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Abstract: Speech enhancement technology seeks to improve the quality and intelligibility of speech
signals degraded by noise, particularly in telephone communications. Recent advancements have
focused on leveraging deep neural networks (DNN), especially U-Net architectures, for effective
denoising. In this study, we evaluate the performance of a 6-level skip-connected U-Net constructed
using either conventional convolution activation blocks (CCAB) or innovative global local former
blocks (GLFB) across different processing domains: temporal waveform, short-time Fourier transform
(STFT), and short-time discrete cosine transform (STDCT). Our results indicate that the U-Nets can
receive better signal-to-noise ratio (SNR) and perceptual evaluation of speech quality (PESQ) when
applied in the STFT and STDCT domains, with comparable short-time objective intelligibility (STOI)
scores across all domains. Notably, the GLFB-based U-Net outperforms its CCAB counterpart in
metrics such as CSIG, CBAK, COVL, and PESQ, while maintaining fewer learnable parameters.
Furthermore, we propose domain-specific composite loss functions, considering the acoustic and
perceptual characteristics of the spectral domain, to enhance the perceptual quality of denoised
speech. Our findings provide valuable insights that can guide the optimization of DNN designs for
causal speech denoising.

Keywords: speech denoising; causal U-Net; short-time Fourier transform; short-time discrete cosine
transform; regression mapping

1. Introduction

Most recorded speech signals are affected by noise, which degrades quality and
hinders intelligibility. Speech enhancement techniques aim to maximize the perceptual
quality of speech signals disturbed by background noise and reverberation. Background
noise may include environmental sounds and instrumental interference, while reverbera-
tion occurs due to reflections in the transmission path. Although both types of noise can
coexist and complicate the denoising task, effective solutions are achievable using deep
neural networks (DNN) [1,2], which aim to predict clean speech from corrupted inputs.
To this end, the scope of discussion in this study will be limited to speech denoising
without losing generality.

Speech denoising is crucial for applications such as audio and video calls, hearing aids,
and automatic speech recognition systems. While traditional statistical signal processing
approaches have addressed this problem for years, recent research has shifted towards
machine learning techniques that learn from real-world data. Following the success of deep
learning in various classification and regression tasks [3], there has been a growing interest
in applying DNNs for speech denoising.

The core concept of DNN-based speech denoising involves training models to learn the
complex mapping from noise-corrupted speech representations to their clean counterparts.
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This kind of approach offers two significant advantages: (1) it operates without requiring
knowledge of the statistical properties of the speech and noise, and (2) it can handle
fast-varying non-stationary noise. Several effective DNN architectures have emerged,
with the U-Net becoming a prominent choice for speech denoising. Initially designed for
biomedical image segmentation [4], the U-Net has proven highly adaptable and effective
for speech applications [2,5-9]. Its U-shaped structure comprises an encoder and a decoder
linked by a bottleneck. The encoder compresses input data into a lower-dimensional
representation, capturing essential features, while the decoder reconstructs the data to
its original dimensions with improved output. The U-Net architecture preserves high-
resolution features, facilitates hierarchical feature extraction, supports efficient training,
and enhances generalization, making it a powerful tool in DNN-based speech denoising.

When employing U-Net for speech denoising, the input can be represented in various
forms, such as time-domain waveforms or spectral transformations (STFT and STDCT).
Previous studies often focused on a specific domain and adjusted the U-Net’s structure for
optimization. However, discussions on the applicability of a U-Net model across multiple
domains remain scarce. This paper aims to develop a versatile U-Net model and evaluate
its denoising efficacy on narrowband speech sampled at 8 kHz. Through comparative
analyses of experimental results, we hope to identify the domain that offers the greatest
advantages for effective speech denoising.

The contributions of this paper are threefold. Firstly, we establish a comparison frame-
work for assessing U-Net performance across different processing domains. Secondly, our
examination of classical and advanced U-Nets justifies the design choices for layer config-
urations, facilitating a balance between model complexity and computational efficiency.
Thirdly, upon identifying the optimal domain for DNN-based speech denoising, we explore
the use of composite loss functions to enhance perceptual quality further.

The remainder of this paper is structured as follows: Section 2 outlines recent tech-
nical developments in the field. Section 3 discusses the U-Net architecture for speech
denoising, including network design, causality implementation, input arrangements, and
loss functions across domains. Section 4 presents experimental settings and performance
evaluations. Conclusions are drawn in Section 5.

2. Related Works and Research Planning

Early DNN-based speech denoising methods often utilized time-frequency represen-
tations to analyze spectral features over time [5]. Recent trends indicate that incorpo-
rating phase information can significantly enhance speech quality [10,11]. As the phase
information exists in the raw temporal waveform and its spectral transformation as well,
DNN-based phase-aware speech denoising can be carried out straightforwardly using the
speech waveform as the input [12-14]. For the denoising process conducted in the spectral
domain [2,5-8], the short-time Fourier transform (STFT) presentation with the real and
imaginary (or RI for short) components arranged in sequence is most popular.

