of MHD fluid flow motion in the respiratory tract for
disease monitoring. The Keller-box technique was utilized in [18] to numerically solve a
problem involving swirling MHD fluid motion across a permeable surface. Oyelakin [19]
investigated the influence of velocity slip in tangent hyperbolic nanoliquid flow and its
heat transfer characteristics. Tlili [20] analyzed the magnetic flow of hybrid nanoliquid
over a stretched surface with slip effects.

1.4. Hybrid Nanoliquids

In the contemporary realm of science and technology, hybrid nanoliquids have at-
tracted significant attention from researchers due to their remarkable and potentially
superior thermal characteristics, surpassing those of simple nanoliquids in enhancing heat
transmission rates. Experimental studies have concluded that varying volume fractions
of nano materials (ranging from 5 to 55%, with particle sizes of 1–100 nm) contribute to
increased thermal conductance and improved heat transfer rates of base fluids [21]. An
empirical investigation by [22] examined the impact of particle concentration and tempera-
ture on the viscous characteristics of minute particles of ZnO-MWCNTs/engine oil hybrid
nanolubricant. The hydrodynamic stability of monophasic nanofluids based on the linear
stability concept was underscored by [23].
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1.5. Artificial Neural Networks

Artificial neural networks (ANNs) represent a crucial approach in artificial intelligence.
ANNs exhibit evolutionary adaptability in numerous scenarios, leveraging information
propagation over the network during learning, whether internally or externally. Through-
out the learning process, ANNs generate a set of connections (weights) that effectively
represent the training set. To tackle various problems based on differential equations,
ANNs are extensively used, with problematic numerical outcomes often addressed by
modeling ANNs and optimizing them through a combination of nonlinear and linear
search algorithms. Recent advancements in stochastic numeric computer solvers have
led to the development of nonlinear models for various domains. These include corneal
aspects [24], astrophysical systems [25,26], delay differential equation-based mathematical
models [27], financial models [28], dust density models [29], plasma physics [30], nonlinear
Emden–Fowler equations [31], singular differential models [32], bioinformatics [33], atomic
physics [34], fluid dynamics issues [35,36], electromagnetic phenomena [37], heat conduc-
tion [38], and ground motion prediction models [39]. These developments serve as strong
motivation for researchers to explore stochastic methods and employ them in developing
alternative, factual, and practical computer models for addressing fluid dynamics issues
such as TRHNF-DC. Artificial neural networks (ANNs) improve the predictive accuracy of
hybrid nanofluid flow dynamics in complex geometries, such as the conical gap between
a rotating disk and cone surface, by effectively capturing nonlinear relationships. ANNs
leverage large datasets to identify intricate patterns and insights in the flow dynamics,
providing a deeper understanding of how different factors influence the system’s behavior.
Using ANNs enables optimization of parameters and conditions in the flow dynamics
study, leading to more efficient and effective designs for applications involving hybrid
nanofluids. Once trained, ANNs can quickly predict outcomes for new scenarios, signifi-
cantly reducing the computational time and resources needed compared with traditional
numerical simulation methods. ANNs are highly adaptable to various types of input data
and scalable to larger and more complex problems, making them suitable for a wide range
of applications in fluid dynamics research.

1.6. Objectives of the Study

The ongoing inquiry centers on the heat transfer facilitated by a hybrid nanoliquid
coursing through the aperture between a cone and a disk. The disk and cone can rotate
either parallel to each other, rotate in opposite directions with angular velocity, or maintain
one in a stationary position relative to the other. Indeed, the literature indicates a gap
in research concerning the examination of a three-dimensional hybrid nanoliquid flow
involving a cone and disk configuration, whether in motion or stationary, and under
the influence of a magnetic field. This study aims to address this gap by specifically
investigating how copper (Cu) and aluminum dioxide (Al2O3) nanoparticles impact the
thermophysical properties of water, offering valuable insights for various scientific and
technological applications. Additionally, a secondary objective is to build upon the concepts
outlined in [40,41], which are closely related to the current model and provide a foundation
for further exploration. The primary aim of this study is to develop a mathematical
framework for analyzing a rotating cone and disk system, considering both motion and
stationary states, and exploring both counter-rotating and co-rotating scenarios. The
governing flow equations are simplified into an ordinary system and solved using the
BVP4C method. The uniqueness of this study lies in its original contributions to the field,
addressing previously unexplored aspects of hybrid nanoliquid flow dynamics involving
rotating cone and disk configurations. The study accomplishes similar objectives to the
study made in [42], but relying on a different modeling approach.

