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Abstract: This study focuses on helicopter turboshaft engine innovative fault-tolerant fuzzy auto-
matic control system development to enhance safety and efficiency in various flight modes. Unlike
traditional systems, the proposed automatic control system incorporates a fuzzy regulator with an
adaptive control mechanism, allowing for dynamic fuel flow and blade pitch angle adjustment based
on changing conditions. The scientific novelty lies in the helicopter turboshaft engines distinguishing
separate models and the fuel metering unit, significantly improving control accuracy and adaptability
to current flight conditions. During experimental research on the TV3-117 engine installed on the
Mi-8MTV helicopter, a parametric modeling system was developed to simulate engine operation in
real time and interact with higher-level systems. Innovation is evident in the creation of the failure
model that accounts for dynamic changes and probabilistic characteristics, enabling the prediction of
failures and minimizing their impact on the system. The results demonstrate high effectiveness for the
proposed model, achieving an accuracy of 99.455%, while minimizing the loss function, confirming
its reliability for practical application in dynamic flight conditions.

Keywords: helicopter turboshaft engines; adaptive control law; automatic control system;
neuro-fuzzy network; control error

1. Introduction
1.1. The Relevance of the Research

The development and advancement of helicopter turboshaft engine (TE) control sys-
tems play a crucial role in modern aviation technology [1]. Helicopters operate in highly
dynamic and variable environments, where ensuring optimal engine performance across all
flight conditions requires sophisticated control strategies [2]. Traditional control laws [3–6],
with fixed parameters, often fall short in addressing the complexity and variability seen
during real-world operations, such as abrupt changes in altitude, air temperature, or engine
load. There is a demand for adaptive systems that adjust engine parameters in real time,
enhancing safety and efficiency.

Adaptive control laws offer a promising solution by dynamically adjusting control
parameters based on real-time data, ensuring optimal engine performance under various
conditions. This approach improves fuel efficiency, prolongs engine life, and reduces
failure risks [7]. Mathematical modeling is critical in developing such systems, providing a
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foundation for simulating engine behavior in diverse scenarios and allowing for fine-tuning
before real-world application [8,9].

The latest innovations in artificial intelligence (AI) and machine learning bring new
opportunities for enhancing adaptive control systems [10,11]. AI-driven methods enable
more accurate predictions of engine behavior, allowing for better anticipation and miti-
gation of potential issues. These innovations pave the way for safer and more efficient
helicopter operations, advancing aviation technology.

1.2. The State of the Art

In recent decades, numerous studies have focused on enhancing helicopter TE effi-
ciency and reliability. The development of helicopter TE surrounding control algorithms
relies on classical regulation approaches, such as PID controllers [12,13] and linear control
models [14,15], which are commonly used in aviation. However, despite their effectiveness
in static and predictable conditions, these systems often struggle with abrupt changes dur-
ing operations, including sudden variations in load, altitude, or ambient temperature. Such
limitations restrict their application in dynamic flight scenarios, particularly for helicopters
that must quickly adapt to changing conditions.

Contemporary research has begun to concentrate on adaptive control systems capable
of automatically modifying parameters in real time based on actual sensor data [16,17].
Examples include control methods utilizing Lyapunov’s adaptive control theory [18],
stabilizing engine performance under various deviations from normal operating conditions.
The implementation of these systems has shown improvements in helicopter TE reliability
and stability; however, challenges remain regarding the accuracy of predicting dynamic
changes and accounting for random factors.

One promising direction involves applying machine learning methods [19,20] and
artificial intelligence [10,11,21,22] to predict engine behavior while adapting control systems
based on these predictions. Models based on neural networks [23–25] can predict engine
performance across various modes, accumulating data for continuous learning, thereby
enhancing management effectiveness. However, much research in this area focuses on
isolated aspects, such as fault diagnosis or optimization in specific modes, rather than
creating a comprehensive adaptive management system.

Based on the above, a new mathematical model for adaptive control law emerges as
necessary, accounting for real-time changes in helicopter TE operating conditions. This
model should utilize data gathered from onboard sensors, adjusting engine control parame-
ters to maintain optimal performance. A critical aspect involves the mathematical modeling
of processes occurring within the engine, enabling predictions regarding its behavior in
unstable conditions and timely responses to changes.

Integrating artificial intelligence into this model will facilitate control adaptation and
future system states’ predictions based on the accumulated data. This approach will help
anticipate failures, reduce component wear, and enhance overall reliability during heli-
copter operation. Implementing such technologies will represent a significant advancement
in adaptive control systems, markedly improving safety and efficiency within aviation.

1.3. The Main Attributes of the Research

The object of the research is the helicopter TE control system. The research subject
includes the developed helicopter TE control system methods and models. The research aim
is to develop a helicopter TE fault-tolerant fuzzy automatic control system for maintaining
stable performance despite malfunctions or anomalies in the system.

The following scientific and practical tasks were solved to achieve this aim:

1. The development of the proposed neural network system for predicting anomalous
data in sensor systems;

2. The development of the helicopter TE adaptive control law;
3. The development of an intelligent automatic control system for the helicopter TE

adaptive control law implementation;
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4. The development of the fuzzy controller architecture and training algorithm;
5. The development of a semi-physical simulation stand for conducting

computational experiments;
6. Conducting a computational experiment to evaluate helicopter TE control quality

under conditions of actuator failure in the fuel flow control mechanism within the gas
generator rotor r.p.m. channel.

The main contribution of the research is the development of the helicopter TE fault-
tolerant fuzzy automatic control system, which enhances control accuracy and adaptability
through a fuzzy regulator and adaptive mechanisms.

2. Materials and Methods
2.1. Development of Helicopter Turboshaft Engine Adaptive Control Law

Based on [26–28], the helicopter TE regulation law mathematical model, grounded in
the present text, can be outlined as follows:

1. Engine (gas generator) operation is controlled by varying the fuel supply GT. It is the
sole parameter influencing the gas generator’s operating mode, as the compressor
is fixed, and the first stage of the accessible turbine functions as a throttle with a
constant cross-section.

2. Maintaining constant free turbine speed nFT = const is key for safe helicopter piloting.
To meet this condition, the automatic control system (ACS) adjusts GT when the blade
pitch angle of the main rotor φm.r. changes.

3. The control model is expressed as follows:

• nFT = const, if φm.r. ≤ φm.r.max;
• If φm.r. > φm.r.max, the ACS limits fuel supply, and nFT starts to decrease to con-

strain one of the limiting parameters (e.g., maximum turbine speed nTCmax or
maximum power Ne).