DNN-based speech enhancement can be implemented in the form of mapping or mask-
ing. The masking approach estimates a suppression gain for each target value [2,15], while
mapping directly predicts the output values [5,16,17]. Although the masking approach pro-
vides an auxiliary constraint that improves consistency with desired outputs, its advantages
diminish as DNNs become more proficient.

Causality is crucial for real-time applications, as it ensures that DNNs only utilize past
and present features. Two common methods for implementing causal DNN-based speech
denoising include recurrent networks [18,19] (such as long short-term memory, LSTM [20])
and frame-buffering techniques that compile past frame data into a buffer to guide the
DNN during denoising [21,22].

A well-defined loss function is essential for training DNNs in speech denoising, as
it quantifies the alignment between the DNN'’s predictions and target outputs. Here, the
goal is to minimize noise while preserving original speech characteristics, balancing the
trade-off between denoising and potential speech distortion. Recent advancements in loss
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functions that optimize both magnitude and phase spectra show promise [10]. Additionally,
power compression has proven beneficial in enhancing denoising performance [23].

In this study, we adopt the frame-buffering approach to construct two representative
causal U-Nets (classical and advanced) to evaluate the most suitable processing domain for
speech denoising. The classical U-Net utilizes multi-level layers of conventional convolu-
tion and activation, while the advanced U-Net employs global local former blocks (GLFB) as
introduced in [24]. After identifying the optimal domain, we will develop domain-specific
loss functions tailored to the domain’s characteristics.

3. Speech Denoising

Based on the discussions above, we elaborate on the processing framework, DNN
architecture, input arrangement, and loss function required for subsequent investigation.

3.1. Processing Framework

A noisy speech y[n] is commonly modeled as the sum of clean speech x[n] and additive
noise z[n], i.e.,
y[n] = x[n] + z[n] ©)

Since y[n] may vary in length, the denoising process is generally performed using a
frame-based overlap-and-add (OLA) method. That is, the noisy speech signal y[n] is first
divided into frames of fixed length, each overlapping with its adjacent frames, and then
weighted by a window w|n], expressed as follows:

0<n<Lf-1
0<m<M-1.
i=n+mLg;
Ogig(M—l)Ls—i—Lf—l.

Y n) = yln + mLeJw[n] for

()
= ylilw[i — mLs) for

(m)

where y;," [n] denotes the windowed noisy speech signal at the m!" frame. L £ represents
the frame length and L corresponds to the shift distance for each succeeding frame. Thus,
the length of the overlap portion for two adjacent frames is Ly — Ls. The function w[n] has
the periodic form of the Hamming window:

— 27tn = —1;
w[n}:{0'54 046cos(%2), =01, Ly —1; .

0, otherwise.

After frame partition, {yé,’”) [n] } in a short time frame can be fed into the DNN model
to perform denoising, and the result generated by the DNN is the denoised speech signal,
termed {gﬁu’”) [n] } Assembling the denoised speech signals in all frames altogether results

in a complete speech segment. Notably, during the re-synthesis stage of the OLA, we have
to rescale the amplitude synchronously, as follows:

=
iR

;0 G ' [1] i go PliJw[i — mLs)
}?[l] = miMil = "= — (4)
Y wli —mLg] wli — mLg]
m=0 m=0

where )[i] denotes the denoised output. The denominator in the above expression is meant
to restore the amplitude to the original regardless of which window is used. Figure 1
illustrates the concept of DNN-based speech denoising in the temporal domain, where the

DNN is responsible for mapping yz(gn ) [n] to gg,m [n] in each frame.
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Figure 1. Speech denoising through deep neural networks in the temporal domain.

If the processed object for the DNN is a sequence of spectral components, a common
practice is to convert the windowed speech signal yg,m) [n] using discrete Fourier transform
(DFT). The resulting output is widely known as the STFT representation, termed Yé";)T [k]:

2r
L1 —i fkn
Yo=Y v mle M k=012, ,L;— 1. 5)

A well-designed DNN is supposed to retrieve the clean STFT coefficient, i.e., {X,(J'?T k] },

from the noisy source, i.e.,{l?g;)T k] } This is equivalent to assuming that ?I(Dr;)T [k] = X ("?T [k].
To obtain the denoised speech signal, one must first convert Y](D'?T [k] to y&,m) [n] through inverse

DFT, as below, and then plug y&,’") [n] into Formula (4).

(m) 1S
Yeo [n]:L—f Y Ypprlkle ,n=0,1,2,---,Lf—1. (6)
k=0

Figure 2 depicts the denoising process in the frequency domain, where we employ the
spectrogram to provide an insightful inspection of STFT coefficients across frames.
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Figure 2. Speech denoising through deep neural networks in the STFT domain.

