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Abstract: In this study, we aimed to enhance the accuracy of product quality inspection and counting
in the manufacturing process by integrating image processing and human body detection algorithms.
We employed the SIFT algorithm combined with traditional image comparison metrics such as SSIM,
PSNR, and MSE to develop a defect detection system that is robust against variations in rotation and
scale. Additionally, the YOLOv8 Pose algorithm was used to detect and correct errors in product
counting caused by human interference on the load cell in real time. By applying the image differ-
encing technique, we accurately calculated the unit weight of products and determined their total
count. In our experiments conducted on products weighing over 1 kg, we achieved a high accuracy
of 99.268%. The integration of our algorithms with the load-cell-based counting system demonstrates
reliable real-time quality inspection and automated counting in manufacturing environments.

Keywords: SIFT algorithm; image-based quality inspection; product counting; YOLOv8 Pose; load
cell; feature matching

1. Introduction

With the recent advancement of automation and AI (artificial intelligence) across in-
dustries, these technologies have become essential for enhancing productivity and reducing
manufacturing costs. In the manufacturing process, tasks such as defect detection, quality
control, and inventory management must be carried out in real time through automated
systems, where high accuracy and efficiency are essential [1]. Especially in manufactur-
ing sectors that adopt a multi-product flexible production system, the ability to flexibly
produce a variety of products is required, demanding precise adjustments whenever envi-
ronmental conditions change. Given the nature of the manufacturing industry, new data
collection and model training are required whenever a new product is introduced or envi-
ronmental conditions shift, leading to significant costs in technology and human resources.
Computer vision addresses these challenges by detecting defects through image analysis
and performing precise quality inspections, making it well-suited for environments that
require flexible, multi-product production. In particular, computer vision can adapt to
environmental changes without requiring new data collection or model retraining, allowing
manufacturers operating multi-product flexible production systems to quickly adapt to
new product launches or changes in environmental conditions without additional learning
processes. Using these capabilities, computer vision technology maximizes both precision
and productivity by detecting defects through product image analysis and enabling rapid
and precise quality inspection, while also contributing to savings in technological and
human resources [2–4]. The application of this technology is expected to play a pivotal role
in identifying various defects through product image analysis and conducting fast and
precise quality inspections. Key techniques include the SSIM (structural similarity index
measure), MSE (mean squared error), and PSNR (peak signal-to-noise ratio), which are
mainly used to evaluate structural similarity and pixel differences between images [5–7].
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Notably, SSIM has been proven effective in resolving ambiguity when tracking multiple
objects, making it useful not only for quality assessment but also for tasks requiring precise
object recognition [8].

However, there are several challenges that must be addressed in order to build such a
system. First, methods like SSIM, PSNR, and MSE are not sensitive to image rotation or
positional changes. This means that if the angle or size of an image varies, defects may not
be accurately detected. Second, load-cell-based weight measurement systems frequently
encounter errors that prevent precise product counting due to resolution limitations. For
instance, if a load cell measures weight in 500 g increments, overcounting or undercounting
may occur if the actual weight does not align precisely with these units. Third, errors can
arise when workers inadvertently affect the load cell while loading products. In manu-
facturing environments, if a worker steps onto or approaches the load cell while placing
a product, the load cell may register the person’s weight as well, leading to inaccurate
counts. For example, if a worker briefly steps on the load cell while placing a product, the
system may register both the worker’s and the product’s weights, resulting in incorrect
calculations. This lowers the reliability of the load cell measurement system and impacts
inventory management. These issues can seriously disrupt real-time counting systems,
and if left unaddressed, the accuracy of inventory management and quality control cannot
be assured. Specifically, when the weights of people and products cannot be differen-
tiated, inventory calculations may be inaccurate, reducing the overall efficiency of the
manufacturing process.

This study was developed to improve the automation and accuracy of defect de-
tection, quality control, and inventory management by integrating SIFT (scale-invariant
feature transform)-based defect detection, a real-time counting correction system using
YOLOv8 (You Only Look Once version 8) Pose, and a precision counting mechanism using
difference image techniques. The system is designed to solve the consistency, time, and
labor cost issues caused by manual inspection in large-scale manufacturing environments.
Product defects are inspected through computer vision technology using cameras, and
if the product has a defect and the detected value is different from the standard product,
the system notifies the operator for reprocessing. Reprocessed products are re-examined
using differential imaging technology to ensure they meet quality standards. Test results
showed that the system demonstrated high accuracy in defect detection and quality control,
contributing to reducing human errors and significantly improving the efficiency of the
overall manufacturing process.

