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Abstract

:

Artificial intelligence (AI) models have already achieved great success in fields such as computer vision and natural language processing. However, deploying AI models based on heterogeneous hardware is difficult to ensure accuracy consistency, especially for precision sensitive feature-based image retrieval. In this article, we realize an image-retrieval method based on cross-hardware platform features, aiming to prove that the features of heterogeneous hardware platforms can be mixed, in which the Huawei Atlas 300V and NVIDIA TeslaT4 are used for experiments. First, we compared the decoding differences of heterogeneous hardware, and used CPU software decoding to help hardware decoding improve the decoding success rate. Then, we compared the difference between the Atlas 300V and TeslaT4 chip architectures and tested the differences between the two platform features by calculating feature similarity. In addition, the scaling mode in the pre-processing process was also compared to further analyze the factors affecting feature consistency. Next, the consistency of capture and correlation based on video structure were verified. Finally, the experimental results reveal that the feature results from the TeslaT4 and Atlas 300V can be mixed for image retrieval based on cross-hardware platform features. Consequently, cross-platform image retrieval with low error is realized. Specifically, compared with the Atlas 300V hard and CPU soft decoding, the TeslaT4 hard decoded more than 99% of the image with a decoding pixel maximum difference of +1/−1. From the average of feature similarity, the feature similarity between the Atlas 300V and TeslaT4 exceeds 99%. The difference between the TeslaT4 and Atlas 300V in recall and mAP in feature retrieval is less than 0.1%.
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1. Introduction


Nowadays, artificial intelligence (AI) models have been widely used in autonomous driving, medical image analysis, robotics, smart security, and natural language processing, etc. These AI models not only have a huge number of parameters, but the data required for training are also extremely large, thus placing unprecedented demands on computing power, such as transformer and convolutional neural networks (CNN). To overcome this problem, many companies and researchers use model compression, distributed computing, heterogeneous computing, and other technologies to alleviate the pressure of single-point computing [1,2,3]. Other companies and researchers design a number of acceleration chips to improve the performance of training or inferencing in the above areas [4,5,6].



AI chip architecture is designed to efficiently implement machine-learning (ML) algorithms, specifically for parallel computing of deep neural networks (DNNs). The current mainstream architectures include GPU, FPGA, and ASIC. GPU architecture is widely used to train large deep-learning models because of its highly parallel computing capability. In the GPU field, NVIDIA GPUs are widely used in deep-learning training and inference tasks due to their outstanding performance and versatility, which promotes the rapid development of the deep-learning field. Also, NVIDIA GPU-based AI models have been widely deployed in data centers and edge devices, such as the A100, H100, Tesla T4, and Jetson [7,8,9,10]. The field programmable gate array (FPGA) adapts to a variety of AI algorithms through flexible programming, and has a high energy efficiency ratio, which has advantages in specific scenarios [11,12].



The application-specific integrated circuit (ASIC) is a custom integrated circuit designed for a specific application, and it often has significant advantages over general-purpose chips (such as GPUs, CPUs) in terms of task efficiency, power consumption, size, and cost. Google’s self-developed tensor processing unit (TPU), an ASIC specifically optimized for machine learning and artificial intelligence, has played an important role in Google’s internal TensorFlow framework, significantly increasing the speed of deep-learning training and inferencing [13]. The Apple Neural Engine (ANE) is an efficient, high-throughput inference engine for machine learning. It will minimize the impact of machine-learning inference workloads on application responsiveness, application memory, and device battery life [14]. With the brand-new Qualcomm® Hexagon™ Tensor Accelerator, the Qualcomm AI Engine pushes 15 trillion operations per second with maximum efficiency [15]. Focusing on AI system-on-chip (SoC) dedicated processors, Kneron aims to provide end-users with high-performance, low-power, low-cost solutions through edge AI based on a self-developed neural processing unit (NPU) accelerated neural network model that can be applied to AI applications in various end-devices [16]. The Huawei Ascend series chips are high energy efficiency, flexible, and programmable artificial intelligence processors, using the self-developed Huawei DaVinci architecture, integrating rich computing units to improve AI computing integrity and efficiency and expand the applicability of the chip [17,18].



In actual inference deployment, due to factors such as chip cost and power consumption, the current mainstream AI model deployment scheme usually adopts heterogeneous hardware for AI inference. Some researchers compared the more mainstream deep-learning computing cards currently on the market. Deng et al. [19] studied the more mainstream deep-learning computing cards in the current market, from the four aspects of computing power, memory performance, power-consumption efficiency, and parallel computing, providing a theoretical basis for the selection of computing cards. Lu et al. [20] systematically evaluated and analyzed Ascend chips, including the performance and power comparison between Ascend and GPU, Ascend deep-learning framework, operators, and mixed-precision training-optimization strategies. Kum et al. [21] improved the utilization of GPU resources by adjusting the batch size of inference application input, so as to realize real-time video analysis based on deep learning. Goel et al. [22] used hierarchical DNNs to create a parallel inference pipeline for higher throughput in computer vision problems.



