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Abstract: In the footwear industry, occupational risks are significant, and work accidents are frequent.
Professionals in the field prepare documents and reports about these accidents, but the need for more
time and resources limits learning based on past incidents. Machine learning (ML) and deep learning
(DL) methods have been applied to analyze data from these documents, identifying accident patterns
and classifying the damage’s severity. However, evaluating the performance of these methods
in different economic sectors is crucial. This study examined neural and non-neural methods for
classifying the severity of workplace accidents in the footwear industry complex. The random forest
(RF) and extreme gradient boosting (XGBoost) methods were the most effective non-neural methods.
The neural methods 1D convolutional neural networks (1D-CNN) and bidirectional long short-term
memory (Bi-LSTM) showed superior performance, with parameters above 98% and 99%, respectively,
although with a longer training time. It is concluded that using these methods is viable for classifying
accidents in the footwear industry. The methods can classify new accidents and simulate scenarios,
demonstrating their adaptability and reliability in different economic sectors for accident prevention.

Keywords: machine learning; workplace accidents; shoes industry; deep learning; accuracy

1. Introduction

The digitalization process of manufacturing operations (Industry 4.0 or I4.0) has signif-
icantly changed work activities [1]. I4.0 has expanded the use of automation by integrating
cyber technologies and the physical world [2]. In parallel, governments and organizations
have been directing the digitalization process towards more excellent care for the envi-
ronment and human beings, a paradigm called Industry 5.0 or I5.0 [3]. One of the key
objectives of I5.0 is to ensure that production is human-centered, something that depends
on efficient safety management to prevent accidents [4]. Researchers, policymakers, and
industry professionals in occupational health and safety have a fundamental role in this
process in the Brazilian footwear industry.

Work accidents are the third highest cause of death in the world, resulting in more than
7000 deaths and one million physical injuries every day [5]. In Brazil, between 2012 and
2021, more than 22,000 deaths were recorded due to work accidents, of which the year 2021
accounts for 571,000 [6]. Data from the Brazilian Notifiable Diseases Information System
(SINAN) total more than 911,000 work accidents between 2006 and 2019 [7]. These alarming
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statistics underscore the urgent need to address the high incidence of work accidents in the
Brazilian footwear industry.

In addition to damaging workers’ physical and psychological integrity, accidents result
in significant monetary losses. Gonzalez et al. [8] conducted a case study of severe accidents
in Brazil and arrived at values totaling more than 18 billion dollars in losses. In poorer
regions, the tendency is for occupational aspects to worsen [9]. For example, the northeast
region of Brazil had 86,000 accidents in 2013 [10]. Factors such as low wages, precarious
occupational relationships, unhealthy work, long working hours, and exploitation of the
workforce are expected to be found in different types of work activities in the interior of
the Brazilian northeast, something that contributes to a greater chance of illnesses and
accidents of work [9,11,12].

Among the sectors of the economy with the highest number of accidents, the footwear
industry stands out negatively, as there are many risks inherent in transforming raw ma-
terials into finished products [13]. The Brazilian footwear industry comprises around
8000 organizations, which directly employ 340,000 workers and produce more than 908 mil-
lion pairs per year [14]. Thus, a discrepancy between the size of this market segment and
the damage caused to workers is evident.

The Brazilian footwear industry can be positioned as an economic sector with signif-
icant occupational risk. Factors such as high pressure for production [15], moral harass-
ment [16], high stress and inappropriate psychosocial conditions [17], excessive use of force
or repetitive movements [18], and high cognitive demands [19] are present in the footwear
industry. Furthermore, the work organization uses specialist workers with low autonomy
and no organizational support [20]. Most academic work found in the footwear industry
seeks to prevent ergonomic injuries [21–23], with studies using robust methodologies that
seek to prevent workplace accidents based on learning from data on accidents that have
already occurred.

The low use of historical information regarding accidents is a worldwide failure. The
findings of Stoop and Dekker [24] highlight both the reactive nature of studies focused on
accident prevention and the inability of organizations to learn from accidents that occur.
Authors, such as Kletz [25], agree that it is difficult to make decisions so that accidents do
not happen again and that little is learned from accidents and incidents. Despite a large
volume of data and information, occupational safety professionals can only sometimes
detect patterns and report variables related to accidents in reports and other documents
related to the safety area. A significant investment of time and money is required for
these professionals to be able to find patterns that are repeated in workplace accidents.
Authors such as Tanguy et al. [26] state that data from industrial reports are valuable for
learning lessons from accidents and incidents that have already occurred. However, manual
analysis of these documents requires many resources, making it preferable to search for
computational solutions.

Alternatively, using neural and non-neural methods can assist in analyzing databases
recording accidents and their associated factors. Both types of methods are based on
machine learning (ML), characterized by the use of mathematical models implemented in
computational routines and capable of identifying patterns to be applied to new similar data
in the future and decision-making [27]. Neural methods use the architecture of neurons,
including enabling deep layers (deep learning), and promise some superiority in detecting
patterns due to self-learning capacity and efficiency in determining optimal solutions [28].
Non-neural methods do not use the architecture of neurons to detect patterns. Still, they can
present better solutions than neural methods for several problems [29], with the advantage
of being simple and requiring less computational effort and training time [30].

Given the above, this article aims to verify the performance of neural and non-neural
methods used to classify the severity of work accidents in the footwear industry complex.
Based on the accuracy, precision, recall, and F-Score values, it is expected to define which
method performs best in identifying patterns and classifying the severity of work accidents
in the footwear industry.
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In addition to the novelty of comparing several ML methods to analyze accidents in
the footwear industry, this study brings relevant contributions by showing the excellent
performance of methods such as 1D convolutional neural networks (1D-CNN) and bidirec-
tional long-short-term memory (Bi-LSTM) to classify occupational accidents, something
little explored by previous studies. The findings of this research suggest that neural and
non-neural methods performed well in classifying accidents at work in the footwear indus-
try. Methods such as 1D-CNN and Bi-LSTM performed better but required a long training
time. Methods such as random forest (RF) and extreme gradient boosting (XGBoost) pre-
sented relatively lower performance. However, they require less training time and are still
viable alternatives for occupational safety managers in the footwear industry.

This article is organized as follows: Section 1 presents the introduction of the article,
highlighting the topic, relevance, and objectives of this article. Section 2 presents a brief
review of the related work. Section 3 indicates the methodology used, highlighting the study
design, data collection, study variables, classification methods (non-neural and neural),
classification model performance, and the importance of factors in classification. Section 4
presents the results, highlighting the characterization and distribution of accidents, the
result of model comparison, and the importance of different factors. Finally, Sections 5 and 6
discuss the research’s main findings, including the study’s implications and limitations and
the conclusion of this article, respectively.

