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Abstract: The detection and mitigation of stiction are crucial for maintaining control system perfor-
mance. This paper proposes the comparison of two preprocessing methods for detecting stiction in
control valves via pattern recognition via an artificial neural network (ANN). This method utilizes
process variables (PVs) and controller outputs (OPs) to accurately identify stiction within control
loops. The ANN was comprehensively trained using data from a data-driven model after processing
them. Validation and testing were conducted with real industrial data from the International Stiction
Database (ISDB), ensuring a practical assessment framework. This study evaluated the impact of
two preprocessing methods on fault detection accuracy, namely, the D-value and principal component
analysis (PCA) methods, where the D-value method achieved a commendable overall accuracy of
76%, with 86% precision in stiction prediction and a 66% success rate in nonstiction scenarios. This
signifies that feature reduction leads to a degraded stiction detection. The data-driven model was
implemented in SIMULINK, and the ANN was trained in MATLAB with the Pattern Recognition
Toolbox. These promising results highlight the method’s reliability in diagnosing stiction in industrial
settings. Integrating this technique into existing control systems is expected to enhance maintenance
protocols, reduce operational downtime, and improve efficiency. Future research should aim to
expand this method’s applicability to a wider range of control systems and operational conditions,
further solidifying its industrial value.

Keywords: stiction; simulation; ANN; preprocessing; D-value; principal component analysis (PCA);
fault detection

1. Introduction

Industrial valve diagnostics play a vital role in maintaining plant efficiency and
preventing costly breakdowns. They facilitate predictive maintenance by enabling timely
interventions based on key performance metrics such as actuator torque trends, cycle
counts, and travel span. This proactive approach ensures that maintenance is performed
during scheduled downtimes, optimizing resource utilization. Since their inception in
nuclear power plants three decades ago, advancements in smart actuation have significantly
enhanced diagnostic capabilities. Although these diagnostics can be labor intensive, they
are essential for verifying valve functionality, identifying potential issues, and supporting
preventive maintenance, thereby preventing unexpected plant shutdowns and enhancing
overall productivity. Present developments in society signify people’s dependence on
industrial products [1,2]. Thus, industries play an important role in satisfying consumer
needs and increasing consumer trust. To sustain customers, industries are very specific in
developing consistent and reliable end products. To develop such trustworthy products
to satisfy the needs of customers, the automation of industrial processes is necessary.
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Monitoring these industrial processes is imperative for producing quality end products [3,4].
The majority of process loops are flow control loops in several industries, such as the oil
and gas [5,6], steel [7,8], chemical [9,10], iron and pharmaceutical [11,12], food [13–15], and
pulp and paper [16,17] industries, to control material flow and seed flow [18,19] involving
the control of steam, water, material, oil, etc. In a control loop, pneumatic control valves
usually act as a final control element. In a flow control loop, pneumatic control valves are
used to regulate the flow of any fluid with respect to the control input signal. A pneumatic
control valve is one of the essential elements in process industries. Therefore, ensuring that
a control valve performs impeccably is critical.

Pneumatic actuators are extensively employed in a wide range of industrial appli-
cations because they are easy to operate, dependable, and efficient at controlling valves
and other mechanical devices. The pneumatic actuator comprises three major subparts as
follows: a control valve, a pneumatic servomotor, and a positioner. However, abnormalities
may strongly influence the operation of the process loop, thus affecting the end product.
The faults associated with pneumatic actuators are categorized into four groups [20], as
represented in Figure 1. Among these groups, three are based on the source of abnormal-
ities in parts, such as control valve faults, pneumatic servomotor faults, and positioner
faults. The fourth group is general faults, which include faults that are not specific to one
particular component.
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Figure 1. Pneumatic actuator fault categories.

Faults are primarily categorized into two types, namely, abrupt and gradual (incipient)
faults, based on the time taken for fault development. When the abnormal behavior of the
pneumatic actuator is reflected as a sudden change in the normal behavior, it is considered
to be an abrupt fault. These faults take less time to show the change in the behavior of the
actuator. Other faults whose abnormalities are not visible through continuous monitoring,
as the changes are not distinguishable, are referred to as gradual or incipient faults. The
detection of abrupt faults is comparatively easy because they show sudden changes in the
normal behavior for a given input. However, the detection of gradual faults is difficult
because some vital parameters or patterns must be observed continuously to identify such
faults; thus, the detection of these faults is comparatively challenging [21].

Fault diagnosis carried out conventionally is becoming challenging because of the
specific needs for accuracy and efficiency; hence, there is a need for intelligent diagnosis
to meet the demands of the current industry. Data-driven and model-based techniques
with the concepts of information fusion have laid an efficient path for diagnosing faults
in industrial valves [22–25]. One of the data-driven approaches for fault analysis is ma-
chine learning along with its subset; deep learning can be applied to different types of
valves [26–29]. The use of reliable data acquisition systems in real time generates huge
volumes of data, which marked the beginning of the usage of dimensionality reduction
techniques such as Canonical Variate Analysis (CVA) and crincipal component analysis
(PCA) for the detection of various faults [30,31].

The most frequent incipient flaw in process industries is the static friction provided by
the movement of the control valve stem. The continuous movement of the stem and the
environmental conditions can cause wear and tear in a control valve. This static friction, also
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referred to as “stiction”, describes the situation in which a change in the controller output
causes the valve to stick or resist moving [32]. One such fault is the presence of stiction,
which causes oscillations in the control loops, which is an undesired behavior. These
continuous oscillations decrease the performance and health of the valve, thus reducing
its life. Oscillations increase operating costs roughly in proportion to the deviation [33].
This causes instability in the control system and speeds up equipment wear, leading to
inconsistency in product quality. This instability or nonlinearity is mainly referred to as a
stuck valve. Stiction is generally denoted by plotting the manipulated variable, that is, the
valve position, for a change in controller output.