With the continuous development of deep-learning technology, image-retrieval technology based on feature extraction has made a lot of progress and has gradually become an indispensable part of structured video data processing. Image-retrieval technology can quickly search high-value objects such as non-motor vehicles and vehicles in image datasets and has broad application prospects and practical value in traffic-situation analysis, crowd-density estimation, and cluster and image retrieval. Video structuring is a technology for extracting video content information. It organizes video content into structured information that can be understood by computers and people and semi-structured information that can be compared according to semantic relationship by means of spatiotemporal segmentation, feature extraction, object recognition. Video structuring can capture and extract structured information of motor vehicles, license plates, non-motor vehicles, and other information in video-streaming media in real time, aiming at efficient extraction and structured storage of massive video information within a certain spatiotemporal range, greatly reducing the spatiotemporal range of retrieval, achieving structured data research and judgment of specific targets or large amounts of data, and improving storage and retrieval efficiency. It has high practical value for target trajectory research, target quick search, traffic-situation analysis, privacy protection, and other directions.



Feature extraction in image-retrieval technology requires a lot of computing resources, so engineers use multi-chip hybrid deployment to extract features. However, due to differences in AI inference chips, it is difficult to ensure consistency of accuracy when deploying AI models based on heterogeneous hardware, especially for feature-based image retrieval, which is sensitive to accuracy [23,24,25,26]. Therefore, it is particularly important to verify the accuracy consistency of heterogeneous hardware and reduce the loss of accuracy across platforms. After verifying the feature consistency of heterogeneous hardware, the features of different hardware platforms can be directly used in production without considering the differences between hardware, which further expands the deployment range of algorithm schemes and has significant practical value.



In feature extraction, the main factors that affect feature quality include codec, color-space conversion, image scaling, model inference (target bounding box, model quantization, algorithm scheme model version, image matting, operator fusion), etc. In this paper, the AI model uses FP16 quantization, which can strike a good balance between precision and speed [8,17].



In this paper, we focus on the implementation of an image-retrieval method based on cross-hardware platform features, which reduces the cross-platform accuracy loss, and proves that the features of heterogeneous hardware platforms can be mixed, in which the Huawei Atlas 300V and NVIDIA TeslaT4 are used for experiments. First, we compare the decoding differences of heterogeneous hardware, and use CPU software decoding to help hardware decoding improve the decoding success rate. Also, the color-space conversion module is added to further improve the image utilization rate. Then, we compared the difference between the Atlas 300V and TeslaT4 chip architectures and tested the differences between the two platform features by calculating feature similarity. In addition, the scaling mode in the pre-processing process is also compared to further analyze the factors affecting the feature consistency. Next, the consistency of capture and correlation based on video structure is verified. Finally, the experimental results reveal that the feature results from the TeslaT4 and Atlas 300V can be mixed for image retrieval based on cross-hardware platform features. Consequently, cross-platform image retrieval with low error is realized.




2. Related Work


Content-based image retrieval (CBIR) has long been an important research topic in the field of computer vision [27,28,29,30,31]. Image-retrieval technology based on image content semantics uses the color and texture of the image as well as the information of the image object and category to retrieve the image similar to it in the image-retrieval database. Prerna et al. [26] proposed a local pentagon pattern integrating heterogeneous features, which can accurately extract heterogeneous patterns of images, thus improving the accuracy of image retrieval and image recognition. Muthusami et al. [32] came up with a semantic-based clustering method to support a visual query of heterogeneous features in images. In addition, the heterogeneous manifold ranking (HMR) method proposed by Wu et al. [33] aims to enhance image-retrieval performance by leveraging the complementary information between image-related click data and their visual content, thereby effectively addressing the inherent challenges of noise and sparsity in click data. The improved method proposed by Wang et al. [34] is based on twin features (TF) and maximum similarity matching (SMM), aiming to enhance the quality of feature matching. Additionally, they have designed and implemented an efficient image-retrieval system utilizing a cloud heterogeneous computing framework. Yu et al. [35] propose a heterogeneous image-retrieval system, which combines a high-precision digital system with a highly parallel memory search to improve the efficiency of image retrieval.



In recent years, feature-extraction methods based on deep learning have become dominant in the field of image retrieval. In particular, convolutional neural networks (CNNs) have played an important role in significantly improving the accuracy of image retrieval based on features by representing images as compact vectors [36,37,38,39]. Zhang et al. [40] proposed a new fabric image-retrieval methodology based on the fusion of multi-modal feature, and established a benchmark fabric-image database for multi-modal retrieval. Zhan et al. [41] proposed a “coarse-to-fine” image-retrieval strategy, which uses the fusion of global features extracted by CNNs and local features extracted by SIFT to match the most relevant images. Ye et al. [42] proposed a remote-sensing image-retrieval method based on weighted distance and a convolutional neural network (CNN) to extract features, which significantly improved the accuracy of remote-sensing image retrieval. To address the risks of CNNs’ feature-based image retrieval, Fan et al. [43] designed a computable encryption scheme based on vector and matrix calculations.The vision transformer developed in recent years has also achieved outstanding results in image retrieval. Lv et al. [44] used knowledge distillation to compress the Transformer framework to reduce computational complexity for efficient image retrieval. Li et al. [45] utilized Transformer encoders to handle the complex dependencies between visual features and labels, enabling multi-label image retrieval. In order to realize the fusion of global features and local features, Li et al. [46] proposed a multi-scale feature-fusion image-retrieval method (MSViT) based on visual transformation.