2. Related Work

The use of machine learning methods has become common in the area of accident
prevention and safety, including occupational safety. Some studies have focused on iden-
tifying the location of traffic accidents and analyzing the severity of injuries caused in
non-occupational scenarios [31–33]. These studies focused on analyzing data related to
traffic accidents. Thus, studies such as that by Arteaga et al. [34] used methods such as
extreme gradient boosting (XGBoost) and random forest (RF) to classify the severity of
traffic accidents. Chen and Chen [35] used methods such as logistic regression, regression
trees, and RF to classify the severity of road accidents. It is also possible to identify studies
focusing on analyzing parameters related to food safety [27].

However, the literature also presents some applications of neural methods in work
activities. The study by Xu et al. [36] classified accidents and assessed their severity using
a convolutional neural network in hot work. This same study found the leading causes
of these accidents, highlighting the absence of mechanisms for detecting dirty gas and
fuel. Cheng et al. [37] used a gated recurrent unit (GRU) neural network to help classify
accidents on construction sites, contributing to a better assessment of future safety projects
in construction. Other studies use multiple neural methods to ensure the best choice of
model. Antwi-Afari et al. [38] compared the performance of different neural network
methods, such as long short-term memory (LSTM), bidirectional long short-term memory
(Bi-LSTM), and GRU, in the classification of WMSDs in construction industry workers,
which demonstrated the algorithms’ ability to capture bad postures in real time.

However, professionals widely use non-neural methods in occupational and non-
occupational settings. Most studies have compared the performance of these methods.
Özkan and Ulaş [39] used RF, k-nearest neighbor (KNN), the gradient boosting method
(GBM), and recursive partitioning and regression tree (RPART) methods to predict the
causes and consequences of occupational accidents in the metallurgical sector in Turkey.
Goh and Ubeynarayana [40] used algorithms such as RF, KNN, decision tree (DT), naive
Bayes (NB), linear regression (LR), and support vector machine (SVM) to classify accident
narratives in the construction industry. Tixier et al. [41] analyzed the predictive ability
of RF and stochastic gradient tree boosting (SGTB) methods to determine the injury type
related to occupational accidents in construction industry reports. In the mining and
civil engineering sectors, it is worth highlighting the study by Rivas et al. [42], which
compared statistical methods, such as logistic regression, with predictive methods, such
as decision rules, Bayesian networks (BN), SVM, and classification trees (CT), finding that
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these models were superior to conventional statistical models. Matías et al. [43] compared
the explanatory capacity and predictive potential of methods such as BN, CT, SVM, and
extreme learning machines for events involving falls at work in the industrial, mining,
construction, and service sectors.

More recently, studies in accident prevention have focused on using neural methods.
Text classification of occupational injury reports was improved by the non-negative matrix
factorization model method in a study by Chen et al. [44]. Text classification to identify
injuries from work-related accidents was also used by McKenzie et al. [45]. Accidents
in chemical industries were analyzed using machine learning by Tamascelli et al. [46].
Their findings suggest that the wide–deep model proved helpful for building predictive
models to predict accident severity. Graph-based convulsive networks were developed by
Pan et al. [47] to automatically classify occupational safety reports, indicating the type of
accident and the type of injury caused by the accidents.

Similarly, Luo et al. [48] used an explosive neural network for automatic text classifica-
tion in accident reports from the construction industry. In addition to text classification,
Paraskevopoulos et al. [49] proposed a multimodal framework capable of training machine
learning algorithms through images present in reports. A multimodal analysis involving
data structuring and natural language processing was employed by Khairuddin et al. [50]
on an extensive database of U.S. OSHA Severe Injury Reports. There are also literature
reviews on ML methods in the industry [51,52].

However, applying ML and DL methods in the context of occupational safety in
the footwear industry is a relatively unexplored area. While Rmadi et al. [53] used the
decision tree method to assess the risk of WMSDs in footwear industry workers, and
Zokaei et al. [54] employed a neural network algorithm to predict musculoskeletal disorder
risks, these studies focused on ergonomic risks and did not compare the performance of
different ML and DL methods. Therefore, this study is the first to evaluate the performance
of various neural and non-neural methods in classifying the severity of accidents in the
industrial footwear sector, making it a unique and valuable contribution to the field.

3. Methods

This section presents the characteristics of the study design; in addition to the data
collection process, it presents the study variables (features) taken from the safety reports,
the classification methods (non-neural and neural), the tested hyperparameter settings,
the performance parameters of the classification model, and the determination of the
importance of the factors in the classification.

3.1. Study Design

This exhaustive longitudinal study collected data from forms, reports, documents, and
notices of work accidents in shoe factories in northeastern Brazil. The data collected are
related to work accidents between 2016 and 2022. In total, 1259 accidents were recorded,
which occurred in all 21 sectors present in the industrial complex.

3.2. Data Collection

The factories selected for data collection are part of a complex of industries responsible
for making components and assembling footwear. The industrial complex’s factories are
units of a multinational company with several factories and commercial offices in Asia,
North America, South America, and Europe. The shoes are made of PVC and are intended
for men and women.

The industrial complex employs around 5500 workers and operates three daily shifts
of 7 h and 20 min from Monday to Friday. On Saturdays and Sundays, shifts are 6 h
long, with a workforce equal to 85% and 10% of the total. Footwear production involves
104 manufacturing and management tasks in sectors such as administration, finishing,
warehouse, vulcanization (autoclave), mixing (Banbury), insertion of small components,
distribution center, dry mixing (dry blend), industrial engineering, plastics manufacturing,
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injection molding, innovation, laboratory, maintenance, mills, pin application, presses,
quality, work safety, screen printing, and stabilization.

The data on accidents, crucial for our understanding of workplace safety, were meticu-
lously collected from documents within the company. Professionals with extensive occupa-
tional safety engineering and medicine training completed these documents. The engineers
diligently entered professional information about the injured worker and chronological
information about the time of the accident and the sector in which each accident occurred.
Occupational doctors provided detailed information about the type and severity of the
injury caused by the accident. This comprehensive information was then meticulously
tabulated in an electronic spreadsheet for subsequent analysis, ensuring the reliability of
our findings.

3.3. Study Variables

Our data collection process was thorough and meticulous. We gathered chronological
data of the accident and worker’s return after the accident, along with sociodemographic
and professional information about the victims, sectors in which the accidents occurred,
injured body region, type of injury suffered, and severity of the accident. These variables
are the foundation of our research, providing a comprehensive understanding of workplace
safety and health measures. We even collected specific chronological information, such
as the day, month, and year of the accident and the day, month, and year of the worker’s
return after the accident, to ensure the accuracy of our timeline.