STDCT is another option in addition to STFT. In case the denoising DNN operates

in the STDCT domain, the input changes from y( m) [n] to its DCT transformation Yg’é)T k],

defined below:
Lf 1
1 tk 1
Y(m) R — <n+ ) k=0,12---,Ly—1. (7
perlk Z 7 +5[k] [Lf > f @)

where (k| denotes the Kronecker delta function. Since §[n] =1 whenn = 0, and [n] =0
for n # 0. The Kronecker delta function only takes effect on the direct current term, i.e.,

Yg?T [0], to enable the transformation matrix to be orthogonal.

Similar to the situation in the STFT domain, the processed STDCT coefficients Yl()"é)T [k]
need to be converted to waveform sequences before applying the OLA (i.e., Equation (4))

to retrieve the denoised speech signal. The formula for converting YSZ)T k] to yz(um) [n] is
defined as the following:

(m),, ! eyt
Yw Z DCT 1+5[ ]COS[Lf (k+2)

3.2. DNN Architecture

The U-Net architecture is widely recognized for its effectiveness in denoising tasks.
Building on previous discussions, we propose a 6-level skip-connected U-Net for our
experiments, implementing it with two distinct component modules: the CCAB and the
more advanced GLFB.

Our classical U-Net implemented with CCABs is based on [6,24], with two essential
modifications. Firstly, we replace masking estimation with direction mapping at the final
output. Secondly, by referring to the principle for causal speech denoising in [22], we
incorporate a frame buffer to collect input data from the current and past seven frames,
expanding the input from one-dimensional sequences to two-dimensional (2D) feature
maps. The other setups include the use of a frame length L of 256 and a shift distance
L of 64, resulting in a 32 ms window span with an 8 ms stride, causing a 40 ms delay in
real-time processing. Consequently, the input to the U-Net is an array of size 256 x 8.

The main architecture of the classical U-Net, depicted in Figure 3, features symmetrical
encoder and decoder structures [6,24], each comprising six layers of CCABs. Each submod-
ule on the encoder side contains a convolution followed by layer normalization [25] and a
leaky rectified linear unit (ReLU) [26], while the convolution is changed to a transposed
convolution in the decoder. Figure 4 presents the CCABs used in the classical U-Net. A
two-layer dense block [27] is added at the encoder-decoder junction to enhance latent

, =012 ,Li—1 (8)




Appl. Syst. Innov. 2024, 7, 120

6 of 15

feature integration. In Figure 3, we also label the hyperparameter settings of involved
convolutions in the form of “F: kernel size, output channels, S: strides.”

Projection
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Sl
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Figure 3. Network architecture for the proposed U-Net.
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Figure 4. CCABs used in the encoder and decoder sides of the classical U-Net.

The contracting path of the encoder compresses the input features into a compact
representation. Meanwhile, the expanding path of the decoder reconstructs the target
output. Feature maps that capture local details from previous layers in the contracting
path are concatenated with the upsampled feature maps in the expanding pipeline via
skip connections.

Before feeding the data into the encoder, we additionally project the input features
into higher dimensional space, i.e., keeping the size of the feature map unchanged but
increasing the number of channels. The number of channels in the feature map is doubled
for every two down-sampling layers and halved for every two up-sampling layers. Another
projection layer at the terminal end is responsible for projecting the denoised features back
into a single-channel output.

The advanced U-Net retains the overall architecture but replaces CCABs with GLFBs
developed in [24]. The GLFB has the same structural features as the transformer architec-
ture [28], signified by its global and local modeling. As depicted in Figure 5, the global
section involves pointwise convolution, depth-wise separable convolution, gating, and
channel attention, and the local section mainly involves pointwise convolutions and gating.
Inside the GLFB, the gating mechanism aims to replace the commonly used activation
function. Figure 5 showcases the detailed composition involved in a GLFB. Because the
input and output within a GLFB have the same dimension, addition-based skip connections
are therefore used in the advanced U-Net to maintain dimensional consistency. Further-
more, the advanced U-Net requires auxiliary down-sampling and up-sampling for feature
extraction and expansion, utilizing convolution with a kernel size of 2 and a stride of 2 for
down-sampling and pixel-shuffle [29] for up-sampling. Figure 6 shows such configurations.
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Figure 6. Encoder and decoder submodules used in the advanced U-Net.

While smaller kernel sizes in GLFB stacks can reduce parameters, our focus remains on
optimizing denoising performance rather than minimizing model size. We retain the exact
kernel sizes of the convolutional filters in the classical U-Net. Still, the advanced U-Net
with GLFBs significantly reduces learnable parameters from 612 K to 238.6 K, achieving
39% memory savings. Notably, the above U-Net structure (either classical or advanced) is
adaptable for spectral and temporal-domain denoising tasks, using STFT or STDCT inputs
and inverse transformations to reconstruct speech waveforms.