In recent years, many researchers have deployed artificial intelligence (AI) models on accelerators that are ASIC- or FPGA-based [47,48]. Kalapothas et al. [49] implemented dynamic deployment of AI models on the Kria KV260 development platform, thus successfully using hardware-accelerated unit inference AI models. Nechi et al. [50] summarized the current state of deep-learning hardware acceleration and evaluated more than 120 FPGA-based neural-network accelerator designs. Wu et al. [51] studied the neural networks involved in FPGA-based acceleration systems. Machupalli et al. [52] provided a review of existing deep-neural-network ASIC accelerators and classified them according to the optimization techniques used in their implementation. Tang et al. [53] studied the application performance of ASIC CXL in various data center scenarios and provided a benchmark.




3. Methods


The overall process of feature-based image retrieval is shown in Figure 1, and includes the decoding module, detection module, and feature extraction module, in which the video stream includes the target tracking, target selection, and capture modules. Firstly, we verified the metrics differences between the two platforms in image retrieval based on features. Then, we designed a decoding comparison experiment to verify the decoding difference between the Atlas 300V and TeslaT4 and used CPU software for decoding to improve the decoding success rate of both. Finally, we compared the difference between the Atlas 300V and TeslaT4 chip architectures, and used 1v1 to test the consistency of the two platform models.



3.1. Image Retrieval Based on Cross-Hardware Platform Features


The quality of the feature will affect the image-retrieval results based on features. Data-structuring technology is mainly used to extract structural features and a build feature database. Due to the differences in hardware platforms, we have implemented different deployment schemes for data structuring. The deployment schemes based on the Tesla T4 and Atlas 300V is shown in Figure 2. For video streaming, the deployment scheme based on the Tesla T4 first uses a hardware acceleration unit to decode the streaming media, then down-samples the video frame, then performs target detection and tracking, selects the best quality targets to capture and perform attribute analysis and feature extraction, and finally encodes the captured images and stores the analysis results and captured images into the database. However, due to memory limitations and optimal performance, the deployment schemes based on the Atlas 300V first need to send the streaming media from the host to the device through PCIe, then use the hardware acceleration unit to decode the streaming media, then down-sample the video frame, then perform target detection and tracking, then transmit the video frame encoding to the host, and select the best quality target to capture. Then, the captured image is transmitted to the device for decoding, attribute analysis, and feature extraction, and finally the analysis results and captured images are stored in the database. For images, the deployment schemes based on the Tesla T4 first decode them using a hardware acceleration unit, then perform object detection, attribute analysis, and feature extraction, and finally stores the results into a database. In addition, the Atlas 300V-based deployment scheme first sends the image from the host to the device via PCIe, then decodes the image using a hardware acceleration unit, then performs object detection, attribute analysis, and feature extraction, and finally sends the results back from the device to the host and stores them in the database.



Host refers to the X86 server and ARM server connected to the device, which uses the neural network (NN) computing capability provided by the device to complete services. A device is a hardware device installed with an Ascend AI processor and connected to a host through a PCIe port to provide NN computing capabilities [54,55].



The YUV format has a small amount of data and strong anti-noise, which is conducive to image compression and transmission and reduces bandwidth consumption [56]. According to the chip whitepaper, the Tesla T4 is in YUV420P format [7,8] and the Atlas 300V is in YUV420SP format [17,54]. Since the image is encoded by the Joint Photographic Experts Group (JPEG), in order to reduce the feature difference caused by image quality loss, we set the image coding quality factor to 95.



Video structuring is a technology for extracting video content information. It organizes video content into structured information that can be understood by computers and people and semi-structured information that can be compared according to semantic relationships by means of spatiotemporal segmentation, feature extraction, and object recognition. Video structuring can capture and extract structured information of motor vehicles, license plates, non-motor vehicles, and other information in video-streaming media in real time, aiming at efficient extraction and structured storage of massive video information within a certain spatiotemporal range, greatly reducing the spatiotemporal range of retrieval, achieving structured data research and judgment of specific targets or large amounts of data, and improving storage and retrieval efficiency. It has high practical value for target trajectory research, target quick search, traffic-situation analysis, privacy protection and other directions.



With the continuous development of deep-learning technology, image-retrieval technology based on feature extraction has made a lot of progress and has gradually become an indispensable part of structured video data processing. Image-retrieval technology can quickly search high-value objects such as non-motor vehicles and vehicles in image datasets and has broad application prospects and practical value in traffic-situation analysis, crowd-density estimation, and cluster and image retrieval.