The sociodemographic information collected involved sex (male and female), age (in
years), and marital status (married, single, and divorced). The professional data involved
total time at the company (in years), time in the current role (in years), work shift (first shift,
second shift, third shift, and general shift), and sector (all 21 sectors already mentioned).

Regarding the accident, information was collected about the need to leave work due
to the accident (yes or no), the need to open a work accident report (WAR), the injured
region (head, eyes, neck, chest, back, the region between shoulders and wrists, region of
hands or fingers, the area between legs and calves and ankles or feet), the type of accident
(sprain, contusion, back pain, eye injury, strain, dislocation, fracture, amputation, injuries
caused by animals, injuries caused by electric shock, cuts, and burns), and injury severity
(superficial injury and severe injury).

3.4. Data Preprocessing

The data in the spreadsheet originated from standardized reports used by the con-
stituent companies within the industrial complex. To validate the reliability of this informa-
tion, we randomly selected 100 reports and cross-referenced their data with the content
in the spreadsheet. Fortunately, no discrepancies were found between the reports and the
spreadsheet data.

The first stage of processing consisted of cleaning the data. Accident records with
missing data were removed. This approach was used due to the low number of records in
this situation. Next, the variables were discretized. The spreadsheet was searched for noisy
data, information that the algorithms could not interpret. However, no information of this
nature was identified in the database, a testament to the authors’ unwavering commitment
to data quality. A box-plot graph was constructed to verify the presence of outliers in
the factors. Only the age variable presented outliers due to the presence of older workers
in the sample. However, the authors chose not to exclude the observations, given the
relevance of also considering that older workers can have accidents. The data were also
transformed. For this purpose, the normalization technique was used. Thus, the values
were standardized between 0 and 1. Since the authors did access a data volume with few
features, it was decided not to proceed with any data reduction technique.
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3.5. Classification Methods

ML and DL methods, non-neural and neural, were used to classify the severity of
accidents. The non-neural methods tested were logistic regression (LR), support vector
machine (SVM), and tree structure models such as decision tree (DT), random forest (RF),
and extreme gradient boosting (XGBoost). Tree structure models are well accepted due to
their effectiveness in processing multifaceted data, flexibility, and ease of interpretation [55],
in addition to working satisfactorily with high-dimensional data (due to automatic variable
selection) and having an integrated interaction detector [56].

The neural methods tested were multilayer perceptron (MLP), long short-term memory
(LSTM), bidirectional long short-term memory (Bi-LSTM), gated recurrent unit (GRU), and
1D convolutional neural networks (1D-CNN).

3.5.1. Non-Neural Methods

The non-neural methods were developed with the help of the scikit-learn [57] and
xgboost [58] libraries. All methods are classic and require some coding of variables. The
first model tested was logistic regression (LR). A generalized linear model seeks to re-
late qualitative dependent variables to multiple independent variables. Authors such as
Christodoulou et al. [59] suggest that other ML methods do not present significant bene-
fits when compared to predictions made via LR for predicting clinical factors. Thus, LR
presented itself as an appropriate method for this study. The algorithm was implemented
with penalty type ‘l2’, tolerance for stopping criterion equal to 0.0001, the maximum num-
ber of interactions for convergence equal to 100, and solver type ‘lbfgs’ (limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm).

The decision tree (DT) method was also tested. This method seeks to predict a target
variable based on the values of other partitioned input variables, giving rise to hierarchical
logical diagrams [27]. It is a non-parametric data method with non-linear relationships.
This ML algorithm follows a logic of nodes, with the first node being called the decision
node, which has several branches connected to leaf nodes, being the output of the decision
node [60]. Recently, DT has been successfully used in classification problems in the footwear
industry [53]. Therefore, it was one of the non-neural methods tested. The DT algorithm
was implemented with the Gini criterion to measure the quality of the divisions in the
tree; the division of each node used the best criterion instead of the random criterion, and
the minimum number of samples to divide an entire node was equal to 2. The minimum
number of samples for each leaf node was equal to 1, and no number of resources was
defined to be considered when looking for the best division of the tree.

The random forest (RF) method uses the same principle as DT to generate several trees
from vectors with random values, and its main advantage is minimizing overfitting [40].
Authors such as Zhen et al. [61] highlight that RF makes use of the bagging algorithm to
generate training data via a sampling process, in which the number of samples generated
for training will be equal to the number of samples in the source dataset, making use of the
index of Gini to estimate the number of classes in the input data and the heterogeneity of
the parent nodes and child nodes of the trees. RF is the most widely used ML algorithm [62].
Therefore, RF was one of the methods used in this article. For the RF algorithm, among the
available options, the Gini criterion was used to measure the quality of the divisions in the
trees, the square root (sqrt) was used to define the number of resources to be considered
when searching for the best division, and the bootstrap as a resampling technique to select
training data.

Developed from the improvement of RF-based algorithms (specifically the gradient
boosting decision tree), the extreme gradient boosting (XGBoost) algorithm seeks parallel
speed and has strong fault tolerance and excellent generalization power [63]. In summary,
XGBoost verifies the need to add a new tree to the set of trees initially generated to reduce
the residual error (calculated from the results found between the actual value and the value
coming from the previously computed set of trees) [61]. As XGBoost has been suggested in
the literature as a method capable of classifying injuries caused by accidents [34], we also
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decided to test this method in this article. The default present in the xgboost library [58]
was adopted in the development of this algorithm.

3.5.2. Neural Methods

Several types of neural models and neuron architectures were tested. Like non-neural
methods, the models sought to classify accidents based on other factors.

The first neural method tested was the multilayer perceptron (MLP), a structure with
an arbitrary number of neurons in input, output, and hidden layers [27]. The MLP is
unique in that it is aligned with the logic of brain functioning (neurophysiology), which
involves continuously adjusting the weights of its synapses to classify a target variable [28].
This alignment with brain functioning gives MLP a unique potential in classifying work
accidents. Although it is one of the first neural networks developed, the application of
MLP to classify work accidents in the footwear industry has yet to be explored by previous
studies. Table 1 presents the configurations tested for the MLP.

Table 1. Summary of hyperparameters and values tested in the MLP.

Iteration Hyperparameter Values

1 Hidden layers 1, 2, 3, and 4
Number of input neurons 9, 19, 29, 39, 49, and 49

Number of hidden layer neurons 3, 13, 23, 33, 43, and 53
Activation function ReLU, tanh, and Sigmoid

2 Dropout 0.10, 0.20, 0.30, and 0.40
3 Epoch 1000 and 2000

Optimizer RMSprop, AdaGrad, Adam, and SGD
4 Learning rate 0.01, 0.001, and 0.005

Another neural network tested was long short-term memory (LSTM). This type of
network works with memory cells, which come from complex gate units. Gates work col-
laboratively and are self-designed, overcoming the naive approach of traditional MLPs [38].
MLPs are accurate when working with recent information, but the LSTM gate structure also
has good properties for processing data with long-term dependence [60]. LSTM has rare
applications in classification problems, although it has been successfully used to classify
accidents in nuclear plants [64]. No studies have been conducted in the footwear industry
to classify accidents using LSTM.