Stiction

The main cause of static friction or stiction is opposition to the movement of the
valve stem. Thus, valve movement is achieved when the pressure applied on the valve
to cause movement in the valve stem must overcome the opposing forces obstructing
valve movement. When the applied force surpasses the static friction force, a sudden
movement in the valve stem can be observed, which is due to the dynamic friction force
based on the velocity of the stem movement. Then, because of the velocity, the valve
becomes stuck in the new position. The controller starts reducing the input when the
actual valve position is more than the required position. Thus, such repeated movements
cause stick and slip movements in the valve, representing stiction in the control valve. The
stiction behavior of the valve is represented by the following three regions: constant, jump,
and movement or motion [34], as shown in Figure 2. The constant is the region where
there is a change in controller output, whereas no change is observed in the actual valve
position or manipulating variable, represented as region ‘KLM’, where ‘KL’ represents the
deadband, whereas ‘LM’ represents the stick band. The jump is the region where a sudden
change in the valve stem movement is observed, depicted as ‘MN’. Movement or motion is
the third region, where the actual valve keeps moving with a very slight variation in the
control input, represented as ‘NO’. This behavior is observed when the controller input
continuously increases, and stick jump operations are also observed when the controller
output is reduced, as represented by ‘OPQK’. In Figure 2, the green line represents the
constant region, the movement of the valve is represented by the red line, and the jump
phases are represented by the blue dashed line.
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Figure 2. Stiction representation.

The stiction in a valve is nonlinear, thus exhibiting abnormal behavior that affects the
valve behavior slowly. It is one of the incipient faults in pneumatic control valves; thus, the
detection of stiction is challenging. For this reason, many researchers have worked in the
area of modeling stiction to gain sound knowledge of stiction faults and determine their
behavior under various conditions. An empirical model that simulates the stiction behavior
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for various stick band and jump values was detailed in [35]. The enhanced version of
the model specified in [35], also known as the Choudhury stiction model, was reported
with the inclusion of other parameters in [36]. Another nonlinear model that considers
stiction was reported in [37], in which stiction was also detected. The identification of
friction faults using a smoothed model was highlighted in [38], and the use of a data-driven
fuzzy system was reported in [39]. Some researchers have added their contributions to
the stiction detection domain. A technique for identifying stiction in control valves by
calculating the cross-correlation between a control signal and a loop output was described
in [40]. The signals shifted because of static friction by approximately π/2, resulting in an
odd cross-correlation function.

An even cross-correlation function is produced in the presence of additional distur-
bances. Therefore, the presence of stiction in control valves is implied by the occurrence of
odd cross-correlation functions. This technique was examined utilizing industry statistics
regarding oscillation occurrence. Three stiction detection techniques, relay, bicoherence,
and cross-correlation, were described in [41] with a comparative inference of better per-
formance on the use of the bicoherence method. The detection of stiction based on the
movement of the plot of controller output and valve position was described in [42]. This
method is a qualitative approach, and an indicator is used for the detection of stiction.
Multiple stiction detection algorithms were utilized in [43], where one of them was selected
for the detection of stiction. The methods used were histograms, the area ratio, curve
fitting, and cross-correlation, with the inclusion of an index for each method. A study
based on various distinctive regions between valve movement and controller output was
reported in [44]. The final detection was carried out by observing the regions created by
plotting the controller output with the valve position plot. In [45], an approach was used
to quantify the deadband, stick band, and slip jump properties of valve stiction by using
the special shape created on the Riemannian manifold. A method for detecting stiction
by computing the Hurst exponent after the extraction of slow features from the processed
controller output and controlled process variable data was reported in [46]. A technique
that combines the moving window approach and K-means clustering to identify severe
valve stiction or unexpected valve shuts was discussed in [47]. There are some issues in the
process of stiction detection in industrial process systems, such as the presence of noise,
disturbance, and low sampling, which affect the accuracy of detection [48].

In [49], stiction in control valves was detected based on the Poincaré plot, which is
mainly based on correlation in a given time series. These Poincaré plots are given as input
to a convolution neural network for training and detecting a stiction fault. A method for the
detection of stiction was developed in [50] using a convolution neural network in which the
network was trained using time series data. A method for stiction severity identification
was reported in [51], where a convolutional neural network was used to detect a stiction
fault. The severity is identified by the neural network based on the statistical process
control chart generated by principal component analysis.

Our work aims to develop a method for detecting stiction in control valves designed
through pattern recognition using an ANN. The discussed method uses the process variable
(PV) and controller output (OP) to determine if a control loop suffers from stiction. The
data used to train the network are artificially generated using a data-driven model. Two
preprocessing techniques, i.e., the D-value method, by calculating the distance between
each data point from the centroid, and a feature reduction PCA method, are applied before
training the network. The importance of features in stiction detection techniques is the
primary objective of this paper. Validation and testing are performed on real industrial
data provided by the International Stiction Database (ISDB) [51]. The data-driven model
is implemented on SIMULINK, and the ANN is trained on MATLAB using the Pattern
Recognition Toolbox.
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2. Background Study

Most stiction detection techniques are based on the features of the plot between the
controller output and the process variable. To observe the impact of features in stiction
detection methods, preprocessing methods, namely, the D-value method and a feature
reduction PCA method, are considered. In this section, the introduction to methods used
in stiction detection such as data fusion, neural networks, the D-value, and principal
component analysis (PCA) are detailed.

2.1. Multisensor Data Fusion

Sensor fusion is a technique that combines data from various sensors to produce infor-
mation superior to what would be possible from any single sensor. This rapidly growing
field is increasingly applied across diverse sectors, including biomedical, aerospace, and
environmental systems. The benefits of sensor fusion are manifold, offering deeper analysis,
enhanced system resilience, and more precise predictions with reduced uncertainty. Multi-
sensor data fusion, in particular, integrates observations from multiple sensors, both similar
and different, to create a more comprehensive and robust depiction of a target environment
or process. This approach has recently gained significant traction, with applications in
navigation, robotics, and industrial automation, among others. It leverages the redundancy
of measurements to improve system robustness and accuracy, leading to better performance
of integrated multisensory systems. The fusion process encompasses various related fields,
such as signal processing, sensor management, and artificial intelligence techniques.