Since the results of each module are not 100% consistent, whether because of a noise amplification effect (large deviation of feature search results) or noise cancellation (consistent feature search results) in the feature-search system, we constructed a feature-search experiment. First of all, we use video-structuring technology to score the quality of objects, such as riders, motor vehicles, and non-motor vehicles, in video images, capture the optimal target, and extract the features from the target capture results to form an image database. Each image is mapped with feature data. Then, a large number of interference images are detected, their features are extracted, and the feature results are randomly mixed into the feature-retrieval database to test the robustness of the system. Next, the image to be searched is detected and the features of the key target are extracted. The cosine similarity is calculated one by one with the images captured in the feature database, and the calculated similarity results are ranked from highest to lowest. The higher the ranking, the higher the similarity. Thus, the function of retrieving the same target image from different points in the feature-based database is realized. Finally, we extract features based on the TeslaT4 and Atlas 300V, respectively, to establish feature databases, and input images to be retrieved for feature retrieval to verify the differences between the two platforms. Also, we set the similarity threshold to 0.3, and calculated recall and mAP under Top 200 as evaluation results.




3.2. Decoding Analysis


The decoding difference will significantly affect the quality of feature extraction. The quantization matrix, HUFFMAN table, and DCT/IDCT process used by different JPEG codecs are not exactly the same, and the output codec results are often different. This paper mainly compares the decoding hardware capabilities.



The Turing-based NVIDIA Tesla T4 supports HEVC 4:4:4 (8/10/12 bit), H.264, HEVC 4:2:0 (8/10/12 bit), VP9 (8/10/12 bit) and other video decoding formats. In addition, the JPEGD decoding of the TeslaT4 chip supports the maximum resolution of the input image, 32,768 × 16,384, and the minimum resolution, 64 × 64 [7,8].



For Atlas 300V, the JPEGD input image maximum resolution is 8192 × 8192, and the minimum resolution is 32 × 32. When the Atlas 300V implements the JPEGD image decoding function, it only supports Huffman encoding. The color space of the original image before compression is YUV, and the ratio of each component of the pixel is 4:4:4, 4:2:2, 4:2:0, 4:0:0, or 4:4:0. Arithmetic encoding, progressive JPEG format, and JPEG2000 format are not supported. In addition, the Atlas 300V supports a maximum of four Huffman tables on hardware, including two direct current tables and two alternating current tables. Ascend supports 3 quantization tables, 8-bit sampling accuracy, and decoding of sequential encoded images. Also, it supports JPEG format decoding based on discrete cosine transform (DCT) and supports image decoding with a start of scan (SOS) flag. Video decoder (VDEC) only supports decoding of input streams by frame. If there are bad frames or missing frames in the code stream, the decoder VDEC will mark the frame as a decoding failure and report an exception. Through the interlacing mode encoding out of the stream, VDEC only supports decoding H264 8-bit encoded stream. At the same time, it can achieve the purpose of fast decoding and fast output, but this scenario does not support decoding the code stream containing B frames [17,54].



Due to the limitations of the hardware of various manufacturers, the pictures and videos of many scenes could be directly decoded successfully. By analyzing the image decoding failure, we found that a few of the image decoding failures were due to an image format error, and the image is opened and presented as black. Most of the image failures were caused by image resolutions, width and height alignments, image memories, etc., that do not meet the hardware platform. Other image-decoding failures are due to the limitations of the hardware itself, resulting in inconsistent images successfully decoded on both sides.



In order to reduce the difference in decoding, we first compared the differences between hardware-platform decoding and CPU software decoding. Specifically, the same images and videos were decoded through different decoding modules to obtain their respective YUV images, the absolute value of the difference between the two was calculated pixel by pixel, and then the number of current differences was calculated, respectively, according to the absolute value of the pixel difference. Next, we chose the software decoding mode with the closest precision to the hardware decoding and executed the software decoding directly after the hardware decoding failed. In addition, we transplanted the different modes of hardware decoding and software decoding (such as the 3 DCT/IDCT modes in Turbo jpeg) into the software decoding, using the same DCT mode, so as to achieve the same codec results. Finally, we added a color-space conversion module to convert input formats not supported by the hardware pre-processing module to formats it supports (such as YUV444 to YUV420), so as to further improve the image utilization.




3.3. Hardware Architecture (GPU/NPU)


The hardware architecture difference will significantly affect the quality and speed of feature extraction. In this paper, the Tesla T4 (GPU) and Atlas 300V (NPU) are selected for comparison.