The bidirectional long short-term memory (Bi-LSTM) network was also tested. This
network operates using two LSTMs in parallel, seeking to process both previous and
subsequent information in the database [65]. Authors such as Wang et al. [66] successfully
employed Bi-LSTM to monitor the amount of gas emission in underground mining activity
and classify the presence or absence of explosion risk. Alhaek et al. [67] classified the
severity of traffic accidents using a Bi-LSTM. The use of Bi-LSTM for classifying work
accidents is scarce.

Another neural model tested was the GRU neural network. LSTM networks work
with the logic of three gates responsible for data input, output, and forgetting. In contrast,
GRU makes use of two gates, one for updating (selection of valuable information to be
added) and another for redefinition (selection of information to be eliminated) [38]. This
simplification in the number of gates makes this network more efficient than LSTM in many
situations [68]. A recent review on the use of ML and DL suggests a low use of GRU in
security [69]. Therefore, more information is needed about the performance of this network
in processing work accident data. Table 2 presents the hyperparameters used in LSTM,
Bi-LSTM, and GRU.
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Table 2. Summary of hyperparameters and values tested in LSTM, Bi-LSTM, and GRU.

Iteration Hyperparameter Values

1 Hidden layers 1, 2, 3, and 4
Number of input neurons 9, 19, 29, 39, 49, and 49

Number of hidden layer neurons 3, 13, 23, 33, 43, and 53
Activation function ReLU, tanh, and Sigmoid

Sequence size 30, 60, and 90
2 Dropout 0.10, 0.20, 0.30, and 0.40
3 Epoch 1000 and 2000

Optimizer RMSprop, AdaGrad, Adam, and SGD
4 Learning rate 0.01, 0.001, and 0.005

Finally, the last algorithm tested was the 1D convolutional neural network (1D-CNN).
This network works according to a hierarchical structure and learns the relationship be-
tween input and output data with convolution operations on a one-dimensional matrix [27].
Studies, such as that by Pérez-Sala et al. [70], have observed that 1D-CNN presented the
best accuracy for classifying traffic accidents compared to the other models tested. However,
reviews did not present studies that sought to classify work accidents using 1D-CNN [52].
Table 3 presents the parameters tested in 1D-CNN.

Table 3. Summary of hyperparameters and values tested in 1D-CNN.

Iteration Hyperparameter Values

1 Hidden layers 1, 2, 3, and 4
Number of filters 9, 19, 29, 39, 49, and 49

Kernel size 2, 3, 4, and 5
MaxPooling 2, 3, and 4

2 Dropout 0.10, 0.20, 0.30, and 0.40
3 Epoch 1000 and 2000

Optimizer RMSprop, AdaGrad, Adam, and SGD
4 Learning rate 0.01, 0.001, and 0.005

3.5.3. Classification Model Performance

The data were initially separated into 80% for training and 20% for testing [39]. To
classify the performance of neural and non-neural models, we employed the adaptable
10-fold cross-validation method [71]. Utilizing the resampling technique, this procedure
ensures that the input data are not precisely the same, allowing our models to be flexible
and responsive to different datasets. The neural and non-neural models were trained with
ten partition schemes [72], with the input data for training to change in each of the ten
repetitions, demonstrating the adaptability of our approach.

After training, four statistics served as the basis for evaluating the neural and non-
neural methods:

1. True positive (TP) is the situation in which the method classified an accident with a
serious injury as an event that resulted in a severe injury.

2. True negative (TN) is the situation in which the method classified an accident without
serious injury as an event that did not result in serious injury.

3. A false positive (FP) occurs when the method classifies an accident without serious
injury as an accident with serious injury.

4. A false negative (FN) occurs when the method classifies an accident with serious
injury as an accident without serious injury.

From the number of TP, TN, FP, and FN, the values of accuracy (Equation (1)), precision
(Equation (2)), recall (Equation (3)), and F-score (Equation (4)) were estimated:

Accuracy =
TP + TN

TP + FN + FP + TN
(1)
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Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F − score = 2 ∗ Precision ∗ Recall
Precision + Recall

(4)

Thus, accuracy sought to determine the percentage of correct classifications of the
method compared to the total classifications made [47]. Precision or sensitivity is a valuable
metric for reducing the number of false positive classifications made by the method [27].
On the other hand, recall aims to estimate the effect of false negative classifications made
by the method [73]. Finally, the F-score is a performance measure that unifies the trade-off
relationship between accuracy and recall [39].

3.6. Importance of Factors in Classification

The recursive feature elimination (RFE) method was used to determine the importance
of factors in classifying the severity of accidents. The RFE can be used to select which
variables will be used to train the methods based on criteria such as Gini importance and
permutation importance [27,40,74]. However, due to the low number of factors, RFE was
used in this study only to define the relevance of each predictor for classifying the severity
of accidents.

4. Results

This section presents the results, highlighting the characterization and distribution of
accidents between the years analyzed, the result of a model comparison involving parame-
ters such as accuracy, precision, recall, and F1-score, and determining the importance of
factors related to accidents.

4.1. Characterization and Distribution of Accidents

Table 4 presents the information collected about injured workers, sectors that did not
suffer accidents, and information related to the accident. It was found that the majority
of accidents occurred among men (93.4%), under 30 years old (66.2%), married (55.4%),
working in the second shift (36, 7%), who had been with the company for less than two
years (48.5%), and spent two years in the same role (56.2%). Official data from Brazil
indicate that men suffer the majority of work accidents [75], especially those up to 24 years
of age [76]. Likewise, Brazil is one of the leaders in turnover [77], resulting in a low time
of job retention in the same company and function. Hence, the findings align with the
operational context of Brazilian companies.

Table 4. Summary of information on accidents and injuries.

Variable n (%) Variable n (%)

Sex Injured region
Feminine 83 (6.6) Head 129 (10.2)
Masculine 1176 (93.4) Eyes 124 (9.8)

Age (years) Neck 5 (0.4)
Less than 20 87 (6.9) Chest 13 (1.0)

Between 20 and 24 473 (37.6) Back 49 (3.9)
Between 25 and 29 273 (21.7) Shoulders 20 (1.6)
Between 30 and 34 180 (14.3) Arms and forearms 147 (11.7)
Between 35 and 39 108 (8.6) Hands and fingers 638 (50.7)
Between 40 and 44 77 (6.1) Legs and calves 68 (5.4)
Between 45 and 49 34 (2.7) Feet and ankles 66 (5.2)
Between 50 and 54 20 (1.6) Type of injury

Over 55 6 (0.5) Sprain 16 (1.3)
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Table 4. Cont.