4. The free turbine rotor speed regulator central equation when the fuel supply changes
is as follows:

nFT = f (GT, φm.r., nTC, Ne). (1)

5. The power limitation condition is represented as follows:

Ne ≤ Nmax
e . (2)

6. Upon reaching the maximum power limit Ne = Nmax
e , maintaining nFT = const

becomes impossible, and the nFT frequency decreases.

The central regulation equation for the free turbine while maintaining the rotational
frequency nFT can be expressed through the power balance:

NFT = Nm.r. + Npower loss. (3)

The free turbine power is expressed as follows:

NFT = ηFT ·
GT ·

.
Q

cp·T∗G
, (4)

where
.

Q = GT · Hu.
The variation in fuel supply based on the rotational frequency of the free turbine and

required power is defined by the following expression:

GT =
n2

FT ·Nm.r.

ηFT ·Hu·cp·T∗G
. (5)
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Thrust control for the main rotor through the blade pitch angle is performed according
to the following equation:

Tm.r. = CT(φm.r.)·ρ·n2
FT ·Am.r.. (6)

The control relations for the blade pitch angle are represented as follows:

φm.r. = f (Tm.r., H, Pa, Ta). (7)

Considering changes in altitude and ambient temperature, correction factors for fuel
flow are introduced:

GT(H, Ta) = GT ·
(

1 + kH ·
H

Hmax

)
·
(

1 + kT ·
Ta − TN

TN

)
. (8)

To ensure safe operation, restrictions are introduced on parameters such as maximum
power Ne, gas generator rotor r.p.m. nTCmax, and the gas temperature in the front of the
turbine T∗max

G [29,30]:
Ne = Nmax

e ,
nTC ≤ nTCmax,
T∗G ≤ T∗max

G .
(9)

If any restriction is reached, the system adjusts fuel flow GT to maintain engine
operation within safe values:

GT = min
(

GT , Glim
T

)
. (10)

To ensure effective system operation across different flight modes, an adaptive con-
trol law is introduced which adjusts parameters based on the current power Ne and
frequency nFT:

GT = Gbase
T ·

(
1 + α·Ne − Nreq

e

Nreq
e

)
·
(

1 + β·
nFT − nreq

FT

nreq
FT

)
. (11)

By combining all equations, a general control law is obtained:

φm.r. = f (Tm.r., φm.r., H, Pa, Ta, T∗G). (12)

To develop a mathematical model for the control law numerical solution in the “pitch-
throttle” system for helicopter TEs, employing numerical optimization methods and dis-
cretization of the differential equation system describing engine dynamics proves effec-
tive [31,32]. The “pitch-throttle” system [33] regulates fuel flow and the angle of attack
of the main rotor blades to maintain the free turbine, which requires rotational frequency
nFT, power Ne, and rotor thrust Tm.r. The free turbine rotational frequency nFT depends on
fuel flow and the main rotor resistance torque. In differential form, the equation can be
expressed as follows:

JFT ·
dnFT(t)

dt
= MFT(t)−Mm.r.(t). (13)

The free turbine moment MFT(t) depends on fuel flow GT(t) and gas temperature T∗G:

MFT(t) = ηFT ·
GT(t)·Hu

cp·T∗G(t)
. (14)

The main rotor thrust Tm.r.(t) depends on the blade pitch angle φm.r.(t) and the free
turbine speed nFT(t):

Tm.r.(t) = CT(φm.r.(t))·ρ(t)·n2
FT(t)·Am.r.. (15)
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For numerical solutions, the Euler method is applied for time integration with a
time discretization step ∆t [34]. The discretized equation for free turbine speed is defined
as follows:

nFT(t + ∆t) = nFT(t) +
∆t
JFT
·(MFT(t)− Tm.r.(t)). (16)

To ensure numerical stability, the time step ∆t must satisfy a stability condition. Specifi-
cally, ∆t should be less than a certain threshold determined by the system’s dynamic proper-
ties, such as the inertial moment JFT and the maximum expected rate of the torque difference
(MFT − Tm.r.) change. For stability, a common guideline is ∆t < JFT

max
∣∣∣∣ d(MFT (t)−Tm.r.(t))

dt

∣∣∣∣ .
The discretized equation for the main rotor thrust takes the following form:

Tm.r.(t + ∆t) = CT(φm.r.(t))·ρ(t)·n2
FT(t + ∆t)·Am.r.. (17)

2.2. The Development of the Algorithm for the Discretized Equation for the Main Rotor Thrust
Numerical Solution

An algorithm for the numerical solution is proposed, consisting of the following steps:

1. Initialization of the initial conditions as follows:

nFT(0) = nFT0, φm.r.(0) = φm.r.0, GT(0) = GT0, H(0) = H0, Ta(0) = Ta0. (18)

2. Computation is performed at each time step:

• Fuel flow GT(t) and the blade pitch angle φm.r.(t) are updated according to the
“pitch-throttle” system control law based on the specified target parameters nreq

FT
and Treq

m.r..

• The free turbine rotor speed nFT(t + ∆t) is calculated.
• The thrust Tm.r.(t + ∆t) is calculated.
• External parameters H(t + ∆t), Ta(t + ∆t), and Pa(t + ∆t) are updated.

3. Deviations are assessed. Deviations in turbine speed and thrust from target values
are calculated according to the following expression:

∆nFT(t) = nFT(t)− nreq
FT , ∆Tm.r.(t) = Tm.r.(t)− Treq

m.r. (19)

4. Control signals are adjusted as follows:

• If |∆nFT(t)| > εn, then then fuel flow GT(t) is adjusted.
• If |∆nFT(t)| > εT , then the blade pitch angle φm.r.(t) is adjusted.

5. Transition to the next time step is carried out according to the following expression:

t← t + ∆t. (20)

Based on the above, the proposed adaptive control law for fuel flow and the blade
pitch angle involves adjusting fuel flow GT(t) and the pitch angle φm.r.(t) according to
deviations in rotational speed and thrust:

GT(t + ∆t) = GT(t) + kG · ∆nFT(t),
φm.r.(t + ∆t) = φm.r.(t) + kφ · ∆Tm.r.(t).

(21)

The system continues integration until the deviations in rotational speed nFT and
thrust Tm.r. become less than the specified tolerances εn and εT:

|∆nFT(t)| ≤ εn, |∆nFT(t)| ≤ εT . (22)

The proposed model employs numerical solutions to solve the differential equation
system that describes the helicopter TE dynamics and the rotor blades. The system enables
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real-time numerical solutions for regulating fuel flow and the blade pitch angle through
the discretization of equations and the Euler method.