As shown in Figure 3, GPU architecture has been widely used in the field of artificial intelligence because of its high parallel computing capability and versatility. In GPU fields, NVIDIA GPUs are widely used in deep-learning training and inference tasks due to their outstanding performance and versatility, which promotes the rapid development of the deep-learning field. In addition, a large number of enterprises are adopting NVIDIA GPUs to deploy AI models in data centers and edge devices. The NVIDIA Tesla T4 further extends this lead, from FP32 to FP16 to INT8 and INT4, delivering breakthrough performance and flexible multi-precision capabilities. Specifically, the NVIDIA T4 is an AI inference accelerator based on the new NVIDIA Turing™ architecture, featuring high performance, low latency, multi-precision, and hybrid accuracy. The NVIDIA Tesla T4 GPU includes 2560 CUDA cores and 320 tensor cores, which deliver FP16 performance of up to 65 TFLOPS and INT8 inference performance of up to 130 TOPS. In addition, the NVIDIA Tesla T4 introduces a revolutionary Turing tensor core technology that uses multi-precision computation for different workloads. The NVIDIA Tesla T4 accelerates different cloud workloads, including video transcoding, deep-learning training, and inference, to deliver revolutionary performance and innovative solutions [7,8,57]. Turing GPUs have a CUDA Compute Capability of 7.5.
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Figure 3. GPU architecture [57,58]. 






Figure 3. GPU architecture [57,58].
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An NPU is a kind of application-specific integrated circuit (ASIC), in which the processing of the network is more complex and more flexible, and generally can use software or hardware, according to the characteristics of network computing special programming, to achieve the special purpose of the network. NPUs in a chip can achieve many different functions, and are applicable to a variety of different network equipment and products. Huawei Ascend AI processor is a successful example of NPU architecture design.



The Huawei Ascend AI processor is essentially a system-on-chip, which can mainly be applied to scenes related to voice, word, video, and image processing. Its main architectural components include special corresponding control units, large capacity storage units, and computing units [18].



As is shown in Figure 4, the Ascend core, based on the DaVinci architecture, consists of an instruction management unit, multi-level on-chip memory, and corresponding loading/storage units, three types of computing units, etc. Specifically, the computing unit mainly includes scalar, vector, and cube. The scalar unit is similar to the classical RISC core and is primarily responsible for the operations of the control flow and scalar calculations. The 1D vector unit is similar to the SIMD unit, which can perform most computation operations, such as format transfer, activation, normalize, CV operators (RPN, etc.). The 2D matrix unit is used to perform general matrix–matrix multiplication (GEMM), including dot product and outer product, because it can reuse intermediate data and accelerate computational efficiency. The 3D cube unit then provides a lot of computing power to perform Mat-Mul, FC, convolution, etc. The cube unit can alleviate the mismatch between limited memory bandwidth and computational throughput due to its excellent data reuse capability [18]. The Ascend core uses multi-level buffers to ensure data reuse. For example, L0 buffers are dedicated to 3D cube units. In addition, vector units are also responsible for data accuracy conversion, such as quantization and de-quantization operations between int32, fp16, and int8 [18].



In addition, the compute architecture for neural networks (CANN) is a heterogeneous computing architecture launched by Huawei for AI scenarios, and its overall architecture is shown in Figure 5. The CANN provides multi-level programming interfaces and supports the rapid construction of AI applications and services based on the Ascend with the advantages of full scenario, low threshold, and high performance, which improve user-development efficiency and release the surging computing power of the Ascend AI processor. Also, the components of CANN include the Ascend computing language (AscendCL), graph engine (GE), runtime, DVPP, CANN Lib, HCCL, driver, development system, system tools, and auxiliary development tools [54,55].



The CANN [54,55] mainly provides efficient tensor computing power, supporting a variety of data types and operations, including matrix multiplication, convolution, pooling, etc. It also supports a variety of optimization techniques, such as dynamic memory management and quantitative computation, which can greatly improve the training and reasoning speed of neural networks. In terms of hardware architecture, the CANN adopts the architecture design of high parallelism in the computing core and cache, supports a variety of data parallelism and model parallelism, and can meet the computing requirements of neural networks of different scales. At the same time, CANN also supports a variety of programming languages and development tools, such as C/C++, Python, etc., to facilitate developers to develop and deploy applications. Also, the CANN platform provides a series of tools and libraries, including model transformation tools, inference engines, optimization libraries, etc., to help developers deploy neural-network models on Huawei Ascend series chips to achieve high-performance inference computing. Through these tools and libraries, developers can more easily apply neural networks to a variety of practical scenarios, such as natural language processing, speech recognition, image recognition, etc.



The product specifications of the Atlas 300V and Tesla T4 are compared in Table 1. As shown in Figure 6, in order to verify the difference between the Atlas 300V and Tesla T4 in the accuracy of inference models, we constructed their test schemes based on the feature-extraction processes of video stream and image stream, respectively. The detection models (such as Yolo [59,60,61,62]) of video streams and image streams are different, but the feature-extraction models (such as ResNet [63], ResNeXt [64], MobileNets [65], ShuffleNet [66,67], and Inception-v4 [68]) are the same. Therefore, we pay more attention to the result of the capture in the video stream.