Figure 1 presents a schematic diagram of the entire system. When a product is placed
on the conveyor belt, defects are detected, and uniformity is assessed through a camera
installed on the belt, after which accepted products proceed to the counter. At this stage,
Camera 2 identifies the products, calculates the quantity through difference images, and
computes the average value. Weight measurement and counting are then performed to
ensure accurate inventory management. This study utilized a high-speed camera with
a variable focus function, 1280 × 720 resolution, and a frame rate of 120 fps (frames per
second) to maximize efficiency in defect detection and quality control. This high-speed
capability ensures precise detection of even minor defects on products moving rapidly on a
conveyor belt. The camera’s variable focus function allows it to adapt flexibly to various
product sizes and shapes, enabling stable defect detection without the need for additional
focus adjustments. The camera was installed approximately 50 cm above the conveyor
belt and set at a 90-degree angle to capture detailed images of the product surfaces with
precision. This configuration provides a standardized setup that can be reliably applied
across diverse manufacturing processes. Additionally, the lighting system was designed
to optimize illumination and uniformity in the inspection area by supplying light from
both directions.
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and detected through difference images, and then the unit weight is calculated. The prod-
uct count was subsequently derived based on the total weight. This approach minimized 
counting errors arising from product placement or external factors. 

The remainder of this paper is structured as follows: Section 1 provides an introduc-
tion, detailing the study’s purpose and scope. Section 2 reviews related research, focusing 
on advancements in computer-vision-based defect detection, body motion detection, and 
automated inventory management. Section 3 outlines the methods proposed in this paper 
for product defect detection, uniformity assessment, worker recognition, precision count-
ing, and inventory management. Section 4 presents the experimental setup and results, 
analyzing the performance of the proposed techniques. Finally, Section 5 concludes the 
paper with a summary of the findings and recommendations for future research direc-
tions. 
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Figure 1. This figure is a schematic image of the entire system.

This process addresses the issues mentioned above, and in this study, we propose
three improved technologies. First, we utilize the SIFT algorithm to compare images and
detect defects that remain robust against rotation and size changes in product images. SIFT
extracts feature points from an image, enabling accurate similarity analysis regardless
of rotation or size [9–13]. Recent studies demonstrate SIFT’s high efficacy in modern
applications, thanks to continuous improvements in memory storage. Advances in data
compression, for instance, allow consecutive nibble pairs to be stored within a single
byte, reducing memory usage by half without causing alignment issues. This bit-level
improvement supports faster comparative analysis while preserving storage efficiency
and matching accuracy [14]. After correcting the product’s size and orientation using
SIFT, product defects and uniformity were determined by analyzing the SSIM, PSNR,
and MSE values with the Scombined formula and difference image technique. Second, we
introduced the YOLOv8 Pose algorithm to create a system that corrects counting errors
in real time whenever an operator is detected on the load cell. This solution ensures
accurate product counting by temporarily pausing weight measurement when an operator
steps onto or approaches the load cell. Third, we developed an accurate product counting
method using the difference image technique to address errors caused by the load cell’s
resolution limitations. During initial setup, a specific number of products were placed on
the load cell and detected through difference images, and then the unit weight is calculated.
The product count was subsequently derived based on the total weight. This approach
minimized counting errors arising from product placement or external factors.

The remainder of this paper is structured as follows: Section 1 provides an introduc-
tion, detailing the study’s purpose and scope. Section 2 reviews related research, focusing
on advancements in computer-vision-based defect detection, body motion detection, and
automated inventory management. Section 3 outlines the methods proposed in this paper
for product defect detection, uniformity assessment, worker recognition, precision count-
ing, and inventory management. Section 4 presents the experimental setup and results,
analyzing the performance of the proposed techniques. Finally, Section 5 concludes the
paper with a summary of the findings and recommendations for future research directions.

2. Related Works
2.1. Computer-Vision-Based Defect Detection
2.1.1. Limitations of Deep Learning Techniques Based on Image Classification

Recently, deep learning technology has made great progress and is being used in
various fields. In particular, deep learning models such as CNN (convolutional neural
network) and RNN (recurrent neural network) are also attracting attention in the field of
image classification. Additionally, the recent emergence of new architectures such as vision
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transformer (ViT) expands image processing possibilities, providing CNN-like performance.
However, while this approach shows excellent performance, it still has several limitations.

First, there is a class imbalance problem. In most datasets, the imbalance between
majority and minority classes has a negative impact on the performance of deep learning
models [15]. In particular, when class imbalance is severe, feature learning of minority
classes is not performed properly, and the model tends to perform excellently only in
predictions for majority classes [16]. In a recent study, the performance degradation of deep
learning models for various class imbalance problems was analyzed, and it was found that
the larger the imbalance, the greater the tendency for model accuracy to deteriorate [17,18].