Variable n (%) Variable n (%)

Marital status Contusion 436 (34.6)
Married 698 (55.4) Back pain 21 (1.7)
Single 554 (44.0) Eye injury 107 (8.5)

Divorced 7 (0.6) Disthesis 25 (2.0)
Shift Dislocation 16 (1.3)
First 442 (35.d1) Fracture 62 (4.9)

Second 462 (36.7) Amputation 3 (0.2)
Third 323 (25.7) Injury caused by animals 3 (0.2)

General 32 (2.5) Injury caused by electric shock 3 (0.2)
Company time (years) Cut 504 (40.0)

Less than 2 610 (48.5) Burn 63 (5.0)
Between 2 and 4 174 (13.8) Sector
Between 4 and 6 117 (9.3) Administration 4 (0.3)
Between 6 and 8 69 (5.5) Finishing 342 (27.2)
Between 8 and 10 85 (6.8) Warehouse 10 (0.8)

More than 10 204 (16.2) Vulcanization (autoclave) 11 (0.9)
Function time (years) Mixers (Banbury) 95 (7.5)

Less than 2 707 (56.2) Insertion of small components 13 (1.0)
Between 2 and 4 184 (14.6) Distribution center 31 (2.5)
Between 4 and 6 102 (8.1) Dry blenders 14 (1.1)
Between 6 and 8 63 (5.0) Industrial engineering 12 (1.0)
Between 8 and 10 71 (5.6) Plastics manufacturing 2 (0.2)

More than 10 132 (10.5) Injectors 108 (8.6)
Type of return after accident Innovation 3 (0.2)

Immediate return to work
after accident 988 (78.5) Laboratory 3 (0.2)

Return after care in the
infirmary 254 (20.2) Maintenance 108 (8.6)

Return after home care 17 (1.3) Mills 131 (10.4)
WAR issuance Pin applicator 13 (1.0)

WAR was not done 999 (79.3) Presses 218 (17.3)
WAR was carried out 260 (20.7) Quality 4 (0.3)

Severity of the accident Workplace safety 3 (0.2)
Superficial injury 369 (29.3) Serigraphy 105 (8.3)

Severe injury 890 (70.7) Stabilizers 29 (2.3)

A high prevalence of accidents is observed in the finishing (27.2%) and press (17.3%)
sectors. In most cases, the worker immediately returned to work (78.5%). Findings by
Leite et al. [78] highlight that a large part of the footwear industry workers are concentrated
in finishing and that this is one of the sectors with the highest absenteeism rates. Most
accidents did not result in the opening of a work accident report (WAR) (79.3%). Brazilian
data indicate that accidents without WAR increase by up to 47.49% annually [79]. More
than half of the injuries occurred to the hands and fingers (50.7%) through cuts (40.0%) or
bruises (34.6%). Leite et al. [19] highlight that work in the footwear industry is still manual
or semi-automatic, resulting in more hand and finger injuries. The occupational medicine
professional classified the majority of accidents as events with serious injuries (70.7%).

Figure 1 shows the number of accidents between 2016 and 2022, indicating some
randomness in the number of accidents. A total of 2359 days were analyzed, of which 878
(37.2%) included an accident. There were rare peaks of five or four accidents on the same
day. On most days analyzed, there were no accidents (62.8%).

Table 5 summarizes the accidents that occurred daily in the years analyzed. On
602 days (25.5%), a single accident occurred. Therefore, days with two or more accidents
are rare (11.7%). The result of the Chi-square test shows that the distribution of the number
of accidents is different between the years (χ2 = 84.679; p-value = 0.000). The year 2020
had the highest number of days without accidents (73.2%), representing almost three days
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without an accident for every four days of work. The years 2016, 2020, and 2022 each
featured a day on which five accidents occurred. The years 2017 and 2018 had five and four
days in which four accidents occurred, respectively. Such results reinforce the randomness
in the number of accidents in the years analyzed.

Appl. Syst. Innov. 2024, 7, 85 11 of 22 
 

 

Figure 1 shows the number of accidents between 2016 and 2022, indicating some ran-
domness in the number of accidents. A total of 2359 days were analyzed, of which 878 
(37.2%) included an accident. There were rare peaks of five or four accidents on the same 
day. On most days analyzed, there were no accidents (62.8%). 

 
Figure 1. Time series of accidents between 2016 and 2022. 

Table 5 summarizes the accidents that occurred daily in the years analyzed. On 602 
days (25.5%), a single accident occurred. Therefore, days with two or more accidents are 
rare (11.7%). The result of the Chi-square test shows that the distribution of the number 
of accidents is different between the years (χ2 = 84.679; p-value = 0.000). The year 2020 had 
the highest number of days without accidents (73.2%), representing almost three days 
without an accident for every four days of work. The years 2016, 2020, and 2022 each fea-
tured a day on which five accidents occurred. The years 2017 and 2018 had five and four 

Figure 1. Time series of accidents between 2016 and 2022.

Table 5. Number of accidents in the years analyzed.

No. of Accidents

Years

2016 2017 2018 2019 2020 2021 2022

n (%) n (%) n (%) n (%) n (%) n (%) n (%)

0 223 (60.9) 239 (65.3) 200 (54.6) 263 (71.9) 268 (73.2) 205 (56.0) 88 (52.4)
1 96 (26.2) 78 (21.3) 116 (31.7) 77 (21.0) 74 (20.2) 111 (30.3) 50 (29.8)
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Table 5. Cont.

No. of Accidents

Years

2016 2017 2018 2019 2020 2021 2022

n (%) n (%) n (%) n (%) n (%) n (%) n (%)

2 31 (8.5) 37 (10.1) 37 (10.1) 19 (5.2) 18 (4.9) 30 (8.2) 20 (11.9)
3 14 (3.8) 7 (1.9) 9 (2.5) 6 (1.6) 4 (1.1) 18 (4.9) 8 (4.8)
4 1 (0.3) 5 (1.4) 4 (1.1) 1 (0.3) 1 (0.3) 2 (0.6) 1 (0.60)
5 1 (0.3) 0 (0.0) 0 (0.0) 0 (0.0) 1 (0.3) 0 (0.0) 1 (0.60)

4.2. Result of Model Comparison

The configuration of the algorithms used in non-neural methods was previously de-
scribed in the methodology. On the other hand, the process of choosing the best neural
network architectures occurred via the hyperparameter tuning process. The best architec-
ture found for the multilayer perceptron (MLP) involved 29 neurons in the input layer, one
deep layer with 13 neurons, ReLU activation function, dropout of 0.10, 1000 epochs, ‘Adam’
optimizer, and a learning rate of 0.01. Regarding LSTM, Bi-LSTM, and GRU, the best
architecture involved 29 neurons in the input layer, two deep layers with 13 neurons each,
‘ReLU’ activation function, 0.10 dropout, 2000 epochs, ‘Adam’ optimizer, and a learning
rate of 0.01. Finally, the best architecture for 1D-CNN involved 29 filters, kernel size equal
to 3, a deep layer with 13 filters, MaxPooling equal to 2, dropout of 0.10, 2000 epochs,
‘Adam’ optimizer, and a learning rate of 0.01. Then, the 10-fold cross-validation method
was used to analyze the performance of the neural and non-neural models (Table 6).