2.2. Neural Network

Neural networks are learning algorithms used in the machine learning domain. They
are vaguely modeled as biological neural networks in animals. A neural network learns
to perform tasks by analyzing the example inputs and outputs provided to it. They are
predominantly used in pattern recognition applications, and the recognized patterns are
represented numerically in a vector.

A typical neural network consists of multiple hidden layers with multiple neurons,
as shown in Figure 3. The larger the neural network is, the greater the computational cost
and time, with or without a significant increase in performance due to phenomena such
as overfitting. A neural network learns by adjusting its weights, which is performed by
calculating the cost function. The cost function is the difference between the actual and
predicted values. The fundamental goal of training a neural network is to minimize this
cost function. Based on this calculated cost function, the weights are adjusted. This process
of adjusting the weights based on the cost function is called backpropagation.
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2.3. D-Value

The D-value is merely a distance and is based on the concept of the centroid. The
centroid is the center of mass of the data and is calculated using Equations (1) and (2) on
both the x-axis and y-axis for OP and PV, respectively. As discussed in the Introduction, the
plot of controller output versus process variable generates a pattern that changes based on
the S and J values. Instead of considering the pair of process variable and controller output,
calculating the distance of each data point from the centroid reduces the number of input
neurons required in the network. Once the centroid of the values in each axis is calculated,
the distance of every single data point from the centroid is calculated as represented in
Equation (3).

xc =
1
N

N

∑
i=1

xi (1)

yc =
1
N

N

∑
i=1

yi (2)

Di =

√
(xi − xc)

2 + (yi − yc)
2 (3)

where N is the total number of time samples, xi is the ith OP value, and yi is the ith

PV value.

2.4. PCA

PCA is a prominent dimensionality reduction technique. It distinctly merges the input
variable such that only the important or most valuable set of variables is preserved. The
new set of variables obtained after performing PCA are bound to be linearly independent
of each other and will be the rank order of the variance in each variable (the most important
principal axis comes first).

The simplified overall procedure for performing PCA is as follows:

1. Calculate the covariance matrix Σ of the data points.

Σ =
1
m

n

∑
i=1

(
x(i)

)(
x(i)

)T
(4)

where m is the total number of samples and n is the number of dimensions.

2. Compute the eigenvectors of covariance matrix Σ.
3. Choose the first k eigenvectors, which are the new k-dimensions.
4. Transform the original n-dimensional data points into k-dimensions.

[new data]k×1 = [top k eigenvectors]k×n[original data]n×1 (5)

In this work, the Choudhury stiction model is simulated to obtain the open loop
response of the stiction behavior. In this paper, two preprocessing methods for training
an ANN are compared. Preprocessing the training data enhances the results of a neural
network [52]. To emphasize the influence of the preprocessing method on stiction detection,
two methods, one with reduction in neural network points without reduction in the features,
namely, the D-value method [53], and a feature reduction PCA method of the data, are
calculated. These methods are compared for their performance in further sections, and
the results emphasize that the feature reduction technique leads to a lowered stiction
detection rate.
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3. Methodology

This section discusses the approach followed in this work. Fault detection is performed
through a pattern recognition neural network. The process of building an artificial neural
network for pattern recognition, which includes data processing, training the network, and
testing its performance, is examined here.

Artificial neural networks have gained significant importance in detection and classi-
fication applications because of their ability to perceive data behavior. The performance
of ANNs mainly depends on the training methods, the data used for training, and the
network structure. To analyze the influence of preprocessing the data utilized for training
the network, in this work, two methods of data preprocessing, namely, the D-value method
proposed by Venceslau [53] and PCA, are used. Figure 4a shows the steps involved in
training the neural network, and Figure 4b shows the steps involved in testing the detection
rate of the trained neural network.
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In the training process, the simulated stiction data from the Choudhury striction
model are generated for various combinations of the deadband plus stick band (S) and
slip jump (J) values (represented in Figure 2). These simulated data are then sent to the
preprocessing block where the D value and PCA are calculated. These processed data are
input to the neural network to train the network. The trained network is then subjected to
offline industrial data with and without stiction to test the performance of the networks. A
comparison of these methods based on the detection rate is discussed in the Results Section.
cata fusion is mainly performed in the preprocessing and training stages of the neural
network, as the result mainly depends on the combination of PVs and MVs. In this paper, a
comparison of fault detection methods based on two preprocessing methods is carried out.
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3.1. Artificial Data Generation

The required data for training the neural network were generated using a Choudhury
Stiction data drive model, as shown in Figure 5. It is a data-driven model that has parame-
ters that can be related to plant data, and it produces behavior similar to a physical model.
The model only needs the input signal and the specifications of S and J. The stiction model
receives the controller’s current output, which ranges from 4 to 20 mA, and converts it
to a percentage of valve movement, ranging from 0 to 100%. The valve is said to be fully
saturated (i.e., fully open or fully closed) if the valve movement is greater than 100%. The
stiction model calculates the slope of the input or control signal when the valve movement
lies between 0 and 100%. The model output varies with respect to the sign of the slope of
the control signal.
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Figure 5 shows the flowchart of the process of generating stiction data. The stiction
block input is the control signal x(k) at 4–20 mA, and the output is the control valve
movement y(k) in terms of the percentage of full-scale movement. For increasing control
input, the sign function gives a positive output, whereas it gives a negative output for a
decreasing control signal. The sign function returns a ‘0’ when there is no change in the
control signal from its previous value; thus, the valve is stuck. If a sign change from positive
to negative is observed in the control signal, it represents the start of the stick phase, and
the corresponding valve position is considered to be ‘xss’. On observing the change in the
sign of the slope, the valve slips and starts moving if the total change in input beats the
stick band and/or deadband. This stick–slip action may repeat in the same direction, thus
indicating that ‘I’ is ‘1’ for the stick phase and ‘0’ for the jump phase.