In the research’s next stage, the helicopter TE control program in limitation modes is
developed. To achieve this, the following aspects must be considered:

1. Determining limiting modes by establishing a limiting-mode line. This is based on

the relations between the maximum allowable values for the parameter ngiven
TC and

temperature at the input to the gas generator (in this case, temperature TN).
2. Establishing the dependence on temperature through the expression(

ngiven
TC

)
lim

= f (TN) [31], which includes segments (Figure 1) 1–2 for
(

ngiven
TC

)
max

;
2–3 for nTCmax; and 3–4 for another limiting parameter (for example, limitations on
power Ne).

3. Identifying areas of limitation modes based on changes in temperature TN. In this
case, three areas are distinguished (Figure 2) [31]:

• At low values of TN (for example, TN < TN2), a limitation on ∆Kymin is observed.
• In the temperature range from TN2 to TN3, a limitation on nTCmax must

be maintained.
• When TN > TN3, a limitation on another limiting parameter takes effect.

4. Additional limitations involve adding a power limitation line Nmax
e to the limiting-

mode line, resulting in a structure consisting of four segments that account for all
constraints. In this case, equations describing the relations between power Ne, engine
parameters, and temperature are represented by (9).

5. Under limitation conditions, the proposed control program forms an equation system
linking fuel supply GT, blade pitch angle φm.r., and power parameters, presented
in (11).
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Thus, the developed helicopter TE control adaptive mathematical model is presented
as follows: (

ngiven
TC

)
lim

= f (TN),

GT = Gbase
T + kG · ∆nFT(t),

φm.r.(t + ∆t) = φm.r.(t) + kφ · ∆Tm.r.(t),
Ne = Nmax

e , nTC ≤ nTCmax, T∗G ≤ T∗max
G .

(23)

The innovative aspect lies in the developed helicopter TE adaptive control law that
enhances performance and safety compared to traditional control systems [35–40]. This
adaptive approach dynamically adjusts fuel supply and blade pitch angle based on real-
time conditions, ensuring constant free turbine rotor speed and optimal engine operation
under varying flight parameters. Unlike conventional methods that rely on fixed set-
tings, the proposed model integrates real-time feedback to maintain safe operational limits,
addressing constraints such as maximum power, gas generator rotor r.p.m., and gas tem-
perature. The model facilitates real-time regulation by employing numerical optimization
techniques and discretizing differential equations, improving responsiveness and efficiency
in diverse flight modes, thus significantly advancing the helicopter TE control system’s
capabilities. The developed model is presented in Figure 3.
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2.3. The Development of an Intelligent Automatic Control System for the Implementation of the
Helicopter Turboshaft Engine Adaptive Control Law

The research proposes a helicopter TE fuzzy fault-tolerant control system (FTCS)
(Figure 4) aimed at implementing the developed control law (23). Traditional control
systems [35–37] are often based on linear models that fail to account for nonlinear engine
dynamics, resulting in reduced efficiency and increased risk under changing external con-
ditions. Systems built on classical neural networks provide better adaptability [38–43], but
they lack interpretability, may struggle with uncertainty, require extensive training datasets,
and are prone to overfitting. Neuro-fuzzy control systems based on adaptive neuro-fuzzy
inference systems (ANFISs) [44–46] combine the strengths of fuzzy logic and neural net-
works, allowing for the processing of fuzzy data and the integration of expert knowledge.
However, they may require retraining during rapid changes in conditions. On the other
hand, neuro-fuzzy systems based on adaptive neural networks (AFNNs) [47] offer more
powerful control strategies and quickly adapt to changes, although their implementation
demands significant computational resources. A comparison of different systems shows
that the FTCS is the most appropriate choice for implementing the developed helicopter
TE control law (23), combining adaptability, interpretability, and the ability to handle
uncertainty, thus enhancing the reliability, safety, and performance of the helicopter TE
compared to traditional systems and those based on neural networks and ANFISs. Tradi-
tional systems based on linear models do not take into account the nonlinear dynamics of
the engine, which reduces efficiency and increases risks when external conditions change.
Systems based on classical neural networks provide better adaptability, but are inferior
in interpretability and resistance to uncertainty. The proposed FTCS based on ANFISs or
AFNNs combines neural networks and fuzzy logic advantages, which makes it the optimal
choice for helicopter TE control due to the ability to adapt to changes, process uncertainty,
and increase reliability.

The proposed helicopter TE FTCS (Figure 4) consists of a fuzzy controller, an adapta-
tion and reconfiguration module, a selector of engine parameters in control channels, an
actuator block, an engine model, a fuel metering unit (FMU) model, and a sensor block for
the measured parameters. The fuzzy controller, in turn, comprises a fuzzification block,
an inference engine, a defuzzification unit, a fuzzy rule base, and a fuzzy control block. A
key distinction of the proposed FTCS compared to the closest analogue [48] is the division
of the engine model into the engine model itself and the FMU model, first introduced
in [38,41,42]. It allows for more precise consideration of the interaction between the engine
and the metering needle, improving control accuracy and adaptation to changing operat-
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ing conditions [41,42]. This approach provides better control of operational parameters,
enhancing overall system efficiency and reducing the likelihood of emergencies.
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Furthermore, the model division [38,40–42] enables more efficient integration of expert
knowledge into the control process, further enhancing the system’s flexibility and adapt-
ability and ensuring high resilience to uncertainty and external influences. The proposed
FTCS fault-tolerant system has the ability to adapt to changing operating conditions and
maintain stable performance in the presence of uncertainty and external impacts. The
adaptation and reconfiguration modules and the division into the engine and FMU models
enable the system to respond quickly to malfunctions and ensure safe control, minimizing
the risk of emergencies.

For the fuzzification of input values, for example, the input variable x is transformed
into fuzzy values

∼
x using membership functions µA(x) [46,49–51]:

∼
x = (A1, A2, . . . , An),

µA(x) = exp
(
− (x−ci)

2

2·σ2
i

)
.

(24)

Based on the fuzzy rules defined in the rule base, inference is performed using a logic
inference engine. If a rule has the form

IF x is Ai, THEN y = fi(x), (25)

then the rule activation can be represented as follows:

wj = min
(
µAi (x)

)
. (26)

To obtain an accurate output value y, a defuzzification method such as the modified
center of gravity, developed in [45], is used:

y =
∑j wj·yj·µj(x)

∑j wj·µj(x)
, (27)

where yj represents category Aj, ∑j wj·yj·µj(u) is the weighted sum of category centers
and their membership degrees, and ∑j wj·µj(u) is the sum of the membership-weighted

degrees [45]. In the traditional gravity method’s equation for the center, y =
∑j yj ·µj(x)

∑j µj(x) , all

fuzzy inference points are treated with equal weight, which can result in underestimating or
overestimating specific categories. For instance, if one category has greater significance than
another, this could skew the defuzzification outcome. The modified equation in (27) allows



Appl. Syst. Innov. 2024, 7, 118 10 of 28

each category’s degree of importance to be considered during defuzzification, enhancing
inference precision while incorporating the weighting coefficient’s influence on the result. It
is noted in [45] that the gravity method with a modified center and weights outperforms the
traditional approach, as it allows for a more accurate representation of each membership
category’s significance in the final value. It is beneficial in cases where specific categories
have a more substantial influence or higher importance than others.