The size of copper (Cu) and aluminum oxide (Al2O3) nanoparticles significantly
impacts the thermal conductivity of the hybrid nanofluid, with smaller particles generally
enhancing thermal conductivity due to their higher surface area-to-volume ratio. Smaller
nanoparticles tend to increase the viscosity of the nanofluid, affecting the flow dynamics in
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the conical gap and potentially leading to higher shear stress and altered velocity profiles.
The size of the nanoparticles influences the overall heat transfer efficiency in the conical
gap, with optimal particle sizes providing a balance between improved thermal properties
and manageable fluid viscosity. The enhanced thermal conductivity and heat transfer
efficiency provided by hybrid nanofluids with optimally sized Cu and Al2O3 nanoparticles
can significantly improve the performance of heat exchangers, leading to more efficient
cooling and heating processes in industrial applications.

The focus of this work is the study the three-dimensional flow of a hybrid nanofluid,
Cu + Al2O3/H2O. While earlier studies [40,41] mostly focused on viscous fluids and
nanofluids like carbon nanotubes, we have used the same technique applied in [42], al-
though with a different hybrid nanofluid. This will apply to the assumption that the
magnetic field is applied perpendicular to the flow pattern. Additionally, in four distinct
scenarios—a stationary disk and a rotating cone, a revolving disk and a stationary cone,
a counter-rotating disk and a cone, and a co-rotating disk and a cone—we thoroughly
examine and describe the interaction between a disk and a cone [42]. The investigation of
temperature and velocity profiles is included in this analysis. We use similarity transfor-
mations to translate the mathematical model represented in terms of partial differential
equations (PDEs) into ordinary differential equations (ODEs) to make the analysis easier.
We next employ the BVP4C technique to produce a dataset for the suggested LM-NN under
a range of TRHNF-DC circumstances by altering the magnetic parameters and nanoparticle
composition. Ultimately, the intelligent solver LM-NN is trained, tested, and validated
to find TRHNF-DC solutions under various conditions. Regression analysis, histograms,
absolute error analysis, and comparison with standard solutions allow us to verify the
accuracy of the LM-NN scheme in solving the TRHNF-DC model.

Thus, the novelty of the paper lies in the following. This paper presents a novel
application in fluid mechanics research by modeling and predicting the complex flow
dynamics of hybrid nanofluids in the conical gap between a rotating disk and cone surface
using an artificial neural network (ANN). Additionally, the study looks into the improved
thermal and flow characteristics of hybrid nanofluids and offers fresh perspectives on
how they behave in a rotating system—a domain that has not previously been thoroughly
studied. Furthermore, in the analysis of hybrid nanofluid flows, the combination of
modern computational approaches (ANN) and experimental fluid dynamics offers a novel
viewpoint and perhaps more accurate predictions.

2. Mathematical Modeling

As precised above, the aim in this study is to investigate a situation featuring a cone
and a disk holding a non-compressible hybrid nanoliquid subjected to a magnetic field. It is
assumed that the cone and disk are either moving or stationary, with their rotational velocity
specified in cylindrical coordinates (r, ϕ, z). The symbols Ω and ω represent the rotational
speeds of the cone and disk, respectively. B0 signifies the strength of the magnetic field
applied along the z-axis, while any induced magnetic field is ignored. Figure 1 illustrates
the geometry of the studied apparatus.

The modeling of heat transfer includes the consideration of viscous dissipation, which
is effectively incorporated on the surface of the disk. The surface temperature varies
radially and is represented as Tw = crn + T∞, where c and n are constants, and T∞ is the
temperature of the conical surface [40]. Within the conical region, the pressure of the fluid,
denoted as p, depends on both the axial distance and the radial distance, r and z. The
fundamental equations based on these assumptions are expressed as follows [40–42]:

u
r
+

∂w
∂z

+
∂u
∂r

= 0, (1)

[
w

∂u
∂z

− v2

r
+ u

∂u
∂r

]
ρhn f =

[
∂2u
∂r2 +

1
r

∂u
∂r

+
∂2u
∂z2 − u

r2

]
µhn f −

∂p
∂r

− B2
0uσhn f , (2)



Appl. Syst. Innov. 2024, 7, 63 5 of 16

[
u

∂v
∂r

+
uv
r

+ w
∂v
∂z

]
ρhn f =

[
∂2v
∂z2 +

1
r

∂v
∂r

+
∂2v
∂r2 − v

r2

]
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]
ρhn f =

[
∂2w
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∂2w
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1
r

∂w
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]
µhn f −

∂p
∂z

, (4)

[
w

∂T
∂z

+ u
∂T
∂r

]
(ρCp)hn f = B2

0(v
2 + u2)σhn f +

∂2T
∂z2 khn f , (5)

Figure 1. Rotating disk and cone.