The different kinds of stiction that can be obtained based on the values of ‘S’ and ‘J’
are specified below:

• Deadband: The response of the controller output to the valve position creates a dead-
band without any sudden jumps, as this case is simulated when J is a null value, J = 0,
as presented in Figure 6a for S = 6.

• Undershoot: This region is created when the value of ‘J’ is less than the deadband, J < S,
as represented in Figure 6b for S = 6 and J = 4.

• No offset: When the values of ‘S’ and ‘J’ are the same, J = S, this region is created, and it
produces pure stick–slip behavior, as shown in Figure 6c for S = J = 6.

• Overshoot: If the ‘J’ value exceeds the ‘S’ value, J > S; this leads to an overshoot region of
stiction as the jump amplitude is greater than the deadband, as depicted in Figure 6d
for S = 4 and J = 6.
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The Choudhury stiction model depicted in Figure 5 was implemented in SIMULINK
and MATLAB. The open loop stiction behavior was analyzed by applying a sinusoidal
control input to the stiction model to simulate the stiction behavior of the valve. The
obtained valve position was plotted with the controller output for various combinations
of ‘S’ and ‘J’ values, as represented in Figure 6. To analyze the response of the flow
process for the stiction fault, a flow process model G(S) was considered and placed in series
with the plant model. The flow process model G(S) considered for this study is given in
Equation (6) [54].

G(S) =
0.615

20s + 1
e−10s (6)

Using the Choudhury model, open loop data were generated for stiction behavior
for various combinations of ‘S’ and ‘J’ values [55]. The responses shown in Figure 6 are
from an open-loop system where the input is a sine wave with an amplitude of 50 and a
frequency of 0.02 π rad/s. The responses obtained were normalized before plotting the
controller output versus the valve stem movement. The output was calculated using the
following equation:

y(k) = x(k)− sign(slope)× (S − J)/2 (7)

When the flow process model given in Equation (6) was placed in series with the
stiction model, the closed-loop response of the flow model with stiction is represented
in Figure 7. The process outputs were obtained for 6 different combinations of ‘S’ and ‘J’
values, and the process output versus input is plotted in Figure 7. The graph shows that by
varying the values of ‘S’ and ‘J’, the shape of the input versus the output is slightly varied
in terms of the orientation and amplitude of these graphs. Both the controller output and
manipulating variables were normalized and then plotted to obtain their relationships.
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Gaussian-distributed white noise with zero means was also added so that the train-
ing data resembled the practical outputs. As the open loop system was considered, the
controller output in the form of a sinusoidal wave was given to the process. Based on this
model, the data necessary to train the neural network were obtained. The generated dataset
responded with and without stiction by varying the S and J parameters.

The generated stiction data were based on the combination of S and J values, as shown
in Table 1. The closed-loop response of the system is shown in Figure 8. Oscillations due
to the stiction parameters S and J are noticeable in this system. The response of the same
system to Gaussian-distributed white noise is shown in Figure 9. A total of 13,388 datasets
consisting of PV and OP were created, of which 8000 were stiction samples and 5388 were
without stiction. Not all the data generated were used to train the neural network. The
parameters used for generating the dataset are shown in Table 1 [4].

The variance for the Gaussian distribution was set to a random value between 0.01 and
0.2. The data generated without stiction were based on the combination of the Kp and KI
values of the proportional–integral (PI) controller, as shown in Table 2, which generates the
response of a well-tuned PI controller and an excessively tuned PI controller. Additionally,
data were generated for a well-tuned PI with an external disturbance, which was applied
in the form of a sine wave. The range of the sine wave generator is shown in Table 3.

Table 1. Parameters used to generate artificial data (with stiction).

Parameter Description Parameter Range

S Stick–slip parameters 0.1: 0.25: 10

J Stick–jump parameters 0.1: 0.25: 10

V White noise variance 0, 0.010.5, 0.020.5, 0.030.5, 0.040.5, 0.050.5
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Table 2. Parameters used to generate artificial data (without stiction).

Parameter Description Parameter Range

Kp Controller gain 1: 0.05: 2

KI Integral gain 0.05: 0.01: 0.3

V White noise variance 0, 0.010.5, 0.020.5, 0.030.5, 0.040.5, 0.050.5

Table 3. Parameters used to generate artificial data with external disturbance/oscillation (without stiction).

Parameter Description Parameter Range

A Amplitude 1: 0.5: 2

f Frequency 0.01: 0.01: 0.11

φ Phase 0: 0.25π: 1.75π

V White noise variance 0, 0.010.5, 0.020.5, 0.030.5, 0.040.5, 0.050.5

3.2. Data Preprocessing

Before the neural network was trained, data preprocessing was performed. From the
generated data, a window of precisely 500 discrete-time signals of both the PV and OP was
selected. To train the artificial neural network, the values of PV and OP of the N time stamp
were needed. Therefore, if both PV and OP were considered, and an output with 2 N time
samples was produced in total. This can increase the training period and can take up a large
amount of memory. Therefore, to reduce the total number of time samples, dimensionality
reduction must be performed. This paper considers two methods, D-values and PCA, and
their respective performances are discussed in the Results Section. The original process
variable and controller output of a control loop (CHEM 1 of ISDB) are shown in Figure 10.
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D-values for the first 500 timestamps of CHEM loop 1 were collected and then nor-
malized based on range, as shown in Figure 11. D-values for different samples were then
calculated and used to train the neural network.
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3.3. NN Architecture

The proposed ANN consists of 4 layers, the input layer, two hidden layers, and the
output layer. The input layer consists of 500 neurons for 500 timestamps. The hidden layer
consists of 10 neurons each. The output layer with two neurons indicates [1; 0] for the
presence of stiction and [0; 1] for no stiction. Both hidden layers use the tan-h activation
function, and the training method used is scaled conjugate gradient backpropagation.