3.3. Input Arrangements

Input arrangement is crucial to the learning speed and ultimate performance of the
U-Net. As indicated earlier in the introduction, both temporal and spectral representa-
tions of noisy speech can be adopted as input for denoising tasks. When performing
speech denoising in the temporal domain, the input consists solely of sequences of noisy
speech waveforms. Figure 7 illustrates the input arrangement in the temporal domain.
When considering a transformed domain, the noisy speech signals must be converted
into the designated domain. For instance, the STDCT sequence is obtained by applying
Equation (7) to a frame of the noisy speech signal. Since an STDCT sequence contains
only real values, it can directly serve as input for the U-Net. Figure 8 shows the input
arrangement of STDCT coefficients.

7 past frames Current
r ! ,  frame
L =] YEPIL -1 | p0lL,-1) WL )
yeIL,-2) YL | L -2) (R
AL, -3] w52 || 5] YL, =3]
g | e RE
w7 A | 4
w78 w78 | A 7B
%) #2052 »12
Ea] »2m | 5¢m BRI
A0 w0 | 7700

Figure 7. U-Net’s input adopted in the temporal domain.
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Figure 8. U-Net’s input adopted in the STDCT domain.

The situation is somewhat different when using STFT coefficients as the U-Net’s input,
as STFT coefficients consist of complex values with conjugate symmetry in their first and
second halves. Let us assume the number of points used in the DFT equals the frame length.
Due to the conjugate symmetry of the STFT coefficients, only half of the coefficients are
needed to conserve all available information. For a DFT sequence with an even length,
the coefficients corresponding to the direct current (DC) and Nyquist frequency (NF) only
have real values and require special attention in data arrangement. Researchers typically
adopt the first half of the DFT coefficients plus one extra (i.e., NF) as input. However, this
arrangement appears redundant, as the imaginary parts of both ends are essentially null.
To address this issue, we take the first half of the DFT coefficients as input, arranging each
coefficient’s real and imaginary parts in alternating order to form a real-value sequence [30].

Additionally, we insert the real NF value into the imaginary position of the DC term.
The final arrangement is shown in Figure 9. This arrangement maintains a consistent input
dimension regardless of the domain selected for denoising, allowing the proposed U-Net
to be applied across various domains without the need for dimensional rescaling.

Lﬁf :‘Lf/z i
!
I
v ¥ 7
S 17
(a)
VL) VAL, ) | YL, vy ILy)
T L) VL, ] | YarhilL, ] rm alLy]
Yor )Ly 1] Yor )Ly =11 | Yoty =11 || Yory L4, 1]
Vo elLy =11 - - - Vorroally =1 | YirDlL, =11 | | Y3i_glLy =11
V(2] Yir)12] Vo2 Vorri[2]
Yo xl2] Yorrrl2] Y al[2] Yorral2]
Y] Vil V(] Vil
Y1l Vel Yokl Yoyl
Yopr alLy] Virally ) | Yo'l Yorr alLy]
Vi 4l0] Vi 2kl0] Yilel0] Yir-4l0]

Figure 9. U-Net’s input adopted in the STFT domain: (a) Illustration of inserting the real NF value
into the imaginary position of the DC term; (b) Final arrangement.

3.4. Loss Functions

Loss functions are critical for training DNNs because they guide the optimization
process and determine how well a DNN performs by gauging the difference between the
ideal values and its predictions. It can be shown that, regardless of the chosen domain
for speech denoising, the utility of mean squared error (MSE) in computing the gradient
for parameter updating has the same effect. We justify this argument through Parseval’s
theorem. Let ¢[n] denote the difference between denoised (1] and clean speech x,[n]
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in a single frame. Furthermore, Eprrlk] = DFT{{[n]} and Epcr[k] = DCT{¢[n|} are
the results of applying DFT and DCT to ¢[n]. Here, we have omitted the frame index in
superscript while discussing the data within the same frame. The formulas for MSE loss in
the temporal, STFT, and STDCT domains are listed below:

L (e L L .
Lyise(Juwln], xwln]) = ff ;) &l | = ITf ;} (Jw[n] — xw[n]) )
) L L L1l ,
Lyse (Yorrlk], Xprrlk]) = I kz |Eprr[K]|” = L Zo Yprrlk] — Xprr[k]| (10)
=0 n—=
A | L L1kt ,
Luse(Yperlk], Xper[k]) = L kz |Epcrlk]|” = L Zo (Yperlk] — Xperlk]) (11)
=0 n=

According to Parseval’s theorem [31], the MSE of ¢[n], Epprlk], and Epcr[k] are
essentially congruent.