When analyzing the average parameters, it was noticed that, except for LSTM and
GRU, all methods presented an accuracy greater than 90%. Among the non-neural methods,
RF, XGBoost, and DT presented accuracy equal to 95.9%, 95.7%, and 94.4%, respectively.
Therefore, tree-based methods performed slightly better than LR (93.7%) and SVM (94.0%).
On the other hand, neural methods showed accuracy greater than 95%, such as 1D-COV
(95.8%), Bi-LSTM (98.6%), and MLP (99.6%). Thus, when comparing the performance of
the three best neural and non-neural methods, it was observed that the neural methods
showed slightly higher accuracy than the non-neural ones, with a maximum accuracy gain
of 3.7%. However, it is worth noting that both neural and non-neural methods showed a
high rate of correct classifications of serious accidents (TP) and non-serious accidents (TN),
resulting in high accuracy values.

Regarding accuracy, the non-neural RF and XGBoost methods stood out, reaching
94.7% and 94.6%. Therefore, XGBoost proved slightly more accurate when classifying
serious accidents (TP). On the other hand, neural methods such as 1D-COV (99.8%) and
LSTM (99.4%) showed accuracy greater than 99%. Therefore, this result suggests that
the LSTM method was penalized in accuracy due to its difficulty in correctly classifying
non-serious accidents (TN). The 1D-COV method shows great potential due to its high
accuracy and precision. When comparing the top results from neural and non-neural
models, it was observed that a modest increase in accuracy can reach up to 5.1%.

Regarding recall, the non-neural RF (95.2%) and XGBoots (94.4%) methods presented
the best results. However, the recall of the 1D-COV (99.7%) and Bi-LSTM (99.2%) methods
was greater than 99%. A discreet maximum recall gain of 5.3% can be observed when
comparing the best models. In general, it is suggested that these methods can correctly
classify non-serious accidents (TN). Methods such as LSTM, for example, presented recall
equal to 82.7%, that is, some difficulty in classifying non-serious accidents, even though
their precision (ability to classify serious accidents) was high.

The F1-score, due to its relationship with precision and recall, only reinforced the
better performance of the non-neural methods RG (94.8%) and XGBoots (94.4%), and the
neural methods Bi-LSTM (99.0%) and 1D-COV (99.7%). When considering all parameters,
regardless of the type of method, a ranking can be formed, such that the order must be
1D-COV, Bi-LSTM, MLP, RF, XG, SVM, LR, DT, GRU, and LSTM.
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Table 6. Performance of methods in 10-fold cross-validation.

10-Fold Cross-Validation

Model 1 2 3 4 5 6 7 8 9 10 Mean

LR
Accuracy 0.970 0.950 0.960 0.931 0.931 0.931 0.921 0.930 0.910 0.940 0.937
Precision 0.887 0.946 0.969 0.929 0.903 0.904 0.936 0.936 0.944 0.927 0.928

Recall 0.908 0.962 0.986 0.929 0.903 0.941 0.945 0.944 0.962 0.927 0.941
F1-Score 0.896 0.953 0.977 0.929 0.903 0.919 0.940 0.940 0.952 0.927 0.934

DT
Accuracy 0.970 0.931 0.960 0.921 0.960 0.950 0.941 0.930 0.920 0.960 0.944
Precision 0.920 0.896 0.973 0.961 0.902 0.912 0.907 0.951 0.907 0.936 0.927

Recall 0.912 0.888 0.933 0.969 0.876 0.920 0.931 0.951 0.930 0.944 0.926
F1-Score 0.916 0.892 0.951 0.965 0.888 0.916 0.918 0.951 0.917 0.940 0.925

RF
Accuracy 0.990 0.950 0.970 0.960 0.950 0.970 0.970 0.950 0.920 0.960 0.959
Precision 0.980 0.932 0.984 0.969 0.911 0.907 0.919 0.960 0.930 0.976 0.947

Recall 0.950 0.955 0.993 0.986 0.893 0.931 0.910 0.969 0.955 0.976 0.952
F1-Score 0.963 0.942 0.988 0.977 0.901 0.918 0.914 0.964 0.941 0.976 0.948
XGBoost
Accuracy 0.980 0.960 0.980 0.941 0.950 0.960 0.941 0.940 0.950 0.970 0.957
Precision 0.953 0.937 0.984 0.953 0.911 0.927 0.921 0.943 0.960 0.968 0.946

Recall 0.953 0.919 0.993 0.953 0.893 0.927 0.938 0.934 0.969 0.958 0.944
F1-Score 0.953 0.927 0.988 0.953 0.901 0.927 0.929 0.939 0.964 0.963 0.944

SVM
Accuracy 0.941 0.911 0.960 0.941 0.941 0.950 0.950 0.940 0.920 0.950 0.940
Precision 0.968 0.892 0.894 0.952 0.886 0.919 0.934 0.958 0.943 0.993 0.934

Recall 0.959 0.934 0.886 0.952 0.894 0.879 0.944 0.968 0.961 0.982 0.936
F1-Score 0.963 0.909 0.890 0.952 0.890 0.896 0.939 0.963 0.951 0.987 0.934

MLP
Accuracy 0.961 0.951 0.960 0.952 0.957 0.959 0.962 0.958 0.954 0.961 0.958
Precision 0.959 0.947 0.963 0.960 0.960 0.969 0.966 0.965 0.956 0.955 0.960

Recall 0.986 0.982 0.981 0.972 0.979 0.973 0.980 0.975 0.978 0.990 0.980
F1-Score 0.972 0.964 0.972 0.966 0.969 0.971 0.973 0.970 0.967 0.972 0.970
LSTM

Accuracy 0.750 0.894 0.872 0.837 0.870 0.745 0.778 0.876 0.915 0.811 0.835
Precision 0.999 0.987 0.990 0.992 0.987 1.000 0.999 0.992 0.990 0.999 0.994