To solve this problem, you can either undersample the majority-category data using
random sampling techniques to match the minority-category data or use a technique called
a generative adversarial network (GAN) to oversample the minority-category data. As
shown in Figure 2, the undersampling process (left) involves reducing the number of
samples in the majority class (Class A) to match the sample size of the minority class (Class
B). This technique helps balance the dataset but may lead to information loss as potentially
valuable data from the majority class is discarded. On the other hand, the oversampling
process (right) increases the sample size of the minority class by duplicating existing data
or generating synthetic samples. This approach helps preserve all the majority-class data
while keeping the dataset balanced. Techniques such as generative adversarial networks
(GANs) have been widely used to generate realistic synthetic data for the minority class,
improving model performance by effectively addressing the class imbalance problem.
However, even with these methods, achieving optimal performance remains challenging
due to the risk of overfitting in oversampled data and the difficulty of accurately measuring
model performance [19].
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Figure 2. The image on the left shows the undersampling process, which reduces the data of Class
A, the majority class, to match the amount of data in Class B, the minority class. On the other hand,
the image on the right illustrates the oversampling process, which replicates or generates data from
the minority class, Class B, to balance it with the majority class, Class A. These methods are used to
address the data imbalance problem.

Second, deep learning models such as CNN have high computational complexity
and require a lot of resources during the learning and inference process [18]. Especially
in a real-time environment, this requires research to optimize the computational load for
real-time product quality evaluation using multiple-frame-rate cameras and various deep
learning models [20,21]. CNN can extract various spatial features of an image through
multiple layers of convolution, but its computational cost is very high due to its structural
characteristics. This can cause difficulties in applying deep learning models when real-
time processing is required in an actual industrial environment, and in order to solve
these problems, several studies have argued that lightweight network design or hardware
acceleration techniques are needed. Third, using deep learning models in a manufacturing
environment is subject to various limitations. Due to the nature of the manufacturing
industry, the model must be retrained every time a new product is manufactured in
addition to an existing product, which inevitably requires significant time and cost during
the data collection and labeling process. Additionally, if the manufacturing facility or
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environment changes, the measurement environment must be rebuilt and the model must
be retrained, which can have a negative impact on operational efficiency.

To solve these limitations, this study used computer vision techniques such as SSIM,
MSE, PSNR, and SIFT to compare the image data. The goal was to compare good and
defective products without the need for a predefined learning data set.

2.1.2. Application of Vision Algorithm in Product Classification

The development of vision algorithms is currently making an important contribution
to the detection and classification of product defects and quality control in the manufactur-
ing industry and continues to develop in the direction of increasing real-time processing
capabilities and accuracy. Through this, it plays an important role in maximizing produc-
tivity and quality control efficiency in the manufacturing process. When applying vision
algorithms in product classification, commonly used image comparison techniques such as
SSIM, MSE, and PSNR are used. These technologies allow for the evaluation of structural
similarity and pixel differences between the same images. Although these techniques are
useful for basic image quality evaluation, they have the limitation of not being sufficiently
robust against rotation or size changes.

In contrast, feature-based algorithms such as SIFT can extract feature points robustly
even when image rotation or size changes, enabling accurate defect detection [22,23]. SIFT
has the advantage of being able to extract feature points stably despite rotation or size
changes within the image [24,25]. According to the results in Figure 3, we tested SURF
(Speeded-Up Robust Features), SIFT, and the hybrid technique. The hybrid technique
demonstrated good performance for scale changes, whereas SIFT provided more accurate
performance when detecting features such as rotational invariance [26]. Based on this, this
study aimed to develop a model that increases the recognition rate of products and enables
more-accurate defect detection by utilizing the SIFT technique to overcome the limitations
of existing techniques.
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2.2. Research on Body Movement Detection Based on Body Skeletal Structure
Latest Research Trends in Body Movement Detection

Body movement detection is advancing as a technology that leverages deep learning,
a field within machine learning, to identify human movement, detect hazards, and recog-
nize specific actions. In HAR (human activity recognition), deep learning models play a
crucial role in accurately recognizing various movements by analyzing video and sensor
data. The development of HAR technology primarily involves the integration of diverse
deep learning architectures [27]. Applications such as real-time hand gesture recognition
are made possible by these advancements, and research has even extended to gesture
recognition based on body skeletal structure [28]. These studies highlight the impressive
capabilities of deep learning in tracking and recognizing body movements in real time and
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can indicate which approaches may be more effective in particular situations by comparing
different architectures.