In the given equations, (u, v, w) denote the velocity components in the (r, ϕ, z) direc-
tions, while B0 stands for the magnetic field intensity. Moreover, khn f , vhn f , ρhn f , σhn f , and
(ρCp)hn f signify the thermal conductivity, viscosity, density, electrical conductivity, and
heat capacity of the hybrid nanoliquid, respectively.
The mandatory constraints are as follows:

u = 0, T = Tw, v = rω, w = 0 at z = 0

u = 0, T = T∞, v = Ωr, w = 0 at z = rtanγ
(6)

Here, γ represents the angular separation between the disk and cone.
To nondimensionalize, we utilize the following similarity transformation [40]:

u =
F(ζ)v f

r
= UwF(ζ), v =

G(ζ)v f

r
= UwG(ζ), u =

H(ζ)v f

r
= UwH(ζ),

p =
v2

f ρP

r2 U2
wPρ, ζ =

z
r

, M =
B2

0v f σf

u2
wρ f

, θ =
T − T∞

Tw − T∞
, Pr =

Cpµ f

k f
.

(7)

Uw denotes the surface velocity, Pr stands for the Prandtl number, and M represents
the magnetic field. Applying these transformations as described in Equation (7), formulated
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Equations (2)–(5) and their respective boundary conditions undergo the following modifi-
cations:

ζF′ − H′ = 0 (8)

(1 + ζ2)F′′ + 3ζF′ + (1 − ϕAl2O3)
2.5(1 − ϕCu)

2.5 ×
[
(1 − ϕCu)

(
1 −

(
1 −

ρAl2O3

ρ f
)
ϕAl2O3

)
+ϕCu

(ρCu
ρ f

)][
ζFF′ − HF′ + F2 − G2]+ (1 − ϕAl2O3)

2.5(1 − ϕCu)
2.5[ζ p′ + 2p − MF

]
= 0

(9)

(1 + ζ2)G′′ + 3ζG′ − (1 − ϕAl2O3)
2.5(1 − ϕCu)

2.5 ×
[
(1 − ϕCu)

(
1 −

(
1 −

ρAl2O3

ρ f
)
ϕAl2O3

)
+ϕCu

(ρCu
ρ f

)][
ζFG′ − HG′]− (1 − ϕCu)

2.5(1 − ϕAl2O3)
2.5MG = 0

(10)

(1 + ζ2)H′′ + 3ζH′ + (1 − ϕAl2O3)
2.5(1 − ϕCu)

2.5 ×
[
(1 − ϕCu)

(
1 −

(
1 −

ρAl2O3

ρ f
)
ϕAl2O3

)
+ϕCu

(ρCu
ρ f

)][
ζFH′ − HH′ + H + FH

]
− (1 − ϕCu)

2.5(1 − ϕAl2O3)
2.5 p′ = 0,

(11)

khn f

kn f
[
(1 + ζ2)θ′′ + ζ(1 − 2n)θ′ + n2θ

]
+ Pr

[
(1 − ϕCu)

(
1 −

(
1 −

(ρCp)Al2O3

(ρCp) f
)
ϕAl2O3

)
+ϕCu

( (ρCp)Cu

ρCp f

)][
ζFθ′ − nFθ − Hθ′

]
+

M
(1 − ϕCu)2.5 (1 − ϕAl2O3)

2.5[ f 2 + G2] = 0
(12)

The altered terms are as follows:

H(0) = F(0) = 0, G(0) = rew, θ(0) = 1,

F(ζ0) = H(ζ0) = 0, G(ζ0) = ReΩ, θ(ζ0) = 0.
(13)

The volumetric proportions of Al2O3 and Cu are represented by ϕAl2O3 and ϕCu, respec-
tively. Meanwhile, khn f and k f denote the thermal conductivity of the hybrid nanoliquid
and water, respectively.