Recall 0.749 0.885 0.861 0.827 0.859 0.745 0.773 0.863 0.905 0.800 0.827
F1-Score 0.856 0.933 0.921 0.902 0.919 0.854 0.872 0.923 0.946 0.889 0.902
Bi-LSTM
Accuracy 0.993 0.990 0.969 0.996 0.991 0.983 0.975 0.991 0.981 0.990 0.986
Precision 1.000 0.992 0.962 0.999 0.996 0.986 0.970 0.999 0.992 0.997 0.989

Recall 0.991 0.994 0.996 0.996 0.992 0.991 0.997 0.990 0.982 0.989 0.992
F1-Score 0.996 0.993 0.979 0.997 0.994 0.988 0.983 0.994 0.987 0.993 0.990

GRU
Accuracy 0.889 0.880 0.861 0.858 0.864 0.874 0.861 0.862 0.854 0.874 0.868
Precision 0.953 0.949 0.948 0.964 0.953 0.946 0.964 0.938 0.953 0.958 0.953

Recall 0.903 0.897 0.877 0.865 0.876 0.891 0.867 0.885 0.864 0.884 0.881
F1-Score 0.927 0.922 0.911 0.912 0.913 0.918 0.913 0.910 0.906 0.920 0.915
1D-COV
Accuracy 0.996 0.997 0.994 0.996 0.999 0.996 0.997 0.994 0.997 0.995 0.996
Precisão 0.995 1.000 0.995 0.997 1.000 0.999 0.999 0.996 0.999 0.995 0.998
Recall 1.000 0.996 0.997 0.997 0.999 0.996 0.997 0.996 0.997 0.999 0.997
F-score 0.997 0.998 0.996 0.997 0.999 0.997 0.998 0.996 0.998 0.997 0.997

Table 7 presents the training times (in seconds) for the methods. The models required
3.48 h to be trained via 10-fold cross-validation. Thus, only about 0.20% of the time was used
to evaluate the performance of non-neural methods. The Bi-LSTM neural model required
43.62% of the time to assess the models’ performance. The 1D-COV model required 7.10%
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of the time to evaluate performance, even though it was the best model with respect to
accuracy, precision, recall, and F-score.

Table 7. Times related to training and 10-fold cross-validation.

Model Training 10-Fold Cross-Validation

LR 0.31 0.50
DT 0.03 0.12
RF 1.35 2.82

XGBoost 2.06 4.09
SVM 1.16 17.7
MLP 3.28 101.77

LSTM 188.71 3338.03
Bi-LSTM 610.38 5457.99

GRU 26.07 2701.02
1D-CNN 95.53 888.44

4.3. Importance of Factors

The RFE method was utilized to assess the importance of each factor in classifying
accident severity (see Figure 2). The analysis revealed that factors related to chronological
variables (such as the year and month of the accident and the year and month of return
after the accident) played a significant role in classifying accident severity. On the other
hand, factors such as the age of the injured person, whether a WAR was opened due to the
accident, the sector in which the accident occurred, type of injury, location of the injury,
and gender were found to have little relevance in classifying the severity of accidents.

Appl. Syst. Innov. 2024, 7, 85 15 of 22 
 

 

 
Figure 2. Importance of factors in classifying the severity of accidents. 

Legend: Year_accid—year of the accident; Ret_year_accid—return year after the ac-
cident; Ret_month_accid—return month after the accident; Month_accid—month of the 
accident; Age—age of the worker; WAR—whether there was a CAT opened; Day_accid—
day of the accident; Ret_day_accid—return day after the accident; Type_ret_accid—type 
of return after the accident; Sector—sector in which the accident occurred; Type_injury—
type of injury; Company_time—company time; Site_injury—injured body region; Shift—
work shift in which the accident occurred; Function_time—function time; Marital_sta-
tus—marital status; Sex—sex of the worker. 

5. Discussion 
This section discusses the main findings of the research, including practical and the-

oretical implications and limitations of the study. 
Accidents are a cause of suffering for workers around the world [5]. The findings of 

this research suggest that recording accidents that have already occurred can provide rel-
evant lessons to help prevent new accidents. Authors such as Goh and Ubeynarayana [40] 
have already highlighted the possibility that the elements present in accidents can help in 
the construction of prevention strategies to avoid new incidents. Özkan and Ulaş [39] have 
highlighted the need to look for patterns related to accidents to obtain evidence of the root 
causes that led to such unwanted events. 

The neural and non-neural methods used in this article captured accident-related 
patterns, proving that some common characteristics are present in them. Therefore, the 
use of ML can help capture these patterns, providing essential insights for decision-mak-
ers in the area of occupational safety. Findings by Arteaga et al. [34] showed that ML 
methods are crucial tools for understanding the factors related to the severity of accidents. 

Figure 2. Importance of factors in classifying the severity of accidents.



Appl. Syst. Innov. 2024, 7, 85 15 of 21

Legend: Year_accid—year of the accident; Ret_year_accid—return year after the acci-
dent; Ret_month_accid—return month after the accident; Month_accid—month of the acci-
dent; Age—age of the worker; WAR—whether there was a CAT opened; Day_accid—day of
the accident; Ret_day_accid—return day after the accident; Type_ret_accid—type of return
after the accident; Sector—sector in which the accident occurred; Type_injury—type of in-
jury; Company_time—company time; Site_injury—injured body region; Shift—work shift
in which the accident occurred; Function_time—function time; Marital_status—marital
status; Sex—sex of the worker.

5. Discussion

This section discusses the main findings of the research, including practical and
theoretical implications and limitations of the study.

Accidents are a cause of suffering for workers around the world [5]. The findings of this
research suggest that recording accidents that have already occurred can provide relevant
lessons to help prevent new accidents. Authors such as Goh and Ubeynarayana [40] have
already highlighted the possibility that the elements present in accidents can help in the
construction of prevention strategies to avoid new incidents. Özkan and Ulaş [39] have
highlighted the need to look for patterns related to accidents to obtain evidence of the root
causes that led to such unwanted events.

The neural and non-neural methods used in this article captured accident-related
patterns, proving that some common characteristics are present in them. Therefore, the use
of ML can help capture these patterns, providing essential insights for decision-makers in
the area of occupational safety. Findings by Arteaga et al. [34] showed that ML methods
are crucial tools for understanding the factors related to the severity of accidents. Thus, ML
methods have proven suitable for extracting latent knowledge from databases, with the
advantage of not employing robust mathematical modeling techniques [51]. Therefore, the
use of ML in the area of occupational safety is viable, with great potential to assist hygiene
and occupational health managers in the decision-making process [52].

This article aimed to verify the performance parameters of neural and non-neural ML
methods. These parameters measured the ability of the methods to classify the severity
of work accidents occurring in a complex of footwear industries. Based on the values of
these parameters, it is possible to evaluate the capacity of the algorithms to classify work
accidents that occurred between the years 2016 and 2022. Parameters such as accuracy,
precision, recall, and F-score have already been used to compare the performance of ML on
large industrial accident databases in the metallurgical sector [39]. However, no previous
study has been applied in the footwear industry to assess the severity of accidents via
ML methods.