First, we converted the AI model to the FP16 model using the respective platform’s deployment software, which can strike a good balance between precision and speed. Then, we conducted the test according to the test scheme of the video stream in Figure 6 and calculated the test index, in which 60 videos using H264 and MPEG4 encoding were tested, with resolutions ranging from 1080p to 4K and video frame rates of 25 frames per second. We sampled the video frame rate from 25 frames per second to 8 frames per second. Also, we focused on the difference between the target capture rate and the target association rate within 1%, and our task results are consistent. Next, the model deployment for image streams is the same as for video streams. A large number of JPEG images are detected and then feature extraction is performed on the detected targets. Then, the cosine similarity formula is used to calculate the similarity of the two feature vectors,


  cos  θ  =     a →  •  b →      a →     b →       



(1)




where    a →  ,  b →    represent vectors.



Finally, the statistical index of eigenvector similarity is calculated.





4. Results


In this section, we compare the differences between the TeslaT4 and Atlas 300V in three typical AI computing scenarios, including decoding, feature extraction, and feature retrieval. The TeslaT4 deployment environments are CUDA10.1, libcudnn7.6.3, and tensorRT-6.0.1.5. The Atlas 300V is deployed on CANN6.0.1. Our test data are from the actual production environment, such as park entrance, sidewalk, non-motorized lane, traffic vehicle bayonet, and other scenes.



4.1. Image-Retrieval Result Based on Cross-Hardware Platform Features


In the feature-based image retrieval, we set the feature matching threshold to 0.3 and compared the feature search results of the Atlas 300V and TeslaT4 Top 200. As can be seen from Table 2 and Table 3, the difference between the TeslaT4 and Atlas 300V in recall and mAP in feature retrieval is less than 0.1%. Therefore, the feature results from the TeslaT4 and Atlas 300V can be mixed for feature retrieval.




4.2. Decode Comparison


As can be observed from Table 4, Table 5 and Table 6, compared with the Atlas 300V hard and CPU soft decoding, the TeslaT4 hard decoded more than 99% of the image with a decoding pixel maximum difference of +1/−1. The decoding success rate of software decoding is obviously higher than that of hardware decoding. Compared with Atlas 300V hard decoding, the proportion of TeslaT4 hard decoding images with the maximum difference of pixels over 100 is 0.17%. In addition, the test results on different hardware are shown in Figure 7, where the decoding maximum pixel difference is more than 100. Therefore, after hardware decoding fails, software decoding can be used instead, thereby improving the decoding success rate. The above decoding comparison experiment mainly uses JPG image for comparison.




4.3. Feature Comparison


As can be seen from Table 7, the scaling mode in the pre-processing process will affect the detection results, resulting in inconsistent features. In addition, the features of small target images are more sensitive to position than those of randomly selected images. From the average of feature similarity, the feature similarity between the Atlas 300V and TeslaT4 exceeds 99%. As can be seen from Table 8 and Table 9, the difference between the TeslaT4 and Atlas 300V in capturing rate and accuracy of selection is within 0.1%. Additionally, the difference between the TeslaT4 and Atlas 300V in correlation accuracy and target association rate is within 0.1%. Capture rate (%) indicates the percentage of successful captures of an image with the best quality during the appearance of an object in a video. Accuracy of selection (%) represents the percentage of the capture that is the most desirable target.





5. Discussion


In order to further analyze the influence of the detection results on the feature quality, we calculated the results of each pixel deviation of the detection coordinate, respectively. The coordinate deviation of the detection result is calculated using Formula (2). Then, the statistical results of feature similarity of coordinate frame deviation 0, (0,10], (10,30], (30,60), and 60+ were analyzed. As can be seen from Table 10, Table 11 and Table 12, the pixel deviation of the detection results of the Atlas 300V and TeslaT4 is mainly concentrated within 10. From the average value of feature similarity, the feature similarity between the Atlas 300V and TeslaT4 exceeds 99%.


    ∑  i = 0  N      x i 1  −  x i 2    +    y i 1  −  y i 2       



(2)




where   x , y   are coordinate points.  N  is the number of coordinate points.




6. Conclusions


In this article, we realize an image-retrieval method based on cross-hardware platform features, aiming to prove that the features of heterogeneous hardware platforms can be mixed, in which the Huawei Atlas 300V and NVIDIA TeslaT4 are used for experiments. First, we compare the decoding differences of heterogeneous hardware, and use CPU software decoding to help hardware decoding improve the decoding success rate. Then, we compared the difference between the Atlas 300V and TeslaT4 chip architectures and test the differences between the two platforms’ features by calculating feature similarity. In addition, the scaling mode in the pre-processing process is also compared to further analyze the factors affecting the feature consistency. Next, the consistency of capture and correlation based on video structure is verified. Finally, the experimental results reveal that the feature results from the TeslaT4 and Atlas 300V can be mixed for image retrieval based on cross-hardware platform features. Consequently, cross-platform image retrieval with low error is realized. In the future, we will introduce more chips for comparison, such as the AX650N, MLU370, DCU Z100, and further study the impact of model quantization on performance and accuracy, such as FP8.
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Figure 1. The overall process of feature-based image retrieval. The green bounding box indicates the correct target, and the red bounding box indicates false alarms. 
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Figure 2. The deployment schemes based on the Tesla T4 and Atlas 300V. 
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Figure 4. Ascend core (Ascend-Max configuration) [9] (Copyright © 2021, IEEE). 
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Figure 5. Illustration of Ascend’s software development stack [55]. 
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Figure 6. Feature-extraction and comparison methods in images and video streams. 
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Figure 7. Test results on different hardware, where the maximum pixel difference is more than 100. X hard indicates the hard decoding of X platform, and X det indicates the detection result of X platform. 
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Table 1. Comparison among hardware platforms [7,17,69].
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	Platform
	TeslaT4
	Atlas 300V
	Atlas 300V Pro