Lyse(Fw(n), xw[n)) = 1 Lse (Yorr[k], Xprrlk]) = Lymse(Yoer[k], Xper[k]) — (12)

Ly
Based on the above derivation, we can employ MSE as a universal loss function when
comparing and analyzing U-Net’s performance in heterogeneous domains.

4. Experiment and Performance Evaluation

In Section 4, we delve into the experimental settings and performance evaluations
essential to understanding the efficacy of our proposed models. This section outlines the
datasets employed for model training, provides a comprehensive assessment of model
performance, and discusses further considerations of the loss function within the STFT and
STDCT domains.

4.1. Datasets for Model Training

In our experiments, the speech samples were sourced from the Centre for Speech
Technology Voice Cloning ToolKit (CSTR VCTK) Corpus [32], which includes utterances
from 56 individuals (28 males and 28 females). We utilized recordings from 54 of these
individuals, each contributing approximately 400 sentences, as training material. The
recordings of the remaining two (one male and one female) were set aside for testing.
Originally sampled at 48 kHz, these files were down-sampled to 8 kHz for our tests.
Noise data were incorporated from the Diverse Environments Multi-channel Acoustic
Noise Database (DEMAND) [33], featuring six categories of ambient noise, each with three
distinct recordings. During training, noise was randomly mixed with speech at signal-to-
noise ratios (SNR) of —5, 5, 10, and 15 dB. For real-time speech denoising, we employed the
OLA method with Ly= 256 and Ls = 64 at a frame updating rate of 125 times per second,
ensuring that processing for each frame was completed within 8 milliseconds.

During the training phase, two percent of our data served as the validation set. We
selected the Adam optimizer [34] and processed mini-batches of 2048 observations. The
training process was empirically set at a maximum of 60 epochs. The best model was
identified based on the lowest validation loss. We conducted the above model training in
MATLAB® R2024a, utilizing an NVIDIA® 3090 GPU (NVIDIA, Santa Clara, CA, USA) to
accelerate processing speed.

4.2. Performance Evaluation

We evaluated the performance of the proposed U-Nets across different domains,
focusing on the speech quality and intelligibility of the denoised output. The speech
enhancement metrics used included CSIG, CBAK, COVL (proposed by Hu and Loizou [35]),
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and the Perceptual Evaluation of Speech Quality (PESQ) [36]. CSIG rates speech signal
quality, CBAK assesses background noise distortion, and COVL evaluates overall quality—
all on a scale from 1 (poor) to 5 (excellent). The PESQ metric ranges from —0.5 to 4.5,
with higher scores indicating better speech quality. Additionally, we used the short-time
objective intelligibility (STOI) metric [37], ranging from 0 to 1 in terms of percentage, to
assess speech intelligibility.

Our tests involved corrupting clean speech with 18 different noise types at initial SNRs
of —2.5,2.5,7.5, and 12.5 dB. We repeated each test ten times to minimize variation and
averaged the results for consistency. According to the results presented in Table 1, the U-
Net’s performance in enhancing SNR and improving speech quality and intelligibility was
robust across all tested domains, with slight variations. For the classical U-Net constructed
using CCABs, the SNR improvement was noteworthy for low SNR conditions where the
SNR level jumps from —2.5 dB to above 13 dB. By contrast, the improvement is less than
8 dB when the initial SNR is 12.5 dB. Notably, the advanced U-Net model, equipped
with GLFBs, generally outperformed the classical model with CCABs. Improvements of
approximately 0.48 dB in SNR and 0.033 in PESQ scores were observed for the input taken
from the STFT domain, and the gains were 0.42 dB in SNR and 0.041 in PESQ for the input
taken from the STDCT domain.

Table 1. Performance comparison for the classical and advanced U-Nets operating in the STFT,
STDCT, and temporal domains.

Classical U-Net with CCABs Advanced U-Net with GLFBs

ITny[;uet hslli\tlil:l Resulting STOI Resulting STOI

SNR(@p  CSIG  CBAK COVL  PESQ %) SNR(@p  CSIG  CBAK COVL  PESQ %)
-25dB 12.97 3460 3055  3.091 2811 80.59 13.73 3495 3114 3132 2.851 81.69
srprrl 2598 15.96 3941 3372 349% 3.097 85.69 1651 3948 3410 3515 3123 86.39
se- 7.5dB 18.37 4322 3624 3814 3323 89.03 18.75 4334 3660  3.838 3355 89.65
quences  155dB 20.45 1618 3854 4072 3518 91.45 20.69 4632 3.887 4097 3.549 91.99
Average 16.94 4085 3476  3.618 3.187 86.69 17.42 4102 3518  3.646 3.220 87.43
-25dB 13.04 3458 3062  3.09% 2.821 80.85 13.79 3506 3122 3.149 2.878 81.95
srper 2598 16.04 3940 3375 3498 3102 85.81 16.53 3964 3421 3533 3.145 86.53
se- 7.5dB 18.38 4345 3626  3.830 3332 89.14 18.66 4358  3.666  3.858 3370 89.68
quences  155dB 20.50 4.661 381 4101 3.535 91.61 20.67 4660  3.890 4116 3.562 92.00
Average 16.99 4101 3481 3631 3.198 86.85 17.41 4122 3525  3.664 3.239 87.54
-25dB 13.40 3338 3014 299 2.739 81.18 1345 3313 3009  2.980 2734 81.13