The training input (D-value or PCA value) and its corresponding output, which
indicate the presence of stiction, are represented in matrix form, as shown in Figure 13.
Here, ‘m’ is the total number of training samples used. Once the neural network was trained,
the network was validated and tested using the ISDB dataset. Since the classification of the
stiction of these datasets was known, a quantitative analysis of the trained neural networks
could be performed. A comparison of the two preprocessing methods for a variety of
training algorithms is discussed in the next section.
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4. Results and Discussion

In this section, the criteria through which the neural networks were optimized are
demonstrated along with the performance of two data preprocessing methods. The D-value
and PCA were computed as discussed in the previous section. An example of performing
these methods on the CHEM 1 loop of ISDB data is shown in Figures 9 and 10. Interestingly,
when all the generated data were used, the ability of the network to detect nonstiction data
wasc considerably low. This indicated that samples from different sources were highly
similar between the stiction and nonstiction groups. Since overfitting of the stiction data
was present, the prediction accuracy of the individual noise level was tested, as shown in
Table 4.

Table 4. Performance of each noise level for the D-value.

Variance Performance %

0.050.5 69.24

0.040.5 73.4

0.030.5 65.9

0.020.5 65.8

0.010.5 62.3

Table 4 shows that using only the noise level with a variance of 0.040.5 gave the
best result, followed by a variance of 0.050.5. Surprisingly, when noise with both of these
variances was combined, an accuracy of 76.38% was obtained. Once the dataset used to train
the neural network was determined, the performances of the different training algorithms
were analyzed. The results are shown in Table 5. The scaled conjugate gradient was found
to yield the highest accuracy for the detection of stiction. Even though a total performance
of 76.28% was achieved, the ability of the network to accurately detect nonstiction loops
did not reach the mark. Although stiction detection had a prediction accuracy of 86.11%,
the nonstiction prediction accuracy was only 66.66%. A comparison of the results obtained
using the different learning algorithms mentioned in Table 5 is shown in Figure 14.

Table 5. Performance of various learning algorithms for D-values.

Learning Algorithm Performance %

Conjugate Gradient with Powell/Beale Restart (CGB) 60.317

Fletcher–Powell Conjugate Gradient (CGF) 60.31

Polak–Ribere Conjugate Gradient (CGP) 57.53

Scaled Conjugate Gradient (SCG) 76.38

One Step Secant (OSS) 65.47

A similar test was also performed on the data that were reduced by PCA to determine
which learning algorithm and set of training data yielded the highest results. Through this
test, it was found that the combination of datasets involving variances of 0.010.5, 0.040.5,
and 0.050.5 gave the best results. By comparing their performances to those of the learning
algorithms, a similar prediction in terms of accuracy was achieved when using SCG or the
conjugate gradient with Powell/Beale restart (CGB), as shown in Table 6. Although their
overall prediction accuracies were similar, the abilities of both methods to detect stiction
and nonstiction loops were different. While SCG had a prediction accuracy of 50%, CGB
achieved even worse results, with a performance of 38.88%. However, the nonstiction
prediction performance of CBG was higher than that of SCG, with the former having a
prediction accuracy of 83.33% and the latter having a prediction accuracy of 73.80%, as
shown in Figure 15.
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A neural network that can identify stiction in control valves was designed and tested
on a real industrial benchmark control loop to verify the validity of the network. The
data used to train the network were obtained artificially using a data-driven Choudhury’s
stiction model. The model used two variables, S and J, to model the network. The data
obtained from these data were used to train the neural network. The generated neural net-
work was based on two preprocessing methods, namely, D-values and PCA. On comparing
these preprocessing methods, the D-value method achieved a better accuracy of 73.4% for
a noise variance of 0.04. Thus, reducing the number of features reduces the prediction
accuracy. Validation and testing of the neural network were performed on the industrial
loop CHEM loop1 from ISDB data.

5. Conclusions

The comparative study presented in this paper demonstrates the effectiveness of pre-
processing methods for detecting stiction in industrial control valves using ANN based on
pattern recognition. By leveraging PVs and OPs, the D-value method accurately identifies
stiction within control loops. The ANN, trained with preprocessed data from a robust
data-driven model through the application of two methods, namely, the D-value and PCA,
was validated and tested with real industrial data from the ISDB.

This study’s evaluation of two preprocessing methods revealed a significant impact
on fault detection accuracy, with an overall accuracy of 76%, an 86% precision rate in
stiction prediction, and a 66% success rate in nonstiction scenarios when using D-value
preprocessing. This indicates that the pattern between PV and OP is crucial in detecting the
stiction fault. Implementing the data-driven model in SIMULINK and training the ANN in
MATLAB with the Pattern Recognition Toolbox underscore the practical application and
reliability of the method.

These promising results indicate that the fault detection technique with D-value
preprocessing can reliably diagnose stiction in industrial settings, offering a valuable tool
for enhancing maintenance protocols, reducing operational downtime, and improving
overall efficiency. Future research will focus on broadening the method’s applicability
to a diverse range of control systems and operational conditions, further solidifying its
value in industrial practices. Integrating this technique into existing control systems is
anticipated to drive significant improvements in system performance and reliability. It is
evident from the performed experiment that using the D-value for data processing yields
better prediction accuracy than PCA. This is because the D-value, which is based on the
centroid principle, is better at representing stiction properties than PCA, which is based on
the covariance of variables.

Sensor fusion is the ultimate form of sensor integration. By reducing the computational
complexity and size to increase the accuracy, reliability, and performance, sensor fusion has
been adopted in many industries to generate better outputs. The added layer of redundancy
always benefits the clarity of the result and its error diagnosis.

Through sensor fusion applications, as we briefed about in this paper, complex fault
identification, classification, and diagnosis tasks are made more straightforward. Correlat-
ing them with most modern technology innovations such as neural networks and machine
learning has become a breakthrough in the quality control process.