	Architecture
	NVIDIA Turing
	DaVinci
	DaVinci



	Memory size
	16 GB GDDR6
	24 GB LPDDR4X
	48 GB LPDDR4X



	Memory BW
	320 GByte/s
	204.8 GByte/s
	204.8 GByte/s



	Power
	70 W
	72 W
	72 W



	PCIe
	×16 PCIe Gen3
	×16 PCIe Gen4
	×16 PCIe Gen4



	FP16
	65 TFLOPS
	50 TFLOPS
	70 TFLOPS



	INT8
	130 TOPS
	100 TOPS
	140 TOPS



	H.264/H.265

decoder
	-
	100 channels 1080P 25 FPS, 80 channels 1080P 30FPS, or 10 channels 4K 60FPS
	128 channels 1080P 30FPS or 16 channels 4K 60FPS



	H.264/H.265

encoder
	-
	24 channels 1080P 30FPS or 3 channels 4K 60FPS
	24 channels 1080P 30FPS or 3 channels 4K 60FPS



	JPEG decoder
	-
	4K 512FPS
	4K 512FPS



	JPEG encoder
	-
	4K 256FPS
	4K 256FPS










 





Table 2. Statistics of successful feature extraction.
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Platform

	
Dataset

	
Number of Images

	
Number of Feature

	
Feature Extraction Success Rate (%)






	
Atlas 300V

	
Query

	
41,788

	
41,614

	
99.58




	
Gallery

	
277,440

	
276,495

	
99.66




	
Interference

	
101,664

	
97,925

	
96.32




	
TeslaT4

	
Query

	
41,788

	
41,613

	
99.58




	
Gallery

	
277,440

	
276,500

	
99.66




	
Interference

	
101,664

	
97,969

	
96.36











 





Table 3. Comparison of feature retrieval on different hardware.
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	Similarity Threshold
	TopN
	Query
	Gallery
	Recall (%)
	mAP (%)





	0.3
	200
	TeslaT4
	TeslaT4
	96.32
	83.12



	0.3
	200
	Atlas 300V
	Atlas 300V
	96.25
	82.90



	0.3
	200
	TeslaT4
	Atlas 300V
	96.28
	82.99



	0.3
	200
	Atlas 300V
	TeslaT4
	96.29
	83.03










 





Table 4. The effect of coding quality factor on image storage.
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Atlas 300V




	
Quality factor

	
Image 1

(200w pixel)

	
Image 2

(200w pixel)

	
Image 3

(200w pixel)




	
90

	
619 KB

	
602 KB

	
582 KB




	
95

	
848 KB

	
824 KB

	
799 KB




	
TeslaT4




	
Quality factor

	
Image 1

(200w pixel)

	
Image 2

(200w pixel)

	
Image 3

(200w pixel)




	
75

	
350 KB

	
328 KB

	
335 KB




	
90

	
561 KB

	
527 KB

	
534 KB




	
95

	
802 KB

	
751 KB

	
763 KB











 





Table 5. Decoding difference. (image) indicates comparison by image, (pixel) indicates comparison by pixel.
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	Decode Compare
	Number of Test Images
	Pixel Difference |1| (Image)
	Pixel Difference |1| (Pixel)





	TeslaT4 hard vs.

Atlas 300V hard
	28w
	99.82%
	96.27%



	TeslaT4 hard vs.

CPU soft
	28w
	99.65%
	95.36%



	Atlas 300V hard

Vs. CPU soft
	28w
	99.99%
	99.98%










 





Table 6. Comparison of decoding abilities.
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	Decode Type
	Number of Test Images
	Decode Success Rate





	TeslaT4 hard
	28w
	98.20%



	Atlas 300V hard
	28w
	97.26%



	CPU soft
	28w
	99.75%










 





Table 7. Feature similarity on different hardware. A total of 10w pictures were randomly selected for testing, respectively.
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	Test Type
	Randomly Selected (Hard Scaling)
	Small Target (Hard Scaling)
	Small Target (Soft Scaling)





	Similarity ≥ 0.900
	99.96594
	98.22877
	99.02169



	Similarity ≥ 0.950
	99.81309
	98.04452
	98.89877



	Similarity ≥ 0.970
	99.44975
	97.93458
	98.80734



	Similarity ≥ 0.990
	96.61813
	97.82261
	98.72505



	Similarity ≥ 0.995
	89.34083
	96.43209
	97.61570



	Max
	0.99995
	0.99999
	0.99999



	Min
	0.62485
	0.25368
	0.25638



	Mean
	0.99731
	0.99121
	0.99537



	Var
	0.00003
	0.00440
	0.00214










 