The unique thermal properties of the hybrid nanoliquid and water are delineated as
follows [43]:

vhn f =
µhn f

ρhn f
, µhn f =

µ f

(1 − ϕAl2O3)
2.5(1 − ϕCu)2.5 (14)

ρhn f

ρ f
= (1 − ϕCu)

(
1 −

(
1 −

ρAl2O3

ρ f
)
ϕAl2O3

)
+ ϕCu

(ρCu
ρ f

)
, (15)

(ρCp)hn f

(ρCp) f
= (1 − ϕCu)

(
1 −

(
1 −

(ρCp)Al2O3

(ρCp) f
)
ϕAl2O3

)
+ ϕCu

( (ρCp)Cu

(ρCp) f
) (16)

σhn f

σb f
=

[
(σCu − σb f )3ϕCu

(σCu + 2σb f ) + (σb f − σCu)ϕCu
+ 1

]
,

σb f

σf
=

[
(σf − σAl2O3)3ϕAl2O3

(σAl2O3 − σf )− (σAl2O3 + 2σf )ϕCu
+ 1

]
, (17)

khn f =

(2kn f + kCu + 2ϕCu(kCu − kn f )

2kn f + kCu − ϕCu(kCu − kn f )

)
kn f ,

kn f

k f
=

kAl2O3 + 2k f − 2ϕAl2O3(k f − kAl2O3)

2k f + kAl2O3 + ϕAl2O3(k f − kAl2O3)
. (18)

3. Solution Methodology

To derive ordinary differential equations, partial differential equations undergo a
transformation. Employing a similarity transformation tailored for controlling the thermal
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aspects of hybrid nanofluid flow in the conical space between a disk and a cone (referred to
as TRHNF-DC), the reference dataset is utilized in Matlab via the BVP4C solution method.
TRHNF-DC, implemented in Matlab, utilizes a dataset with the Levenberg–Marquardt
method and a backpropagated artificial neural network (ANN). A strategic approach
is adopted with an intelligent Levenberg–Marquardt neural network, allocating 80% of
the data for training, 10% for validation, and 10% for testing. This article explores three
scenarios involving various instances of TRHNF-DC.

3.1. Bvp4c Method And Usage on Cone–Disk Apparatus

BVP4C, or Boundary Value Problem solver for Ordinary Differential Equations, is
a numerical method used to solve boundary value problems efficiently. It works by dis-
cretizing the problem domain and approximating the solution iteratively until convergence
is achieved. When applied to cone and disk apparatus, the BVP4C method assists in
modeling the flow of fluids or heat transfer within the apparatus. By defining appropriate
boundary conditions, it accurately predicts the behavior of the system, aiding in design
and optimization processes. In conjunction with neural networks, the BVP4C method
can enhance its predictive capabilities by incorporating learned patterns and relationships
from data. Neural networks can assist in approximating complex boundary conditions
or optimizing parameters for improved accuracy. The integration of BVP4C with neural
networks allows for a more robust and adaptive approach to solving problems related to
cone and disk apparatus, enabling better understanding and control of the underlying
processes.

3.2. Artificial Neural Network

The neural network diagram of TRHNF-DC is depicted in Figure 2. The usage of a
neural network in the approach is motivated by the following.

Figure 2. Neural network diagram for TRHNF-DC.

BVP4C is a robust numerical method specifically designed for solving boundary value
problems, and it can provide accurate solutions efficiently for many types of problems. If a
neural network is trained on data generated using BVP4C, it might not necessarily be more
efficient, but it learns to efficiently capture flow dynamics, enhancing solution speed and
adaptability. Also, there could be scenarios where using a neural network offers advantages
such as generalization to unseen data or the ability to handle noisy or incomplete input.
Additionally, once trained, a neural network can provide solutions very quickly, making it
preferable for certain real-time or iterative applications. This fusion leverages the strengths
of both numerical methods and neural networks to tackle complex flow dynamics problems
effectively. In the conducted experiments, the ANN inputs are the parameters involved in
the model and the outputs come after solving the model. The ANN has one hidden layer
of 10 cells and the output layer has 9 cells.