The adaptation block is described using dynamic equations of the following form:

dθ

dt
= µ·γ·(ydesired − yactual). (28)

The helicopter TE dynamics can be described using differential equations [52]. For
example, the state equation can be represented as follows:

dP
dt

= f (nTC, nFT , T∗G, δ) + ω. (29)

The FMU operation is described by an equation of the following form [52]:

dD
dt

= k·(Ddesired − Dactual) + c·D. (30)

Actuators can be described by a regulator equation related to the system output
parameters. For example [53,54],

u(t) = Kp·e(t) + Ki·
t∫

0

e(τ)dτ + Kd·
de(t)

dt
. (31)

The proportional term Kp · e(t) delivers an immediate reaction to the error, while the
integral term Ki·

∫ t
0 e(τ)dτ accounts for the cumulative errors over time. The differential

term Kd·
de(t)

dt mitigates overshoot by making adjustments based on the change rate in
the error [53].

Sensor signals are represented as follows [38,41,42]:

S = h(nTC, nFT , T∗G, δ) + ϵ. (32)

Thus, Expressions (28)–(32) form the overall helicopter TE FFCS model.

2.4. Development of Fuzzy Controller

The research proposes the implementation of a fuzzy controller using a fuzzy neural
network (Figure 5) for the developed control law (23) by structuring the model with
fuzzification, inference, and defuzzification components, integrating the provided specific
control laws. The fuzzy controller now takes the control error e(t) and the error change
rate de(t)

dt as input parameters; the output is the control action u(t). This structure includes

the fuzzification block, converting the control error e(t) and its change rate de(t)
dt into fuzzy

values. An inference machine uses fuzzy rules to derive the appropriate control action
based on the inputs. The defuzzification block converts the fuzzy output into a crisp control
action. A fuzzy rule base contains rules linking e(t) and de(t)

dt to the control output u(t). The
control law implements the control action according to the provided control law.
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The input parameters are as follows:

1. The control error is calculated as

e(t) = enTC + enFT + eT∗G
+ eTN + . . . , (33)

where enTC = ngiven
TC − nTC(t), enFT = ngiven

FT − nFT(t), eT∗G
= T∗given

G − T∗G(t). It is noted that
the components in (33) may vary depending on the input data amount.

2. The error change rate de(t)
dt .

The fuzzification process converts these inputs into fuzzy values using membership
functions, i.e.,

µe(e(t)) = exp
(
− (e(t)−ce(t))

2

2·σ2
e(t)

)
,

µ de(t)
dt

(
de(t)

dt

)
= exp

−
(

de(t)
dt −c de(t)

dt

)2

2·σ2
de(t)

dt

.
(34)

The inference machine applies fuzzy rules to the fuzzified inputs
∼
e (t) and d

∼
e (t)
dt to

determine the control action. The fuzzy rule base can be written as follows:

Rule 1 : If e(t) is “negative large” and de(t)
dt is “negative large”, thenu(t) is “large positive”.

Rule 2 : If e(t) is “small” and de(t)
dt is “zero”, then u(t) is “zero”.

(35)
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The inference process is performed using a fuzzy logic operator (e.g., minimum or
product rule):

µout(u(t)) = min
(

µe(e(t)), µ de(t)
dt

(
de(t)

dt

))
. (36)

Expression (36) gives the fuzzy output membership function for the control action
u(t). Defuzzification converts the fuzzy output into a crisp control value using (27). The
fuzzy rule base is constructed to link the control error e(t) and its change rate de(t)

dt to the
control action u(t). The rules define how the control system should respond to different
combinations of e(t) and de(t)

dt . Example rules include the following:

Rule 1 : If e(t) is “positive large” and de(t)
dt is “positive small”, then u(t) is “decrease”.

Rule 2 : If e(t) is “negative small” and de(t)
dt is “negative large”, then u(t) is “increase”.

(37)

The fuzzy control action is used to regulate system parameters according to the given
control law (23). Examples are given below:

1.
(

ngiven
TC

)
lim

= f (TN). This control law uses the error in gas generator rotor r.p.m.

enTC = ngiven
TC − nTC(t) as one of the inputs.

2. GT = Gbase
T + kG · ∆nFT(t). It can be controlled based on the fuzzy output u(t), where

u(t) affects ∆nFT(t), the change in free turbine speed.
3. φm.r.(t + ∆t) = φm.r.(t) + kφ · ∆Tm.r.(t), where the control action u(t) determines the

adjustment to the rotational speed φm.r.(t).
4. The control actions must also satisfy the constraints given in the system Ne = Nmax

e ,
nTC ≤ nTCmax, T*

G ≤ T*max
G .

The fuzzy neural network ensures that the control actions adhere to these limits by
adjusting u(t) accordingly.

The final control action u(t) is computed based on the fuzzified error e(t) and error
change rate de(t)

dt passed through the inference machine and defuzzification block. The
result is a crisp value that modifies the system parameters in real time:

u(t) = {Defuzzified output from fuzzy controller}. (38)

This fuzzy neural network design allows for the adaptive control of the helicopter TE
parameters based on the error and error change rate, ensuring robust performance across
different operating conditions.

Fault tolerance is assessed by the system’s ability to correctly compensate for the
impact of failures on control and engine performance. A corrective control signal uc(t) is
generated based on fuzzy adaptation rules in the event that failures occur:

u(t) = u0(t) + uc(t). (39)

It is assumed that d(t) is a failure vector, which is described through binary failure
indicators (for example, sensor failure, drive failure):

d(t) = [d1(t), d2(t), . . ., dk(t)]T (40)

where di(t) takes the value 1 in the case of failure and 0 in the case of regular operation.
A cost function J is introduced to evaluate system deviations from the target values:

J =
T∫

0

∥∥∥x(t)− xre f (t)
∥∥∥2

+ γ1·∥u(t)∥2 + γ2·∥d(t)∥2dt. (41)

The system is considered fault-tolerant if J ≤ Jmax, where Jmax is the maximum per-
missible deviation level. After failure, the system applies an iterative recovery process,
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minimizing the cost function J. Each iteration of correction takes the current failure vector
d(t) into account and updates the corrective control signal uc(t), i.e.,

u(k+1)
c = u(k+1)

c − γ· ∂J
∂uc

. (42)

The proposed fault tolerance mathematical model in the helicopter TE fuzzy control
system enables the simulation of failure impacts and adaptive control strategies to minimize
their effects. Based on fuzzy logic, the system dynamically adjusts control actions, ensuring
the stability and reliability of engine operation in real time.