Table 8. Video stream snapshot statistics. A total of 60 videos using H264 and MPEG4 encoding were tested, with resolutions ranging from 1080p to 4K and video frame rates of 25 frames per second. We sampled the video frame rate from 25 frames per second to 8 frames per second.
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Type

	
Platform

	
Mark Target

	
Capture Rate (%)

	
Accuracy of Selection (%)






	
Rider

	
TeslaT4

	
7207

	
89.45

	
69.99




	
Atlas 300V

	
7207

	
89.14

	
70.05




	
Non-motor vehicle

	
TeslaT4

	
6011

	
90.75

	
76.63




	
Atlas 300V

	
6011

	
90.84

	
75.99











 





Table 9. Video stream target association statistics. A total of 60 videos using H264 and MPEG4 encoding were tested, with resolutions ranging from 1080p to 4K and video frame rates of 25 frames per second. We sampled the video frame rate from 25 frames per second to 8 frames per second.
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Type

	
Platform

	
Correlation Label Quantity

	
Correlation Accuracy (%)

	
Target Association Rate

(%)






	
Rider-non-motor vehicle

	
TeslaT4

	
3181

	
91.90

	
81.77




	
Atlas 300V

	
3177

	
91.58

	
81.74











 





Table 10. A randomly selected 10w test set is calculated according to the coordinate deviation of detection results.
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	Test Type
	0
	(0,10]
	(10,30]
	(30,60)
	60+





	Quantity proportion
	0.24669
	0.72476
	0.02119
	0.00458
	0.00275



	Max
	0.99995
	0.99995
	0.99949
	0.99793
	0.99719



	Min
	0.95837
	0.89377
	0.75044
	0.62485
	0.68105



	Mean
	0.99891
	0.99730
	0.98648
	0.97940
	0.97181



	Var
	0.00000
	0.00001
	0.00031
	0.00111
	0.00160



	Similarity ≥ 0.900
	1.00000
	0.99997
	0.99340
	0.98095
	0.96507



	Similarity ≥ 0.950
	1.00000
	0.99949
	0.95879
	0.93714
	0.87619



	Similarity ≥ 0.970
	0.99989
	0.99791
	0.88092
	0.83047
	0.75873



	Similarity ≥ 0.990
	0.99833
	0.97143
	0.61392
	0.45333
	0.26666



	Similarity ≥ 0.995
	0.98353
	0.88584
	0.38030
	0.11809
	0.05079










 





Table 11. The test set of 10w small targets is calculated according to the coordinate deviation of detection results (hard scaling).
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	Test Type
	0
	(0,10]
	(10,30]
	(30,60)
	60+





	Quantity proportion
	0.26178
	0.67103
	0.06462
	0.00163
	0.00091



	Max
	0.99999
	0.99999
	0.99999
	0.99998
	0.99981



	Min
	0.26454
	0.25428
	0.25368
	0.26778
	0.27480



	Mean
	0.99517
	0.99143
	0.98288
	0.90586
	0.43359



	Var
	0.00206
	0.00427
	0.00918
	0.03914
	0.03834



	Similarity ≥ 0.900
	0.98926
	0.98260
	0.96802
	0.80124
	0.08888



	Similarity ≥ 0.950
	0.98751
	0.98091
	0.96471
	0.77639
	0.08888



	Similarity ≥ 0.970
	0.98615
	0.97999
	0.96298
	0.77018
	0.08888



	Similarity ≥ 0.990
	0.98499
	0.97894
	0.96125
	0.77018
	0.08888



	Similarity ≥ 0.995
	0.97095
	0.96548
	0.94408
	0.72049
	0.07777










 





Table 12. The test set of 10w small targets is calculated according to the coordinate deviation of detection results (soft scaling).






Table 12. The test set of 10w small targets is calculated according to the coordinate deviation of detection results (soft scaling).





	Test Type
	0
	(0,10]
	(10,30]
	(30,60)
	60+





	Quantity proportion
	0.56585
	0.39010
	0.04351
	0.00025
	0.00028



	Max
	0.99999
	0.99999
	0.99998
	0.99997
	0.99548



	Min
	0.26454
	0.26694
	0.25638
	0.31350
	0.27480



	Mean
	0.99525
	0.99639
	0.99225
	0.92336
	0.39257



	Var
	0.00205
	0.00176
	0.00394
	0.04362
	0.01679



	Similarity ≥ 0.900
	0.98965
	0.99242
	0.98459
	0.88000
	0.03571



	Similarity ≥ 0.950
	0.98798
	0.99182
	0.98342
	0.88000
	0.03571



	Similarity ≥ 0.970
	0.98678
	0.99132
	0.98248
	0.88000
	0.03571



	Similarity ≥ 0.990
	0.98556
	0.99104
	0.98202
	0.88000
	0.03571



	Similarity ≥ 0.995
	0.96385
	0.