Author Contributions: Conceptualization, S.K.V. and B.R.N.; methodology, B.R.N., S.K.V. and V.S.;
software, B.R.N.; validation, B.R.N. and S.K.V.; formal analysis, V.S.; investigation, B.R.N.; writing—
original draft preparation, B.R.N., V.S. and S.K.V.; writing—review and editing, S.K.V.; supervision,
S.K.V.; project administration, S.K.V. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.



Appl. Syst. Innov. 2024, 7, 104 18 of 19

References
1. Valette, E.; El-Haouzi, H.B.; Demesure, G. Industry 5.0 and its technologies: A systematic literature review upon the human place

into IoT-and CPS-based industrial systems. Comput. Ind. Eng. 2023, 184, 109426. [CrossRef]
2. Wolfe, M.T.; Patel, P.C. Same difference? The impact of low-, medium-, and high-tech industries on venture performance and

survival. IEEE Trans. Eng. Manag. 2019, 68, 1907–1918. [CrossRef]
3. Wang, Z.; Fan, Y. Monitoring-performance-indicator-related industrial process monitoring with a monitoring index identification

model. Control Eng. Pract. 2023, 139, 105660. [CrossRef]
4. Asrol, M.; Wahyudi, S.; Harito, C.; Utama, D.N.; Syafrudin, M. Improving Supplier Evaluation Model using Ensemble Method-

Machine Learning for Food Industry. Procedia Comput. Sci. 2023, 227, 307–315. [CrossRef]
5. LaNasa, P.J.; Upp, E.L. Fluid Flow Measurement: A Practical Guide to Accurate Flow Measurement; Butterworth-Heinemann: Oxford,

UK, 2014; pp. 35–47.
6. Elijah, O.; Ling, P.A.; Rahim, S.K.A.; Geok, T.K.; Arsad, A.; Kadir, E.A.; Abdurrahman, M.; Junin, R.; Agi, A.; Abdulfatah, M.Y. A

survey on industry 4.0 for the oil and gas industry: Upstream sector. IEEE Access 2021, 9, 144438–144468. [CrossRef]
7. Liu, J.; An, R.; Xiao, R.; Yang, Y.; Wang, G.; Wang, Q. Implications from substance flow analysis, supply chain and supplier’risk

evaluation in iron and steel industry in Mainland China. Resour. Policy 2017, 51, 272–282. [CrossRef]
8. Jia, Y.; Zhang, Z.G.; Xu, T. Improving the Performance of MMPP/M/C Queue by Convex Optimization–A Real-World Application

in Iron and Steel Industry. IEEE Access 2020, 8, 185909–185918. [CrossRef]
9. Xiao, H.; McDonald, D.; Fan, Y.; Umbanhowar, P.B.; Ottino, J.M.; Lueptow, R.M. Controlling granular segregation using modulated

flow. Powder Technol. 2017, 312, 360–368. [CrossRef]
10. Nawaz, M.; Maulud, A.S.; Zabiri, H.; Suleman, H. Review of multiscale methods for process monitoring, with an emphasis on

applications in chemical process systems. IEEE Access 2022, 10, 49708–49724. [CrossRef]
11. Shah, R.B.; Tawakkul, M.A.; Khan, M.A. Comparative evaluation of flow for pharmaceutical powders and granules. Aaps

Pharmscitech 2008, 9, 250–258. [CrossRef]
12. Wang, Z.; Tang, S.; Guo, G.; Yang, Y.; He, D.; Yang, L.; Han, M.; Hou, Y. Adaptive Quality Control with Uncertainty for a

Pharmaceutical Cyber-Physical System Based on Data and Knowledge Integration. IEEE Trans. Ind. Inform. 2024, 20, 3339–3350.
[CrossRef]

13. Bugallo, P.M.B.; Stupak, A.; Andrade, L.C.; López, R.T. Material Flow Analysis in a cooked mussel processing industry. J. Food
Eng. 2012, 113, 100–117. [CrossRef]

14. Alves, N.N.; Messaoud, G.B.; Desobry, S.; Costa, J.M.C.; Rodrigues, S. Effect of drying technique and feed flow rate on bacterial
survival and physicochemical properties of a nondairy fermented probiotic juice powder. J. Food Eng. 2016, 189, 45–54. [CrossRef]

15. Hawashin, D.; Salah, K.; Jayaraman, R.; Musamih, A. Using Composable NFTs for Trading and Managing Expensive Packaged
Products in the Food Industry. IEEE Access 2023, 11, 10587–10603. [CrossRef]

16. Odunlami, O.A.; Amoo, T.E.; Adisa, H.A.; Elehinafe, F.B.; Oladimeji, T.E. Application of mass transfer in the pulp and paper
Industry− overview, processing, challenges, and prospects. Results Eng. 2023, 20, 101498. [CrossRef]

17. Liu, Z.; Zhao, L.; Lu, S.; Hou, X.; Hou, D.; Ma, J. Porous ceramsite catalytic ozonation for the treatment of pulp and paper mill
wastewater in a continuous-flow reactor. Chem. Eng. Sci. 2024, 288, 119855. [CrossRef]

18. Liu, W.; Hu, J.; Zhao, X.; Pan, H.; Lakhiar, I.A.; Wang, W. Development and experimental analysis of an intelligent sensor for
monitoring seed flow rate based on a seed flow reconstruction technique. Comput. Electron. Agric. 2019, 164, 104899. [CrossRef]

19. He, F.; Ma, X.; Shen, K.; Wang, C. Study on material and energy flow in steel forging production process. IEEE Access 2019, 8,
12921–12932. [CrossRef]

20. Navada, B.R.; Santhosh, K.V. Is fault detection and diagnosis in pneumatic actuator a topic of concern? J. Adv. Res. Fluid Mech.
Therm. Sci. 2021, 77, 102–129. [CrossRef]