3. Results
3.1. Input Data Preprocessing

The software product Matlab 2014b was used to conduct the computational experiment
in the research. For the computational experiment, the aviation engine TV3-117 was selected
as the research object, which is part of the powerplant for the Mi-8MTV helicopter [55,56].
The parameters of the TV3-117 engine (nTC, nFT, T∗G, etc.) required for the computational
experiment were derived solely from flight data recorded during the testing of the Mi-8MTV
helicopter. Data registration was performed onboard using D-2M and D-1M sensors, along
with 14 paired thermocouples T-101 [51] (data recording occurred over a 320 s interval
during an actual flight with a sampling period of 1 s). These data were provided upon
an official request from the authors’ team to the Ministry of Internal Affairs of Ukraine
and are intended for implementation in the project “Theoretical and Applied Aspects of
Aviation Development”, officially registered in Ukraine under number 0123U104884. The
variation in parameters for the TV3-117 engine illustrates the complexity of the time series
(Figure 6) [57], and the diagrams indicate the need to account for the current values of
the parameters and the accumulation of data in the model’s memory [58,59]. Figure 6
shows an increase in the parameters within the interval from 21 to 62 s of approximately
1.5 to 1.8 times due to the engine’s transitional operating mode. As mentioned in the
Introduction, the engine operates in steady modes about 85% of the time and only about
15% in transitional modes. Following [40–42,45–47,51,54], 256 values for nTC, nFT, T∗G, etc.,
were selected, as illustrated in Figure 6. Based on the parameters nTC, nFT, T∗G, etc., the
selected values, the control error values, and the control error rate are obtained (Table 1),
constituting the training dataset.
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Table 1. The training dataset fragment.

Number 1 . . . 38 . . . 84 . . . 127 . . . 181 . . . 219 . . . 256

e(t) 0.008 . . . 0.005 . . . 0.003 . . . 0.007 . . . 0.006 . . . 0.006 . . . 0.006
de(t)

dt
0.017 . . . 0.012 . . . 0.013 . . . 0.018 . . . 0.014 . . . 0.014 . . . 0.014

The training dataset homogeneity was assessed according to the Fisher–Pearson [60–62]
and Fisher–Snedecor [63–65] criteria at a significance level of α = 0.01 (Table 2). The
significance level of 0.01 was chosen in the control task for helicopter gas turbine engines
to ensure high reliability in statistical conclusions, which is particularly crucial in aviation
safety. This stringent criterion minimizes type I error likelihood, contributing to more
accurate and safer engine control across various operating modes.

Table 2. The training dataset homogeneity evaluation results for parameters e(t) and de(t)
dt .

Parameter
Criterion Meaning

Description
Calculated Critical

The Fisher–Pearson criterion

e(t) 6.318
6.6 The Fisher–Pearson criterion yielded values for each parameter e(t) and de(t)

dt that fell below the
critical threshold, signifying homogeneity within the training dataset.de(t)

dt
6.327

The Fisher–Snedecor criterion

e(t) 2.388
2.58 The Fisher–Snedecor criterion produced values for each parameter e(t) and de(t)

dt that were
below the critical threshold, suggesting homogeneity within the training dataset.de(t)

dt
2.394

The training and test datasets’ representativeness was assessed through cluster analy-
sis, which involved dividing the input dataset x = (e(t), de(t)

dt ) (Table 1) into k predetermined
clusters [66]. Each cluster groups objects that are more similar to each other than to objects in
different clusters [67]. This process continues until minimal change occurs in the centroids
or the iteration’s specified number is completed [68–71]. Cluster analysis of the training
data (Table 1) revealed eight clusters (I...VIII). The training and test sets were formed in a
2:1 ratio (67 and 33%, respectively) based on random selection. Both datasets showed the
presence of eight clusters, indicating a similar composition. The distances between clusters
were nearly identical across both sets, confirming their similarity (Figure 7).
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Consequently, the optimal sample sizes were established as follows: the training
dataset contains 256 elements (100%), the control dataset has 172 elements (67% of the
training dataset), and the test dataset includes 84 elements (33% of the training dataset).

3.2. Results of Computational Experiment

A semi-physical modeling stand (SPMS) was developed to conduct the computational
experiment, representing an improved version of a similar stand previously designed [57].
This SPMS is intended to simulate helicopter TE parameters in real time and replicate
operational modes within altitude and flight speed ranges. Additionally, it facilitates
interaction with higher-level systems through data exchange channels, testing the control
system unit and addressing other tasks [57]. Figure 8 illustrates the interaction scheme
between the developed neuro-fuzzy network (Figure 5) and the SPMS. On the SPMS, the
helicopter TE malfunctions are displayed by introducing artificial perturbations into the
model parameters or modifying the input data corresponding to certain failure scenarios.
The neural network model integrated into the stand analyzes changes in the dynamics
of parameters such as rotor speed, temperature indicators, and fuel consumption, which
allows us to identify deviations associated with malfunctions. This provides an opportunity
to test the developed control system’s stability and assess its adaptability in the event
of failures.
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The research examines an example of constructing a failure model related to the fuel
flow actuator GT control loss, which is the gas generator rotor r.p.m. nTC channel. The
failure model, represented as a production rule set (the fuel flow actuator H = 0, M = 0
failure), is expressed as follows:
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Rule 1 : If enTC > 0.706 and
∂enTC (t)

∂t ≤ −0.00027, then unTC = 4.383− 6.708·enTC − 0.336· ∂enTC (t)
∂t ,

Rule 2 : If enTC > 0.707 and enTC ≤ −0.00028, then unTC = −1.113 + 1.003·enTC ,
Rule 3 : If enTC > 0.709, then unTC = −1.136 + 1.013·enTC ,

Rule 4 : If enTC ≤ 0.706 and
∂enTC (t)

∂t ≤ −0.00027, then unTC = −5.993 + 8.029·enTC + 0.487· ∂enTC (t)
∂t ,

Rule 5 : If enTC ≤ 0.71 and
∂enTC (t)

∂t ≤ −0.00027, then unTC = −0.011 + 0.492·enTC + 0.117· ∂enTC (t)
∂t .

(43)

Figure 9 presents the failure unTC = f
(

enTC ,
∂enTC (t)

∂t

)
“profile”, where enTC is the

signal representing the change in the control error in the rotational speed channel;
∂enTC (t)

∂t
represents the error signal derivative.
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The developed failure models are stored in the control system’s knowledge base
and are utilized to assess the control situation to generate corrective actions to switch
control channels for helicopter gas turbine engines. The study investigates the transient
characteristics of the failure model related to the control loss in the fuel flow actuator within
the gas generator rotor r.p.m. channel (Figure 10).
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In Figure 10, surge and decay indicate the sudden failure of the fuel flow actuator.
This failure resulted in a sharp reduction in fuel supply, leading to a drop in gas generator
rotor r.p.m. and a deterioration in engine dynamics. The dotted red line on the diagram
represents the engine’s trajectory under normal operating conditions for comparison with
the failure scenario.