3.3. Training and Testing Database

The generated database comprises a comprehensive set of samples to cover various
scenarios encountered in the cone and disk apparatus. It includes data from experiments or
simulations representing different configurations such as stationary disk and rotating cone,
stationary cone and rotating disk, and combinations thereof. The database encompasses
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a significant number of samples to ensure thorough coverage of the parameter space.
Data are generated each time by varying 1 parameter and keeping other parameters fixed.
Inputs to the database typically include variables such as fluid properties, geometrical
dimensions of the apparatus, rotational speeds, and operating conditions. Outputs from the
database consist of observed or simulated behaviors of interest, such as velocity profiles and
temperature profiles. These outputs are essential for training the neural network to predict
system responses accurately. By encompassing diverse configurations and parameter
ranges, the database ensures that the trained neural network can effectively generalize to
unseen cases and accurately predict outcomes for various operating conditions encountered
in practical applications of the cone and disk apparatus. The Levenberg–Marquardt (LM)
algorithm is a popular optimization method used for training neural networks, particularly
because of its efficiency and speed in converging to a solution. When allocating data for
training, validation, and testing in the context of the LM neural network, the rationale
involves several key considerations. The data are typically split into three sets: training,
validation, and testing. The training set is used to adjust the weights and biases of the
network, the validation set is used to tune hyperparameters and prevent overfitting, and
the testing set is used to evaluate the final model’s performance. This allocation ensures
that the model is both trained well and generalizable. The LM algorithm is powerful
and can easily overfit the training data. By setting aside a validation set, the model’s
performance on unseen data can be monitored during training. If the validation error starts
to increase while the training error decreases, it indicates overfitting, and training can be
stopped early (early stopping). The test set, which is not used during training or validation,
provides an unbiased evaluation of the final model’s performance. This ensures that the
model’s accuracy and generalization capabilities are accurately assessed. The validation set
is crucial for fine-tuning the hyperparameters (such as learning rate, network architecture,
and regularization parameters). The LM algorithm benefits from this as it helps in finding
the optimal balance between underfitting and overfitting. During the training process, the
LM algorithm can use the validation set to monitor the network’s performance at each
iteration. This helps in deciding when to stop training to avoid overfitting, known as early
stopping. The allocation of a validation set is particularly important for this purpose.

The values of parameters are M = 0, 2, 4, ϕAl2O3 = 0.02, ϕCu = 0.02, Reω = 0.3,
ReΩ = 0.13, η = 2, n = 1, and Pr = 6.2 and the relevant properties of alumina, copper and
water are shown in Table 1.

Table 1. The thermal properties of alumina, copper, and water [43–47].

Property H2O Cu Al2O3

Thermal Conductivity (W/mK) 0.6071 400 40

Density (kg/m3) 997 8933 3970

Speci f ic Heat (J/kgK) 4180 385 765

Electrical Conductivity (s/m) 5.5 × 10−6 59.6 × 106 35 × 106

4. Results and Discussion

This section presents different results obtained from applying the proposed approach
on the established model. Different performance metrics values are reported along with
illustrations that show the effectiveness of the system.

4.1. Ann Performance Measures

Table 2 presents the numerical outcomes related to the training, testing, and validation
phases, along with performance metrics, total epochs, and parameters governing backprop-
agation, including the magnetic number (M) (Scenario 1). These results illuminate their
influence on the axial velocity profile, F(ζ), within the framework of TRHNF-DC. Mean-
while, Table 2 also illustrates the fluctuations of cone velocity, ReΩ, and angular velocity,
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Reω , on the radial profile, G(ζ) (Scenario 2). Similarly, it demonstrates the variations of the
magnetic number (M) on the temperature profile, θ(ζ) (Scenario 3).

Table 2. Metrics from the neural network training and testing for the three considered scenarios.

Case MSE Performance Grad Mu Epochs

Training Validation Testing

Scenario 1, Influence of M on F(ζ)

1 2.0183 × 10−10 3.2274 × 10−10 2.9818 × 10−10 2.02 × 10−10 9.76 × 108 1.00 × 109 98

2 1.7456 × 10−10 1.5390 × 10−17 3.2871 × 10−10 1.75 × 10−10 9.96 × 108 1.00 × 109 104

3 4.1089 × 10−10 4.7110 × 10−10 6.1340 × 10−10 4.11 × 10−10 9.88 × 108 1.00 × 109 82

4 1.9404 × 10−10 2.6040 × 10−10 4.3901 × 108 1.94 × 10−10 9.98 × 108 1.00 × 109 109

5 1.9895 × 10−10 1.4231 × 10−10 1.2395 × 108 1.99 × 10−10 9.75 × 108 1.00 × 109 95

6 3.3441 × 10−10 7.5751 × 10−10 1.8547 × 107 3.34 × 10−10 9.90 × 108 1.00 × 109 77

Scenario 2, Influence of ReΩ and Reω on radial profile G(ζ)

1 8.1394 × 10−10 1.3232 × 109 8.0754 × 10−10 8.14 × 10−10 9.95 × 108 1.00 × 108 299

2 1.5467 × 10−10 8.1606 × 10−10 3.1606 × 10−10 1.55 × 10−10 9.83 × 108 1.00 × 109 113