21. Ji, H.; He, X.; Shang, J.; Zhou, D. Incipient fault detection with smoothing techniques in statistical process monitoring. Control
Eng. Pract. 2017, 62, 11–21. [CrossRef]

22. Zhang, S.; Luo, M.; Qian, H.; Liu, L.; Yang, H.; Zhang, Y.; Liu, X.; Xie, Z.; Yang, L.; Zhang, W. A review of valve health diagnosis
and assessment: Insights for intelligence maintenance of natural gas pipeline valves in China. Eng. Fail. Anal. 2023, 153, 107581.
[CrossRef]

23. Shi, J.; Yi, J.; Ren, Y.; Li, Y.; Zhong, Q.; Tang, H.; Chen, L. Fault diagnosis in a hydraulic directional valve using a two-stage
multi-sensor information fusion. Measurement 2021, 179, 109460. [CrossRef]

24. Ji, X.; Ren, Y.; Tang, H.; Shi, C.; Xiang, J. An intelligent fault diagnosis approach based on Dempster-Shafer theory for hydraulic
valves. Measurement 2020, 165, 108129. [CrossRef]

25. Ma, D.; Liu, Z.; Gao, Q.; Huang, T. Fault diagnosis of a solenoid valve based on multi-feature fusion. Appl. Sci. 2022, 12, 5904.
[CrossRef]

26. Ttito Ugarte, L.; Bernardini, F. An Overview on the Use of Machine Learning Algorithms for Identifying Anomalies in Industrial
Valves. In World Conference on Information Systems and Technologies; Springer Nature: Cham, Switzerland, 2024; pp. 3–12.

27. Andrade, A.; Lopes, K.; Lima, B.; Maitelli, A. Development of a methodology using artificial neural network in the detection and
diagnosis of faults for pneumatic control valves. Sensors 2021, 21, 853. [CrossRef]

28. Sun, F.; Xu, H.; Zhao, Y.H.; Zhang, Y.D. Data-driven fault diagnosis of control valve with missing data based on modeling and
deep residual shrinkage network. J. Zhejiang Univ. Sci. A 2022, 23, 303–313. [CrossRef]

https://doi.org/10.1016/j.cie.2023.109426
https://doi.org/10.1109/TEM.2019.2943703
https://doi.org/10.1016/j.conengprac.2023.105660
https://doi.org/10.1016/j.procs.2023.10.529
https://doi.org/10.1109/ACCESS.2021.3121302
https://doi.org/10.1016/j.resourpol.2017.01.002
https://doi.org/10.1109/ACCESS.2020.3030325
https://doi.org/10.1016/j.powtec.2017.02.050
https://doi.org/10.1109/ACCESS.2022.3171907
https://doi.org/10.1208/s12249-008-9046-8
https://doi.org/10.1109/TII.2023.3306355
https://doi.org/10.1016/j.jfoodeng.2012.05.014
https://doi.org/10.1016/j.jfoodeng.2016.05.023
https://doi.org/10.1109/ACCESS.2023.3241226
https://doi.org/10.1016/j.rineng.2023.101498
https://doi.org/10.1016/j.ces.2024.119855
https://doi.org/10.1016/j.compag.2019.104899
https://doi.org/10.1109/ACCESS.2019.2958630
https://doi.org/10.37934/arfmts.77.2.102129
https://doi.org/10.1016/j.conengprac.2017.03.001
https://doi.org/10.1016/j.engfailanal.2023.107581
https://doi.org/10.1016/j.measurement.2021.109460
https://doi.org/10.1016/j.measurement.2020.108129
https://doi.org/10.3390/app12125904
https://doi.org/10.3390/s21030853
https://doi.org/10.1631/jzus.A2100598


Appl. Syst. Innov. 2024, 7, 104 19 of 19

29. Jo, S.H.; Seo, B.; Oh, H.; Youn, B.D.; Lee, D. Model-based fault detection method for coil burnout in solenoid valves subjected to
dynamic thermal loading. IEEE Access 2020, 8, 70387–70400. [CrossRef]

30. Han, X.; Jiang, J.; Xu, A.; Huang, X.; Pei, C.; Sun, Y. Fault detection of pneumatic control valves based on canonical variate
analysis. IEEE Sens. J. 2021, 21, 13603–13615. [CrossRef]

31. An, Z.; Cheng, L.; Guo, Y.; Ren, M.; Feng, W.; Sun, B.; Ling, J.; Chen, H.; Chen, W.; Luo, Y.; et al. A novel principal component
analysis-informer model for fault prediction of nuclear valves. Machines 2022, 10, 240. [CrossRef]

32. Durand, H.; Parker, R.; Alanqar, A.; Christofides, P.D. Elucidating and handling effects of valve-induced nonlinearities in
industrial feedback control loops. Comput. Chem. Eng. 2018, 116, 156–175. [CrossRef]

33. Brasio, A.S.; Romanenko, A.; Fernandes, N.C. Modeling, detection and quantification, and compensation of stiction in control
loops: The state of the art. Ind. Eng. Chem. Res. 2014, 53, 15020–15040. [CrossRef]

34. Daneshwar, M.A.; Noh, N.M. Detection of stiction in flow control loops based on fuzzy clustering. Control Eng. Pract. 2015, 39,
23–34. [CrossRef]

35. Choudhury, M.S.; Thornhill, N.F.; Shah, S.L. Modeling valve stiction. Control Eng. Pract. 2005, 13, 641–658. [CrossRef]
36. Xie, L.; Cong, Y.; Horch, A. An improved valve stiction simulation model based on ISA standard tests. Control Eng. Pract. 2013, 21,

1359–1368. [CrossRef]
37. di Capaci, R.B.; Scali, C.; Pannocchia, G. System identification applied to stiction quantification in industrial control loops: A

comparative study. J. Process Control 2016, 46, 11–23. [CrossRef]
38. di Capaci, R.B.; Vaccari, M.; Pannocchia, G.; Scali, C. Identification and estimation of valve stiction by the use of a smoothed

model. IFAC-PapersOnLine 2018, 51, 684–689. [CrossRef]
39. Daneshwar, M.A.; Noh, N.M. Identification of a process with control valve stiction using a fuzzy system: A data-driven approach.