The fault tolerance degree for the helicopter TE FTCS (Figure 4) was assessed by
determining the limiting value of the cost function over the investigated time interval (from
0 to 320 s) (Figure 11). The allowable threshold value for the cost function was set at 1,
based on the normalization of all parameters. According to the diagram, the cost function
limiting value within the time interval from 0 to 320 s is 0.137. This indicates that the
developed helicopter TE FTCS demonstrates high fault tolerance, as the cost function value
is significantly below the established permissible level. A value of 0.137 indicates that the
system successfully controls deviations from target values while minimizing control efforts
and the impact of external disturbances within the specified time interval.
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A system stable state is achieved when the cost function value J < 0.5, which indicates a
high degree of fault tolerance and the system’s ability to effectively control deviations from
target values. In a neutral state, with J ≈ 0.5 to J < 1, the system begins to exhibit tendencies
toward unstable oscillations, requiring increased sensitivity in control actions and the
implementation of adaptive algorithms to maintain control. In the case of an unstable
state, when J ≥ 1, the system demonstrates unpredictable behavior and damage risks,
necessitating a sharp reduction in control actions and the use of the developed helicopter
TE FTCS (Figure 3) application to eliminate deviations and ensure safe operation.

3.3. Neural Network Model Quality Evaluation

Since the basis for the developed helicopter TE FTCS (Figure 4) is a neuro-fuzzy net-
work (Figure 3), evaluating neuro-fuzzy network quality is reasonable. It allows for the
determination of how effectively the neuro-fuzzy network addresses control tasks and
makes decisions under uncertainty and variability. The evaluation includes analyzing its
generalization ability, prediction accuracy, and resilience to external disturbances. Perfor-
mance assessment for the developed neuro-fuzzy network (Figure 5) uses vital quality
metrics such as accuracy, loss, precision, recall, F1-metric, and AUC-ROC [72–78]. These
metrics comprehensively evaluate the neuro-fuzzy network’s effectiveness in various as-
pects of its operation within the controlling helicopter TE context. Accuracy helps identify
the proportion of correctly classified engine operating modes relative to the total number,
providing insights into the model’s overall performance. Loss measures how well the model
aligns with actual data, indicating the need for further optimization in control strategies.
Precision and recall offer insights into the accuracy and completeness of identifying critical
engine states, which is especially important for preventing malfunctions. The F1-metric,
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representing the harmonic mean of Precision and Recall, helps balance these two indicators,
which are critical in resource-limited conditions and high safety requirements. AUC-ROC
provides information on the model’s ability to distinguish between normal and emergency
engine states at various thresholds, which is essential for assessing the reliability of the
control system. This comprehensive metrics analysis allows for the neuro-fuzzy network’s
current performance evaluation and identifies areas for improvement, ultimately enhancing
the developed helicopter TE FTCS’s efficiency. These metrics are calculated according to
the following expressions [73,75,77,79,80]:

Accuracy = 1
N ·

N
∑

i=1
1(ui = ûi), Loss = 1

N ·
N
∑

i=1
(ui(t)− ûi(t))

2,

Precision = TP
TP+FP , Recall = TP

TP+FN , F1− score = 2·Precision·Recall
Precision+Recall ,

AUC− ROC =
1∫

0
TPR·

(
FPR−1(t)

)
dt.

(44)

In this scenario, ui denotes the actual label for the i-th instance, whereas ûi signifies
the predicted label generated by the model for that particular instance. N represents the
total number of examples in the dataset (applicable for either training or validation), and
the indicator function 1(ui = ûi) yields a value of 1 if the true and predicted labels match
and 0 otherwise. In the helicopter TE control context, the metrics TP (True Positive), TN
(True Negative), FP (False Positive), FN (False Negative), TPR (True Positive Rate), and FPR
(False Positive Rate) play a key role in assessing the monitoring and diagnostic systems’
effectiveness [51,57,81]. TP represents instances when the system successfully detects faults,
while TN indicates incorrect identification. FP refers to erroneous signals about faults,
and FN describes missed critical conditions. TPR = TP

TP+FN , or sensitivity, reflects the
proportion of correctly identified faults among all actual cases, which is vital for enhancing
safety, while FPR = FP

FP+TN represents the level of false alarms [82–86]. Analyzing these
metrics allows for an evaluation of system reliability, identifying shortcomings in diagnostic
algorithms and implementing necessary adjustments to improve flight safety.

Figures 12 and 13 illustrate the diagrams for accuracy and loss metrics. The accuracy
metric for the developed neuro-fuzzy network (Figure 5) achieves 99.455% following 250
training epochs while addressing the helicopter TE control challenge. This remarkable
performance highlights the model’s capability to manage the helicopter TE control task
across different conditions.

Additionally, the loss associated with the neuro-fuzzy network (Figure 5) declines from
2.5 to 0.5% after 250 training epochs in tackling the helicopter TE control task. Such improve-
ments in accuracy and loss indicate a well-optimized model, reinforcing its potential for reli-
able application in real-world scenarios. The findings suggest that further refinements may
enhance the network’s adaptability and performance in dynamic operating environments.
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The created neuro-fuzzy network attains a precision score of 0.981, a recall score of 1.0,
and an F1-score of 0.990 in the helicopter TE control task under various conditions. These
metrics reflect exceptional accuracy and dependability in detecting faults while ensuring
zero false negatives. The F1-score also illustrates the model’s balanced effectiveness con-
cerning precision and recall. The results obtained were compared (Tables 3 and 4) with four
other approaches: 1 is the neural network-based closed three-channel onboard helicopter
TE ACS, 2 is the neuro-fuzzy onboard helicopter TE ACS based on ANFIS architecture,
3 is the neuro-fuzzy onboard helicopter TE ACS based on AFNN architecture, and 4 is the
traditional helicopter TE ACS.

Table 3. Comparative analysis results.

Metric Proposed
Approach

Alternative
Approach 1

Alternative
Approach 2

Alternative
Approach 3

Alternative
Approach 4

Accuracy 0.995 (99.5%) 0.961 (96.1%) 0.975 (97.5%) 0.999 (99.9%) 0.882 (88.2%)
Precision 0.981 (98.1%) 0.953 (95.3%) 0.962 (96.2%) 0.986 (98.6%) 0.869 (86.9%)

Recall 1.0 0.983 0.988 1.0 0.909
F1-score 0.990 0.973 0.975 0.993 0.889

Table 4. Comparative analysis results (AUC-ROC analysis).