3 1.9272 × 10−13 3.5877 × 10−11 3.0439 × 10−13 1.93 × 10−13 9.95 × 108 1.00 × 1011 229

4 2.4139 × 10−10 7.7476 × 10−10 2.4731 × 10−10 2.41 × 10−10 1.00 × 107 1.00 × 108 389

5 1.2517 × 10−10 1.7883 × 10−10 2.1113 × 10−10 1.25 × 10−10 9.87 × 108 1.00 × 109 135

6 2.2453 × 10−10 2.7066 × 10−10 2.7337 × 10−10 2.25 × 10−10 9.99 × 108 1.00 × 108 499

Scenario 3, Influence of M on θ(ζ)

1 1.0431 × 10−10 1.7383 × 10−10 1.5413 × 10−10 1.04 × 10−10 9.99 × 108 1.00 × 109 119

2 1.5565 × 10−11 3.0643 × 10−11 1.0060 × 109 1.56 × 10−11 9.93 × 108 1.00 × 1010 75

3 9.4899 × 10−12 4.7135 × 10−11 1.1648 × 10−11 9.49 × 10−12 9.91 × 108 1.00 × 1010 101

4 1.7713 × 10−11 9.5478 × 10−11 3.6367 × 10−11 1.77 × 10−11 9.88 × 108 1.00 × 1010 75

5 3.0153 × 10−10 4.1094 × 10−10 2.6628 × 10−10 3.02 × 10−10 9.85 × 108 1.00 × 109 86

6 2.2186 × 10−10 2.6282 × 10−10 3.9525 × 10−10 2.22 × 10−10 9.95 × 108 1.00 × 109 109

Table 2 shows the following measures:

• MSE (Mean Squared Error) in neural networks quantifies the average squared differ-
ence between predicted and actual values. It serves as a key metric for assessing the
model’s performance in regression tasks. Lower MSE values indicate better accuracy
and closer alignment between predictions and true outcomes.

• “Performance” refers to the overall effectiveness of the model in achieving its intended
task, whether it is classification, regression, or another objective. Performance metrics
such as accuracy, precision, recall, F1-score, and others provide quantitative measures
of how well the model performs on a given dataset. Evaluating performance is crucial
for assessing the model’s reliability and suitability for practical applications.

• The gradient represents the rate of change of the loss function with respect to the
model’s parameters. It guides the optimization process, indicating the direction and
magnitude of adjustments required to minimize the loss and improve the model’s
performance during training.

• Mu often represents the learning rate, determining the size of the steps taken during
optimization. Adjusting mu impacts the convergence speed and stability of the
training process, influencing the network’s ability to learn effectively.
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• Epoch refers to a single pass of the entire training dataset through the model. Multiple
epochs are typically required to iteratively adjust the model’s parameters to minimize
the loss function and improve performance. Increasing the number of epochs allows
the model to learn more complex patterns in the data.

Figure 3 depicts the variation in Mean Squared Error (MSE) and the regression analysis
for Scenario 1: case 1. It is observed that the optimal training efficiency is 3.2275 × 10−10

at epoch 98, with a gradient of 9.75 × 10−9 and a learning rate (µ) of 1 × 10−9 at epoch
98. Regression plots assess the relationship between output and desired output; if R is
close to 1, the interaction is close; if R is close to 0, a stochastic relationship is implied.
The lower the MSE value, the more dependable the solution. A side-by-side evaluation
of the ANN results with the reference solution is shown in Figure 2b, indicating a high
degree of agreement between the two solutions, with MSE errors in the order of 1 × 10−10,
showcasing the viability of the suggested method.

(a) MSE Scenario 1: case 1

(b) Regression analysis Scenario 1: case 1

Figure 3. Plots for solving M for f
′
(ζ).

Figure 4 illustrates the fluctuation in MSE and the regression analysis for Scenario 2:
case 6, and for Scenario 3: case 6. From Figure 4a,b, it can be seen that the best training
results are [2.7067 × 10−10, 2.6283 × 10−10] at epochs [499,109] for solving Reω and ReΩ for
G(ζ), and M for θ(ζ), respectively. These charts illustrate the effective validation of the
training data across various scenarios. The regression graphs are shown in Figure 4c,d.

(a) MSE Scenario 2: case 1 (b) MSE Scenario 3: case 1

Figure 4. Cont.
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(c) Regression Analysis Scenario 2: case 1 (d) Regression Analysis Scenario 3: case 1

Figure 4. (a,c): Plots of Reω and ReΩ for G(ζ). (b,d): Plots for solving M for θ(ζ).