J. Process Control 2014, 24, 249–260. [CrossRef]
40. Horch, A. A simple method for detection of stiction in control valves. Control Eng. Pract. 1999, 7, 1221–1231. [CrossRef]
41. Rossi, M.; Scali, C. A comparison of techniques for automatic detection of stiction: Simulation and application to industrial data.

J. Process Control 2005, 15, 505–514. [CrossRef]
42. Yamashita, Y. An automatic method for detection of valve stiction in process control loops. Control Eng. Pract. 2006, 14, 503–510.

[CrossRef]
43. Zakharov, A.; Zattoni, E.; Xie, L.; Garcia, O.P.; Jämsä-Jounela, S.L. An autonomous valve stiction detection system based on data

characterization. Control Eng. Pract. 2013, 21, 1507–1518. [CrossRef]
44. Maruta, H.; Kano, M.; Kugemoto, H.; Shimizu, K. Modeling and detection of stiction in pneumatic control valve. Trans. Soc.

Instrum. Control Eng. 2004, 40, 825–833. [CrossRef]
45. Kok, T.L.; Aldrich, C.; Zabiri, H.; Taqvi, S.A.A.; Olivier, J. Application of unthresholded recurrence plots and texture analysis for

industrial loops with faulty valves. Soft Comput. 2022, 26, 10477–10492. [CrossRef]
46. Shang, L.; Zhang, Y.; Zhang, H. Valve Stiction Detection Method Based on Dynamic Slow Feature Analysis and Hurst Exponent.

Processes 2023, 11, 1913. [CrossRef]
47. Zheng, D.; Sun, X.; Damarla, S.K.; Shah, A.; Amalraj, J.; Huang, B. Valve stiction detection and quantification using a k-means

clustering based moving window approach. Ind. Eng. Chem. Res. 2021, 60, 2563–2577. [CrossRef]
48. Dambros, J.W.; Farenzena, M.; Trierweiler, J.O. Stiction detection in low sampling rate signals. Can. J. Chem. Eng. 2018, 96,

1735–1745. [CrossRef]
49. Bounoua, W.; Aftab, M.F.; Omlin, C.W.P. Stiction detection in industrial control valves using Poincaré plot-based convolutional

neural networks. IFAC-PapersOnLine 2023, 56, 11687–11692. [CrossRef]
50. Zhang, K.; Liu, Y.; Gu, Y.; Ruan, X.; Wang, J. Multiple-timescale feature learning strategy for valve stiction detection based on

convolutional neural network. IEEE/ASME Trans. Mechatron. 2021, 27, 1478–1488. [CrossRef]
51. Henry, Y.Y.S.; Aldrich, C.; Zabiri, H. Detection and severity identification of control valve stiction in industrial loops using

integrated partially retrained CNN-PCA frameworks. Chemom. Intell. Lab. Syst. 2020, 206, 104143. [CrossRef]
52. Amiruddin, A.A.A.M.; Zabiri, H.; Jeremiah, S.S.; Teh, W.K.; Kamaruddin, B. Valve stiction detection through improved pattern

recognition using neural networks. Control Eng. Pract. 2019, 90, 63–84. [CrossRef]
53. Venceslau, A.R.; Guedes, L.A.; Silva, D.R. Artificial neural network approach for detection and diagnosis of valve stiction. In

Proceedings of the 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012),
Kraków, Poland, 17–21 September 2012; IEEE: New York, NY, USA, 2012; pp. 1–4.

54. Navada, B.R.; Venkata, S. Fusion-based online identification technique for pneumatic actuator faults. Eng. Sci. 2021, 17, 56–69.
[CrossRef]

55. Navada, B.R.; Santhosh, K.V. Analysis of Stiction Fault in Pneumatic Control Valves. In Advances in Control Instrumentation
Systems: Select Proceedings of CISCON; Springer: Singapore, 2019; pp. 215–226.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/ACCESS.2020.2986537
https://doi.org/10.1109/JSEN.2021.3070035
https://doi.org/10.3390/machines10040240
https://doi.org/10.1016/j.compchemeng.2017.08.008
https://doi.org/10.1021/ie501342y
https://doi.org/10.1016/j.conengprac.2015.02.002
https://doi.org/10.1016/j.conengprac.2004.05.005
https://doi.org/10.1016/j.conengprac.2013.06.013
https://doi.org/10.1016/j.jprocont.2016.07.007
https://doi.org/10.1016/j.ifacol.2018.09.344
https://doi.org/10.1016/j.jprocont.2014.01.013
https://doi.org/10.1016/S0967-0661(99)00100-8
https://doi.org/10.1016/j.jprocont.2004.11.003
https://doi.org/10.1016/j.conengprac.2005.03.004
https://doi.org/10.1016/j.conengprac.2013.07.004
https://doi.org/10.9746/sicetr1965.40.825
https://doi.org/10.1007/s00500-022-06894-3
https://doi.org/10.3390/pr11071913
https://doi.org/10.1021/acs.iecr.0c05609
https://doi.org/10.1002/cjce.23120
https://doi.org/10.1016/j.ifacol.2023.10.523
https://doi.org/10.1109/TMECH.2021.3087503
https://doi.org/10.1016/j.chemolab.2020.104143
https://doi.org/10.1016/j.conengprac.2019.06.008
https://doi.org/10.30919/es8d533

	Introduction 
	Background Study 
	Multisensor Data Fusion 
	Neural Network 
	D-Value 
	PCA 

	Methodology 
	Artificial Data Generation 
	Data Preprocessing 
	NN Architecture 

	Results and Discussion 
	Conclusions 
	References