Metric Proposed
Approach

Alternative
Approach 1

Alternative
Approach 2

Alternative
Approach 3

Alternative
Approach 4

True Positives 96 90 92 99 85
True Negatives 4 10 8 1 15
False Positives 287 282 284 291 277

False Negatives 14 20 18 11 25
True Positive Rate 0.828 0.785 0.793 0.844 0.626
False Positive Rate 0.0101 0.0169 0.0152 0.0097 0.0235

False Negative
Rate 0.0098 0.0109 0.0103 0.0093 0.0192

AUC-ROC 0.831 0.773 0.791 0.848 0.651

The comparative analysis of various approaches to helicopter TE control reveals that
the proposed method demonstrates a high accuracy (99.5%) and F1-score (0.990), confirming
its effectiveness and reliability. In contrast, alternative methods show varying results, with
Approach 4 having a significantly lower accuracy value of 88.2%. Approaches 1 and 2
exhibit satisfactory outcomes but fall short compared to the proposed solution. Notably, the
proposed method achieves a perfect recall value of 1.0, indicating complete identification
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of all positive cases. These results highlight significant advantages in the proposed FTCS
for helicopter TE control compared to other examined methods.

The comparative analysis (Table 4 and Figure 14) highlights significant performance
differences among various approaches to helicopter TE control. The proposed method
excels with the highest True Positive Rate (0.828) and True Positives (96), indicating superior
fault detection capabilities. In contrast, Alternative Approaches 1 and 2 show lower True
Positive Rates (0.785 and 0.793, respectively). The proposed method also maintains a
low False Positive Rate (0.0101) compared to Alternatives 1 (0.0169) and 4 (0.0235) while
achieving an AUC-ROC score of 0.831, surpassing the other approaches. The proposed
approach demonstrates effective fault detection with minimal false alarms, establishing its
efficacy in helicopter TE control tasks.
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The proposed approach significantly increases the helicopter’s operational efficiency
and safety due to more accurate control and effective malfunction detection. In comparison
with traditional control systems (Approach 4), which demonstrate significantly lower
accuracy (88.2%) and a higher frequency of false alarms (0.0235), the proposed system
provides high accuracy (99.5%) with a minimal frequency of false alarms (0.0101). This
helps to reduce the in-flight failure probability and allows for timely detection of potential
malfunctions, which is critically important for increasing operational reliability. In addition,
high completeness (recall 1.0) allows you to minimize the risk of missing critical situations,
which improves the overall perception of pilot safety.

4. Discussion

This study focuses on developing an innovative helicopter TE FTCS (see Figure 4).
The proposed helicopter TE FTCS (see Figure 4) includes a fuzzy regulator, an adaptation
and reconfiguration unit, a control channel selector, an actuator block, a helicopter TE
model, a fuel metering needle model, and a sensor block. The fuzzy regulator consists of a
fuzzifier, inference mechanism, defuzzifier, fuzzy rule base, and monitoring block. The key
distinction lies in separating the helicopter TE and FMU models, improving control accuracy
and adaptability to changing conditions. To achieve this, the helicopter TE operation
innovative control law (23) has been proposed, differing from the traditional approach by
using an adaptive control system instead of static settings. This system dynamically adjusts
fuel supply and the blade pitch angle. The model is based on maintaining free turbine rotor
speed, which is crucial for safe piloting while accounting for changing flight conditions
such as altitude, temperature, and power.

The helicopter TE chosen for the computational experiment was the TV3-117, installed
on an Mi-8MTV helicopter. Engine parameters (nTC, nFT, T∗G, etc.) were collected exclusively
from flight data recorded during helicopter trials. The data were logged using D-2M
and D-1M sensors and 14 pairs of T-101 thermocouples over 320 s of actual flight time
at a frequency of one per second (see Figure 1). A simulation test stand (see Figure 8)
was developed, representing an improved version of the stand described earlier in [57].
The test stand simulates helicopter TE parameters in real time and reproduces operating
modes across a range of altitudes and airspeeds. Moreover, it supports interactions with
higher-level systems through data exchange channels, allowing for control unit testing and
performing other tasks [57].

The research explored failure modeling related to the control loss in the fuel supply
actuator within the gas generator rotor r.p.m. channel. A failure model (see Figure 9)
was created as a production rule comprising conditions and actions describing system
behavior during failure scenarios. This model accounts for dynamic changes in system
parameters and probabilistic failure characteristics, enabling the prediction of potential
malfunctions and their impact on gas generator operation. Production rules (43) are used
for the failure scenarios’ automatic generation and their effects on subsequent system
performance analysis, which is essential for developing reliable diagnostic and control
methods in natural operational environments.

The failure model transient characteristic analysis, associated with control loss in the
fuel supply actuator within the turbo-compressor rotor speed channel, showed that sudden
failure (surge and decay in Figure 10) causes a sharp drop in fuel supply. This results in
reduced rotor speed and impaired engine dynamics. For comparison, the standard engine
trajectory is shown as a dashed red line in Figure 10, highlighting the failure’s impact on
system performance.

The developed helicopter TE FTCS fault tolerance assessment (see Figure 11) revealed
that the cost function’s maximum value during the studied time interval (from 0 to 320 s)
is 0.137, significantly below the allowable value of 1, which is set for normalized parame-
ters. This indicates a high degree of fault tolerance in the system, effectively controlling
deviations from target values while minimizing control efforts and the effects of external
disturbances during the specified period.



Appl. Syst. Innov. 2024, 7, 118 22 of 28

The neuro-fuzzy network’s (see Figure 5) quality, forming the developed helicopter TE
FTCS’s (see Figure 4) foundation, was evaluated using traditional metrics such as accuracy,
loss, precision, recall, F1-score, and AUC-ROC. Figures 12 and 13 present accuracy and
loss diagrams. The developed neuro-fuzzy network’s (Figure 5) accuracy reaches 99.455%
after 250 training epochs in the helicopter engine control task, demonstrating the model’s
high efficiency under various conditions. The loss function decreases from 2.5 to 0.5% over
the same training period. These results suggest good model optimization and reliability
for practical applications, with the potential for further improvements in adaptability and
performance under dynamic operational conditions.