4.2. Physical Parameters

This section delves into the investigation of various physical parameters concerning
temperature and velocity distributions within a system comprising a rotating disk and
cone, a setup critical to the overall inquiry.

Figure 5 examines in its upper left part the influence of the magnetic number (M) on
the axial velocity profile (F(ζ)). A rise in M leads to a decrease in fluid velocity for both
copper (Cu) and aluminum oxide (Al2O3) hybrid nanoliquids due to the Lorentz force
impeding fluid velocity. In its upper right and lower left parts, Figure 5 depicts the effect
of volume fraction factors, specifically ϕAl2O3 and ϕCu, on the axial velocity profile. An
increase in volume fraction parameters enhances the boundary layer thickness, resulting
in a decline in the velocity profile. Finally, in its lower right part, the figure explores the
impact of the magnetic parameter (M) on the radial velocity profile, G(ζ), showing similar
behavior to the axial velocity discussed earlier.

Figure 5. (Up-left): Impact of M on F(ζ). (Up-right:) Impact of ϕAl2O3 on F(ζ). (Down-left): Impact
of ϕCu on F(ζ). (Down-right): Influence of M on G(ζ).
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Figure 6 investigates first the influence of volume fraction factors of iron oxide on the
radial velocity profile, with changes in ϕAl2O3 exhibiting analogous behavior to the axial
velocity. Then, the figure examines the influence of the copper volume fraction parameter
(ϕCu) on the radial velocity profile, G(ζ), indicating similar variations as observed in the
axial velocity. A brief discussion of four instances of disk and cone angular motion is later
presented in Figure 6. Case (1) describes the scenario where the cone is spinning and the
disk is at rest, leading to the highest flow intensity near the cone’s vicinity, influencing the
radial profile, G(ζ), positively through the cone’s angular velocity variation, ReΩ. Case
(2) shows the opposite trend, with the disk moving while the cone is stationary, resulting
in resistance at the cone wall due to the no-slip condition. Scenario (3) demonstrates the
dominance of the flow field over ReΩ and Reω , respectively, as there is minimal resistance
to both cone and disk rotating in the same direction. In contrast, the figure finally illustrates
the reduction in fluid velocity due to the counter-rotation of the disk and cone, leading to
the highest resistance, as demonstrated by Case (4).

Figure 6. (Up-left): Influence of M on G(ζ). (Up-right): Influence of ϕAl2O3 on G(ζ). (Middle-left):
Case (1) influence over G(ζ). (Middle-right): Case (2) influence over G(ζ). (Down-left): Case (3)
influence on G(ζ). (Down-right): Case (3) influence on G(ζ).

Figure 7 first describes the type of temperature distribution, θ(ζ), vs magnetic strength,
M, where the Lorentz force impedes fluid motion, gradually raising the fluid temperature,
θ(ζ). The addition of ϕAl2O3 and ϕCu nanoparticles to the carrier fluid increases its viscosity
and heat absorption capacity, as evidenced later in Figure 7. The figure then showcases the
dominance of the Prandtl number, Pr, over temperature distribution, where fluids with
high Prandtl numbers exhibit lower thermal diffusivity, and vice versa.
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Figure 7. (Up-left): Influence of M on θ(ζ). (Up-right): Influence of ϕAl2O3 on θ(ζ). (Down-left):
Influence of ϕCu on θ(ζ). (Down-right): Influence of Pr on θ(ζ).

5. Conclusions

In this current investigation, practical implementations are reexamined, primarily
focusing on the disk–cone device utilized in industrial settings. We examine a unique
blend of hybrid nanofluid containing copper (Cu) and (Al2O3) nanoparticles, which can be
either in motion or stationary. In both scenarios, they can rotate in either a counter- or co-
directional manner under the influence of a magnetic field. The effects of various physical
parameters on velocity and temperature are elucidated through graphical representations.
The key discoveries reached are as follows:

• The rate of heat transfer and the velocity of the carrier fluid are boosted by increasing
amounts of solid nanoparticles.

• Conversely, when it comes to the magnetic parameter, M, an opposite trend is noticed.
An increase in M leads to a decrease in fluid velocity and an increase in temperature,
θ, due to the Lorentz force effect, which acts as a retarding force.

• The radial velocity profile, G, is positively impacted by the local Reynolds num-
bers, Reω and ReΩ, which are based on the angular velocity of the disk and cone,
respectively.