Waveform. 25 4B 15.96 3784 3297 3364 2.992 85.61 16.17 3761 3306  3.355 3.000 85.81
se- 7.5dB 18.21 4178 3547  3.690 3218 88.80 18.30 4152 3543 3.673 3218 88.88
quences 5548 20.05 4492 3771 3.958 3418 91.13 20.13 4469 3.761 3.942 3.418 91.06
Average 16.90 3948 3407 3502 3.092 86.68 17.01 3924 3405 3487 3.092 86.72

Our findings suggest that the U-Net’s performance was comparably strong in both
the STFT and STDCT domains, with marginal superiority to that attained directly using
time sequences in the temporal domain. Furthermore, metrics sensitive to the Fourier
spectra, like CSIG, CBAK, and COVL, also demonstrated an apparent preference for the
STFT and STDCT domains over the temporal domain. This adaptability and performance
consistency underline the potential of U-Net architectures for a broad range of audio
processing applications.

4.3. Further Considerations of Loss Function in the STFT and STDCT Domains

The results in Table 1 demonstrate that the U-Net architecture is practical and ef-
ficient for speech enhancement. The performance discussed in the previous section
is based on training U-Nets using MSE as the loss function. In DNN-based speech
denoising, loss functions that integrate magnitude constraints with complex spectral op-
timization are commonly used to enhance speech quality and intelligibility. Additionally,
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Leomp(Yorr[k], Xprr(k]) = aLyise_mag (| Yorr,plK]

Leomp (Yper[Kl, Xper[K])

power compression has been employed to improve the estimated speech quality further.
Given the proposed U-Nets’ superior performance in the STFT and STDCT domains,
we apply techniques in [10,23] to refine the loss function, potentially improving speech
quality further:

Xprerglkl|) + (1 — &) Lumse_ri (Yorr,glkl, Xperglk]) — (13)

with ?DFT,/S [k] and XDFT,ﬁ [k] defined as

4

R N ﬂ ? k A Ok ,5/2 17 k .
Yorrp(k) = [Yorr ¥ 20Ty = (TorrkiYoer )™ o2

Xper [k i /2__Xprrlk
Xp(6) = Xoer I iy = (XorrlXper) i

It is worth noting that the second term on the right-hand side of Equation (13) also
contains the phase information, as the calculation of power spectra (namely, Yppr [k] Y7 p1[K]
and Xprr [k] X} prlk]) involves both the real and imaginary components.

?DPT [k]?E)FT[k] = (Re{YDFT[k]})Z + (Im{?DFT[k}})z = Y%)FTfR[k] + YI%FTfl[k]
Xprr[KXpprlk] = (Re{Xprr(k]})* + (Im{Xprr[k]})? = X3pr_rlk] + X3 pr_[K]

In the above context, the subscript g attached to a DFT coefficient indicates the expo-
nent used to modify the magnitude. A 8 value between 0 and 1 not only aligns with human
auditory perception of sound intensity but also reduces the dynamic range of spectral
coefficients, thus enhancing network estimation. Parameter « represents a mixing ratio
for combining the magnitude loss Ly1se_mag(-) and the STFT-RI loss Lyse_gri(-)- The re-
sulting loss function, termed Lcomp (?D rr(k), Xprr(k)) and referred to as composite mean
squared error (CMSE), is formulated on the understanding that human auditory perception
aligns more closely with a logarithmic scale, and the sensitivities to spectral magnitudes
and phases differ. Values of « = 0.5 and = 0.5 have been reported to achieve satisfactory
results [10,23].

Liu et al. [24] employed a similar approach with STDCT coefficients. They used a
composite loss function comprising two loss values: the MSE loss calculated from absolute
STDCT values and the MSE loss derived from the original polar values. Following the
expression outlined in Equation (13), we formulate the composite loss function in the
STDCT domain as follows:

= aLyvise_mag (|Yoerslkl|, [ Xperglkl|) + (1 — &) Lase_potar (Yoer skl Xper glk]) — (14)

7

with Ypcr g[k] and Xper,g[k] defined as follows:

Yprrp(k) = sgn(Yperlk]) - |Yper[k] P
Xg(k) = sgn(Xperlk]) - [ Xper k] [P

4

where sgn(-) denotes the sign function.