Findings from this research suggest that, in most cases, neural networks have some
advantage over non-neural methods when performance parameters such as accuracy,
precision, recall, and F-score are analyzed. When comparing the best neural method with
the worst non-neural method, the difference was 5.87% for accuracy (1D-COV x LR), in
addition to 7.08%, 7.18%, and 7.19% for precision, recall, and F-score (1D-COV x DT),
respectively. Findings by Nogales et al. [27] on food safety also suggest that the 1D-COV
method may perform better when compared to other ML methods.

Comparison of models that assess the severity of injuries resulting from accidents is
scarce, so much so that most studies focus on traffic accidents [31–33], in the construction
industry [40,41], in more than one type of work activity [42,43], or based on data from
emergency or hospital accidents [46], or in other public reports of accidents with entire
populations [45,80]. However, studies with accident severity data in the footwear industry
that compare ML methods were not found. On the other hand, McKenzie et al. [45] already
highlighted that the records in many accident databases do not categorize the accident
as suffered during work activity, making it challenging to analyze by economic sector
or occupation.
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Still, within the analysis of performance parameters, it is necessary to comment on the
fact that the research data are not balanced in terms of the severity of the accidents. This
is because most of the accidents analyzed are considered severe. Fully balanced data can
be regarded as more of an exception than a rule for real problems [81]. Authors such as
Jeni et al. [82] comment that when analyzing performance parameters in the scenario of
unbalanced data, problems may occur in determining the parameters, as the algorithms
tend to perform poorly in the class with the smallest number of cases. Therefore, the
results of this article for the performance of ML methods should be examined with extreme
caution. To solve this problem, oversampling [83] and cost-sensitive techniques have
proven effective by balancing information loss with computational efficiency [84]. In this
paper, no method was employed to minimize possible bias in the classification results of
ML algorithms.

It is necessary to highlight the training time factor. The time requirement for training
non-neural methods is much lower than the training time for neural methods. While non-
neural methods were trained in a few seconds, neural methods required several minutes,
reaching a maximum of 1.52 h for Bi-LSTM. As noted by Khairuddin et al. [50], as Bi-LSTM
uses more than one LSTM, its training time is expected to be longer. On the other hand,
the 1D-COV method was trained in less than 15 min, which is a more viable time from a
practical point of view for the industry. Authors such as Cunha et al. [29] have highlighted
that some neural methods can be up to 23 times slower and only sometimes perform much
better than classical methods, especially when processing a smaller database. Therefore, it
is up to health and safety managers to define which methods to use in the case in question,
given that non-neural methods such as RF and neural methods such as MLP showed good
performance at low training costs. For comparison purposes, 1D-COV presented the best
performance at a training cost 315 times higher than that of RF and 8.7 times higher than
that of MLP.

5.1. Research Implications

This study is the first to be carried out in a complex footwear industry to evaluate the
performance of ML methods and classify the severity of workplace accidents. Tamascelli
et al. [46] highlight that using ML to extract relevant database knowledge is a viable way to
learn from past incidents and improve industrial enterprises’ health and safety systems.
Thus, this research sheds light on this possibility in the footwear industry, one of the most
common sites of workplace accidents and illnesses [19,85].

Neural and non-neural methods have been successful in classifying the severity of
accidents. Thus, this research’s findings reinforce that non-neural methods are still viable,
even though neural methods may present superior performance. Methods such as FR and
XGBoots required less computational effort and training time to be processed. Furthermore,
they present low complexity in their interpretation.

Neural methods such as LSTM and GRU showed poor performance in classifying
the severity of accidents. These methods have temporal dependence [37] in which the
context, which is the output of a previous step, is the unilateral input of the step currently
being processed [29]. This characteristic may have interfered with the accuracy of the
classifications. Thus, the performance of these methods is enhanced for data that present
temporal dependence, such as classification based on time series or text [60], to predict
the trend of future data. The Bi-LSTM method showed much better performance. Unlike
GRU and LSTM, the Bi-LSTM structure considers the complete data sequence due to its
ability to analyze ‘forward–backward’ information, improving its prediction and perfor-
mance [50]. Therefore, this study expands the possibility of using Bi-LSTM to analyze
databases tabulated in electronic spreadsheets directly to classify the severity of work
accidents in the industry.

This is also the first article to test the 1D-COV method for classifying accidents in
the footwear industry. Pérez-Sala et al. [70] had already observed good performance of
convolutional methods in predicting the severity of traffic accidents. Therefore, this study
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expands the possibility of using 1D-COV directly on accident data in the footwear industry,
as the accuracy of the classifications was greater than 99%.

From a practical point of view, new simulated scenarios or new accurate data can feed
the trained neural networks, generating the probable severity of the accident. Therefore, oc-
cupational safety managers can use algorithms to build prevention strategies and scenarios
for possible workplace accidents.

5.2. Limitations

A limitation of this research was the non-direct use of the texts in the reports. Authors
such as Pan et al. [47], Luo et al. [48], and Özkan and Ulaş [39] used artificial intelligence
methods to extract information directly from the report texts. In our article, the information
was extracted manually by professionals from the industry complex itself, which can
lead to errors in data tabulation and some bias in interpreting the information in the
reports. Another limitation is that images present in the reports were not used to train the
ML methods. Paraskevopoulos et al. [49] suggest a multimodal classification to analyze
security reports, considering textual elements and images present in the reports. A final
significant limitation was the non-use of techniques that could minimize bias resulting
from unbalanced data, which could increase the accuracy of performance parameters [84].

6. Conclusions

Several ML methods were used to classify the severity of accidents occurring in
complex footwear industries. In this article, we built a database from reports, work safety
and ergonomics documents, accident records, and work accident notices. The accidents
present in these documents cover the period between 2016 and 2022. Non-neural methods
like RF and XGBoots performed well with low training time and complexity. However, the
best performance was found for the 1D-COV and Bi-LSTM neural methods, presenting
accuracy, precision, recall, and F-score parameters greater than 98% and 99%, respectively.
Thus, due to the shorter training time and better performance compared to Bi-LSTM, 1D-
COV presents itself as the most viable method for practical applications for classifying the
severity of work accidents in the footwear industry.

Future work could develop algorithms that use natural language processing (NLP)
to more accurately and completely extract accident information from footwear industry
documents [86]. In the same way that the optimization of hyperparameters can be achieved
through genetic algorithms [70], these algorithms can provide a more appropriate input
dataset for neural methods. These implementations are expected to make ML and DL
algorithms more reliable and robust regarding their classifications.
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