• The conclusion drawn is that the momentum boundary layer improves when the cone
and disk spin in the same direction, whereas a decrease in the momentum boundary
layer is observed when they rotate in opposite directions.

• It is evident that the temperature experiences a slight increase across the thermal layer
under normal tip angles. However, there is minimal impact observed for minor gap
angles due to the emergence of a critical power index n = −1, 0, 2. Consequently, heat
transfer from the disk surface ceases, rendering the fluid at the disk surface to act as
an insulator, as there is no heat transfer occurring.

• This study employs an artificial neural network (ANN) approach to model and predict
the complex flow dynamics of hybrid nanofluids in the conical gap between a rotating
disk and cone surface, a novel application in fluid mechanics research.

• The research investigates the enhanced thermal and flow properties of hybrid nanoflu-
ids, providing new insights into their behavior in a rotating system, which has not
been extensively explored before.
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• The combination of advanced computational techniques (ANN) with experimental
fluid dynamics offers a unique perspective and potentially more accurate predictions
in the analysis of hybrid nanofluid flows.
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45. Kováčik, J.; Emmer, Š.; Bielek, J. Thermal conductivity of Cu-graphite composites. Int. J. Therm. Sci. 2015, 90, 298–302. [CrossRef]

http://dx.doi.org/10.1038/s41598-020-61215-8
http://dx.doi.org/10.1016/j.jmrt.2019.10.044
http://dx.doi.org/10.1007/s10973-018-7707-8
http://dx.doi.org/10.1016/j.cmpb.2019.105171
http://www.ncbi.nlm.nih.gov/pubmed/31785535
http://dx.doi.org/10.1007/s00521-020-05355-y
http://dx.doi.org/10.1186/s40064-016-3517-2
http://www.ncbi.nlm.nih.gov/pubmed/27822440
http://dx.doi.org/10.1016/j.matcom.2020.01.005
http://dx.doi.org/10.1109/ACCESS.2020.3011820
http://dx.doi.org/10.1109/ACCESS.2020.2985763
http://dx.doi.org/10.1016/j.matcom.2020.10.004
http://dx.doi.org/10.1016/j.aej.2020.04.051
http://dx.doi.org/10.1007/s40314-020-01330-4
http://dx.doi.org/10.1007/s00521-020-05143-8
http://dx.doi.org/10.1140/epjp/s13360-019-00066-3
http://dx.doi.org/10.1063/1.5099999
http://dx.doi.org/10.1016/j.aej.2019.12.001
http://dx.doi.org/10.3390/sym12101628
http://dx.doi.org/10.1140/epjp/s13360-020-00910-x
http://www.ncbi.nlm.nih.gov/pubmed/33251082
http://dx.doi.org/10.1140/epjp/i2018-12153-4
http://dx.doi.org/10.28991/cej-2020-03091534
http://dx.doi.org/10.1016/j.matcom.2020.04.004
http://dx.doi.org/10.1088/1402-4896/abbf1e
http://dx.doi.org/10.1038/s41598-020-80750-y
http://www.ncbi.nlm.nih.gov/pubmed/33441841
http://dx.doi.org/10.1016/j.icheatmasstransfer.2014.12.015
http://dx.doi.org/10.1016/j.ijthermalsci.2014.12.017


Appl. Syst. Innov. 2024, 7, 63 16 of 16

46. Krishna, M.V.; Ahammad, N.A.; Chamkha, A.J. Radiative MHD flow of Casson hybrid nanofluid over an infinite exponentially
accelerated vertical porous surface. Case Stud. Therm. Eng. 2021, 27, 101229. [CrossRef]

47. Seonja, S.; Changkook, J.; Kyeongho, S.; Juhyung, K.; Youngseok, K.; Jaeuk, C. Synthesis of Thermal Compound and Its
Application as a Thermal Interface Material of Power Module. In Proceedings of the 2018 17th IEEE Intersociety Conference
on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), San Diego, CA, USA, 29 May–1 June 2018;
pp. 482–486. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.csite.2021.101229
http://dx.doi.org/10.1109/ITHERM.2018.8419467

	Introduction
	Cone–Disk Apparatus
	Research Methodologies
	Magnetohydrodynamics
	Hybrid Nanoliquids
	Artificial Neural Networks
	Objectives of the Study

	Mathematical Modeling
	Solution Methodology
	Bvp4c Method And Usage on Cone–Disk Apparatus
	Artificial Neural Network
	Training and Testing Database

	Results and Discussion
	Ann Performance Measures
	Physical Parameters

	Conclusions
	References