Our experiments assessed the effects of four combinations of « and 3. Specifically, the
combination (&, B) = (0, 1) directly applies MSE to the target coefficients. The setting («,
B) = (0.5, 1), which concurrently minimizes the magnitude and phase spectra, replicates
the original parameters used in prior studies [9]. The combination («, 8) = (0, 0.5) solely
considers power compression factors, whereas («, B) = (0.5, 0.5) engages both magnitude
estimation and phase recovery with power compression integrated. The choice of « and g at
0.5 reflects their proven efficacy in STFT-based speech denoising applications, anticipating
similar results with the STDCT sequences.

Both classical and advanced U-Net models were retrained and evaluated under the
above four settings. As shown in Tables 2 and 3, trends in response to adjustments in x and
B were similar across both U-Net configurations. Modifying either a or § independently
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showed minimal impact on all evaluated metrics. Metrics from the advanced U-Net, which
incorporates GLFBs, generally surpassed those from the classical U-Net. Our experimental
results indicate that simultaneously optimizing phase and magnitude spectra without
considering power compression actually lowered perceived quality. Also, applying power
compression alone («, 8) = (0, 0.5) can only yield minor improvements. However, com-
bining power compression with balanced magnitude and phase adjustments significantly

enhanced speech quality, with improvements of 0.093 and 0.102 in PESQ for the classical
U-Net in the STFT and STDCT domains, respectively.

Table 2. Performance comparison for the classical and advanced U-Nets in the STFT domain with
four loss functions exploiting the power compression and trade-off between magnitude estimation

and phase recovery.

Classical U-Net with CCABs

Advanced U-Net with GLFBs

Loss Initial
Fu(l;c;;l)o " SNR Is{lﬁfl‘{‘l(t;’]‘sg) CSIG CBAK COVL PESQ S({/SI Is{;sl;‘l(‘;‘]‘g CSIG CBAK COVL PESQ S(T.,/SI
-25dB 12.97 3460  3.055  3.091 2811 80.59 13.73 3.495 3.114 3.132 2.851 81.69
25dB 15.96 3941 3372 3496  3.097 85.69 16,51 3.948 3.410 3515 3.123 86.39
(0,1) 7.5dB 18.37 4322 3624 3814 3323 89.03 18.75 4334 3.660 3.838 3.355 89.65
12.5dB 20.45 4618 3854 4072 3518 91.45 20.69 4.632 3.887 4.097 3.549 91.99
Average 16.94 4.085 3.476 3.618 3.187 86.69 17.42 4.102 3.518 3.646 3.220 87.43
-25dB 12.75 3.638  3.053 3190  2.809 81.02 13.58 3.737 3.125 3.277 2.876 82.41
2.5dB 15.65 4.052 3.349 3.548 3.076 85.82 16.23 4.110 3.399 3.604 3.126 86.83
0.5,1) 7.5dB 18.00 4.388 3.600 3.843 3.305 89.21 18.46 4424 3.635 3.880 3.339 89.91
12.5dB 20.15 4.655 3.834 4.085 3.499 91.65 20.44 4.675 3.859 4.109 3.526 92.07
Average 16.64 4183 3459 3666 3172 86.92 17.18 4.237 3.504 3.718 3217 87.81
-25dB 13.30 3298 3024 2973 2758 80.37 13.82 3.397 3.098 3.062 2.821 81.36
2.5dB 16.27 3.837 3.375 3.442 3.107 85.67 16.63 3.930 3.427 3.517 3.153 86.30
(0,0.5) 7.5dB 18.63 4.318 3.666 3.844 3.396 89.25 18.84 4.389 3.701 3.903 3.434 89.58
12.5dB 20.52 4.679 3.912 4.156 3.627 91.70 20.72 4.739 3.944 4.207 3.666 92.02
Average 17.18 4033 3494 3604 3222 86.75 17.50 4114 3.542 3.672 3.269 87.32
-25dB 13.08 3750 3120 3267 2844 81.14 13.93 3.901 3.222 3.402 2.949 82.65
25dB 16.04 4206 3448  3.677 3171 86.25 16.66 4312 3.520 3.777 3.259 87.24
(0.5,05) 7.5dB 18.44 4569 3715 4007  3.442 89.74 18.89 4.639 3.769 4.078 3.509 90.30
12.5dB 20.50 4.848 3.954 4.268 3.663 92.18 20.90 4.907 4.004 4.331 3.727 92.67
Average 17.01 4343 3559 3805  3.280 87.32 17.59 4.440 3.629 3.897 3.361 88.21
Table 3. Performance comparison for the classical and advanced U-Nets in the STDCT domain with
four loss functions exploiting the power compression and trade-off between magnitude estimation
and phase recovery.
Loss Classical U-Net with CCABs Advanced U-Net with GLFBs
Function ‘Qli\?li‘ Resulting sTOI Resulting sTOI
@,p) SNR (dB) CSIG CBAK COVL PESQ %) SNR (dB) CSIG CBAK COVL  PESQ )
-25dB 13.04 3458  3.062  3.096 2821 80.85 13.79 3.506 3.122 3.149 2.878 81.95
25dB 16.04 3940 3375 3498  3.102 85.81 16.53 3.964 3421 3.533 3.145 86.53
0,1) 7.5dB 18.38 4.345 3.626 3.830 3.332 89.14 18.66 4.358 3.666 3.858 3.370 89.68
12.5dB 20.50 4.661 3.861 4.101 3.535 91.61 20.67 4.660 3.890 4.116 3.562 92.00
Average 16.99 4.101 3.481 3.631 3.198 86.85 17.41 4.122 3.525 3.664 3.239 87.54