The helicopter TE control task comparative analysis (see Tables 3 and 4) using the
developed neuro-fuzzy control system (see Figure 4) was conducted against four alternative
approaches: 1 is the neural closed-loop triple-channel onboard control system, 2 is the
neuro-fuzzy onboard system based on ANFIS, 3 is the neuro-fuzzy onboard system based
on AFNN, and 4 is the traditional control system. The comparative analysis revealed
that the proposed method demonstrates a high accuracy (99.5%) and F1-score (0.990),
confirming its effectiveness and reliability. In contrast, the alternative approaches showed
less satisfactory results, particularly Approach 4, with an accuracy of 88.2%. Approaches
1 and 2 provided acceptable results but were outperformed by the proposed solution, which
also features perfect recall (recall is 1.0), indicating the full recognition of all present positive
cases. As shown in Table 4 and Figure 14, the proposed method surpasses the others in
terms of fault detection, with the highest true positive rate (0.828) and the lowest false
alarm rate (0.0101), supported by an AUC-ROC of 0.831.

Thus, the developed FTCS (see Figure 4) application on board helicopters improves
control efficiency and reduces accident probability [87–92], providing better integration of
expert knowledge and enhancing resilience to uncertainties and external factors.

However, this study’s one limitation is the exclusive use of flight data from a specific
engine type (TV3-117), which may restrict the results’ generalizability to other engine types
or operating conditions. Additionally, the proposed control model requires precise tuning
and calibration of system parameters for different flight modes, which may complicate its
implementation on real helicopters, especially for significant changes faced in operating
conditions or system configuration. Furthermore, variations in flight conditions, such
as altitude, temperature, or load fluctuations, may lead to discrepancies in the model’s
performance if not accounted for during the calibration process. The model’s reliance on
specific engine characteristics also limits its adaptability, potentially requiring significant
reconfiguration or retraining when applied to engines with differing dynamic behaviors or
performance parameters.

Future research directions include extending the model to other engine types [93–96]
and aircrafts [97,98] and integrating more advanced machine learning [99,100] and pre-
dictive methods, such as deep neural networks [101,102] and reinforcement learning tech-
niques [103–105], to enhance the system’s adaptability to dynamic flight conditions. Further-
more, optimizing computational costs and developing self-correction algorithms [106,107]
could improve system reliability and fault tolerance in real time. In future directions of
research, models will be developed in which clear systems and machine learning methods
will be integrated in the current model to improve context. Mentioning specific approaches
would provide more effective guidance and better support the future relevance of the re-
search. In addition, future directions of research will include the development of a potential
extension of the model to engines and aircrafts of other types [108–111]. Also, discussing
the possible problems of more advanced machine learning methods and how they could
contribute to the system’s adaptability will provide more context and justify the proposed
future directions. It is also planned to calculate the added value for demonstration in
experimental research.
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5. Conclusions

This study focuses on the development of a helicopter turboshaft engine innovative
fault-tolerant fuzzy automatic control system, significantly enhancing management effi-
ciency in various flight modes. The research presents an innovative structure of a fuzzy
control system, including a fuzzy controller, adaptation and reconfiguration modules,
and a control channel selector. The key achievement is the helicopter turboshaft engines
model’s separation and the fuel metering unit; the system’s responsiveness to changing
conditions increases while achieving a control accuracy of more than 99%. The conducted
computational experiment is focused on the TV3-117 turboshaft engine installed on the Mi-
8MTV helicopter, with engine data collected using high-precision sensors during flight tests
(D2-M, D-1M, etc.). A special test stand was developed to reproduce working conditions,
which allowed us to evaluate the system’s dynamics and detect potential malfunctions.

The results showed a high degree of fault tolerance for the developed system, with a
cost function limit significantly below the acceptable level. The quality of the neuro-fuzzy
network as the foundation for the automatic control system confirmed its effectiveness,
achieving an accuracy of 99.455%. A comparative analysis with alternative approaches
indicated that the proposed methodology significantly outperforms traditional solutions,
providing higher fault recognition and minimizing false alarms.

Despite the fact that notable successes were achieved, the research is limited by re-
lying on data from flight tests of one type of engine, which potentially limits the wider
applicability of its results. Moreover, the system’s requirement for careful adjustment
of control parameters in various flight modes creates problems for practical deploy-
ment. Prospects for further research are focused on expanding the model to cover a
wider range of engines and aircrafts with the inclusion of advanced machine learning
methods [108–111]. The proposed fault-tolerant fuzzy control system demonstrates sig-
nificant prospects for controlling an aircraft’s flight, in particular, helicopters [87,88]. By
combining expert knowledge with adaptive control strategies, the developed fault-tolerant
fuzzy control system effectively eliminates uncertainties and external failures (achieved
accuracy of more than 99%), positioning itself as a valuable tool for use in civil and
military aviation.
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Nomenclature

GT is the fuel supply;
φm.r. is the central rotor blade pitch angle;
nFT is the free turbine rotor speed;
nTC is the gas generator rotor r.p.m.;
T*

G is the gas temperature in the front of the compressor turbine;
Ne is the engine output shaft power;
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H is the flight altitude;
Pα is the ambient air pressure;
Tα is the ambient air temperature;
ηFT is the free turbine efficiency;
.

Q is the fuel combustion thermal power;
NFT is the free turbine power;
Nm.r. is the main rotor power;
Npower loss is the power loss (for transmission and resistance);
Hu is the fuel combustion heat;
cp is the gas specific heat capacity
CT(φm.r.) is the thrust coefficient depending on the blade angle;
ρ is the air density;
Am.r. is the main rotor area;
Tm.r. is the required main rotor thrust;
kH is the coefficient of change in fuel supply with altitude;
Hmax is the maximum design altitude;
kT is the coefficient of dependence of fuel supply on ambient temperature;
TN is the nominal temperature;
Glim

T is the limited fuel supply consistent with safe operating conditions;
Gbase

T is the base fuel supply;
α and β are the adaptation coefficients for power and rotation speed, respectively;
JFT is the free turbine inertia moment;
MFT(t) is the torque from the free turbine;
Mm.r.(t) is the main rotor resistance moment;
kG and kφ are the gain factors for regulating fuel supply and blade angle;
∼
x are the fuzzy values;
µA(x) is the membership function;
y is the output value;
θ are the control parameters;
ci is the membership function center;
σi is the membership function width;
γ is the adaptation rate;
ydesired and yactual are the desired and actual output values;
µ is a factor defining the adaptation degree;
δ is the control parameter;
ω is the disturbance and noise;
D is the fuel metering unit position;
k is the gain coefficient;
c is the damping coefficient;
u is the control action;
e is the control error
Kp, Ki, and Kd are the proportional, integral, and derivative gains, respectively;
S is the measured value;
h is the measurement function;
ϵ is the measurement error;
u0(t) is the control signal under normal operating conditions;
uc(t) is the corrective action dependent on the failure vector;
d(t) is the failure vector;
xref(t) are the target system parameters;
γ1 and γ2 are weights defining the contribution of control actions and failures to the total cost;
γ is the iteration step size.
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