Appl. Syst. Innov. 2024, 7, 120 13 0f 15
Table 3. Cont.
Loss Classical U-Net with CCABs Advanced U-Net with GLFBs
Function ‘;‘Sﬁl Resulting sTol Resulting sTOI
(a,B) SNR (dB) CSIG CBAK COVL PESQ (%) SNR (dB) CSIG CBAK COVL PESQ (%)
-2.5dB 1291 3.642 3.077 3.206 2.837 81.28 13.19 3.700 3.103 3.245 2.857 81.79
2.5dB 15.92 4.077 3.385 3.580 3.114 86.27 16.10 4.090 3.395 3.591 3.123 86.50
0.5,1) 7.5dB 18.26 4.412 3.627 3.870 3.334 89.48 18.38 4.407 3.632 3.871 3.341 89.67
12.5dB 20.30 4.676 3.852 4.108 3.524 91.68 20.41 4.667 3.857 4.105 3.528 91.99
Average 16.85 4.202 3.485 3.691 3.202 87.18 17.02 4.216 3.497 3.703 3.212 87.48
-2.5dB 13.09 3.345 3.035 3.008 2.776 80.32 13.79 3.401 3.099 3.065 2.828 81.41
2.5dB 16.06 3.845 3.376 3.448 3.107 85.60 16.55 3.913 3.420 3.506 3.155 86.25
(0,0.5) 7.5dB 18.43 4.314 3.658 3.841 3.390 89.10 18.84 4.384 3.703 3.902 3.440 89.58
12.5dB 20.42 4.687 3.908 4.160 3.626 91.67 20.68 4.740 3.943 4.209 3.670 91.98
Average 17.00 4.048 3.494 3.614 3.225 86.67 17.47 4.109 3.541 3.670 3.273 87.30
-2.5dB 13.23 3.792 3.141 3.303 2.877 81.48 13.80 3.889 3.208 3.386 2.934 82.40
2.5dB 16.03 4.229 3.452 3.695 3.188 86.34 16.63 4.313 3.516 3.774 3.254 87.06
(0.5,0.5) 7.5dB 18.52 4.591 3.726 4.026 3.460 89.73 18.86 4.636 3.764 4.072 3.503 90.13
12.5dB 20.48 4.862 3.957 4.280 3.674 92.08 20.87 4.903 4.000 4.324 3.720 92.52
Average 17.07 4.368 3.569 3.826 3.300 87.40 17.54 4.435 3.622 3.889 3.353 88.03

Further data analyses from Tables 2 and 3 highlight the advantages of substituting
CCABs with GLFBs within the U-Net framework, regardless of compared indicators. GLFBs
employ several state-of-the-art techniques, including the MetaFormer architecture [38],
channel attention, gating mechanism, and depthwise separable convolution, contributing
to performance enhancements. Aside from depthwise separable convolution, the specific
impact of these techniques warrants further investigation.

5. Conclusions

This study evaluates a 6-level U-Net constructed with either CCABs or GLFBs to assess
the efficacy of DNN-based speech denoising across various domains. To ensure causality,
the U-Net employs a frame-buffering mechanism that collects feature sequences from
the current and previous seven frames. Our experimental results demonstrate consistent
enhancements in CSIG, CBAK, COVL, and PESQ for U-Nets operating in the STFT and
STDCT domains, outperforming those in the temporal domain. Importantly, the U-Net
built with GLFBs features fewer learnable parameters and enhanced denoising efficiency.
Given the compatibility of STDCT and STFT with perceptual-based loss functions, we
explored domain-specific composite loss functions to improve perceptual quality further.
Notable improvements in PESQ and STOI scores were observed when accounting for
factors like power compression and the trade-off between spectral magnitudes and phases.

In future work, we plan to expand the capabilities of our denoising DNN based on these
findings. Although the proposed U-Net significantly enhances speech quality, the output still
remains at 8 kHz narrowband. Our next objective is integrating super-resolution techniques
into the denoising DNN to obtain high-quality 32- or even 48-kHz wideband speech.
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