Figure 4 provides an overview of the YOLOv8 Pose architecture, which enhances the
standard YOLOv8 model with advanced pose estimation capabilities [29,30]. The archi-
tecture consists of three main components: the backbone, neck, and head. The backbone
performs feature extraction using convolutional layers and advanced modules such as C2f
and SPPF, ensuring efficient and robust feature representation. The neck fuses features
from multiple scales using upsampling and concatenation layers, effectively integrating
spatial and semantic information. The head is adapted for pose estimation, providing
dual outputs for bounding box coordinates and keypoint locations, enabling simultaneous
object detection and pose estimation. Unlike earlier YOLO models, YOLOv8 Pose adopts
an anchor-free design, simplifying the detection process and improving computational
efficiency [31,32]. With enhanced speed and accuracy, the architecture is particularly suit-
able for real-time applications such as human motion tracking and activity recognition.
The integration of the C2f module for lightweight computation and the optimized SPPF
module for global feature extraction further contribute to its high performance. In summary,
YOLOv8 Pose combines innovative features and real-time capabilities, making it a versatile
tool for pose estimation and activity recognition in challenging environments.
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2.3. Automated Inventory Management and Product Counting System
2.3.1. Inventory Management and Product Counting Market Trends

Recently, research and advancements in inventory management and product counting
systems have gained attention as key components of smart factory implementation [33].
In manufacturing, intelligent systems are essential to maximize inventory management
efficiency and enhance the accuracy of product counting [34,35]. According to a survey,
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technologies such as barcodes, QR codes, AI, cloud computing, IoT (internet of things),
RFID (radio frequency identification), and WMS (warehouse management systems) are
widely used.

Barcode and QR code technologies provide cost-effective and reliable methods for
tracking products throughout the supply chain. Barcodes are scanned at various production
and distribution stages for quick identification and status updates, while QR codes, with
their higher data capacity, allow for the inclusion of product specifications or batch details
and are easily integrated into modern systems. In addition, AI, cloud computing, IoT, and
RFID technologies have become central to improving inventory management and product
counting in contemporary manufacturing systems [36]. AI-based systems, in particular, are
effective in reducing human error and enhancing accuracy by using computer vision and
data analytics to streamline product calculations and inventory management, supporting
real-time tracking and automated decision making.

2.3.2. Existing Product Counting Methods and Problems

The problem with existing load cells is that accurate product counting is impossible
due to resolution limitations during the calculation process. For example, if the resolution
of the load cell is rounded to 500 g, overcounting or undercounting may occur if the actual
weight deviates from the standard value. Additionally, in a manufacturing environment,
if a worker temporarily stands on or near a load cell while loading product, the system
may mistakenly recognize the worker’s weight, leading to incorrect calculations. These
inaccuracies have serious implications for inventory management and reduce the overall
efficiency of the manufacturing process. To address these issues, research on smart load
cells has shown that smart load cells achieve measurement errors of less than 100 g in
industrial applications weighing up to 400 kg, providing more-accurate readings than
traditional systems [37]. However, despite these improvements, these systems are still
limited in terms of maximum weight capacity and resolution, making them inadequate for
use in a wide range of industrial applications.

In this study, the goal is to develop a system that improves the accuracy of product
counting and inventory management processes by setting the product counting value as the
unit weight. This is achieved using a technology that recognizes when a worker approaches
the load cell and prevents counting from being affected, along with the difference image
technique. We believe that this system will contribute to reducing product counting errors
and increasing the reliability of inventory management by superseding the limitations of
existing techniques.

3. Methods and Result

This study aimed to evaluate the likelihood of a product being a normal or defec-
tive item by analyzing similarities between images. Precise image comparison analysis
is essential for automated quality inspection in manufacturing processes, especially in
detecting subtle differences. Higher SSIM and PSNR values indicate greater similarity
between images, while a lower MSE value suggests a smaller difference, thus representing
greater similarity. However, high SSIM and PSNR values and a low MSE value do not
guarantee that two images will appear visually identical. These metrics reflect only specific
aspects of image similarity and may not be sensitive to subtle differences or variations in
object position and scale. For instance, identical objects may yield high SSIM and PSNR
values even if the image is rotated or shifted, but they may still look visually different.
Since SSIM reflects structural similarity and PSNR and MSE focus on pixel differences, their
reliability may decrease when structural and detailed differences are mixed. In particular,
if a product is rotated or shifted, high SSIM, PSNR, and low MSE values may still exhibit
significant visual discrepancies. To address this issue, this study applied the SIFT algorithm
to detect the product’s orientation first. SIFT identifies keypoints within an image and
extracts features that are robust to rotation and translation, enabling the product to be
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restored to its original orientation even if positioned at various angles. This alignment
allows the more reliable use of SSIM, PSNR, and MSE.

Additionally, the Scombined formula combines the values of SSIM, PSNR, and MSE
to produce a final evaluation score, determining whether a product should be inspected.
The Scombined formula appropriately adjusts the weights of each metric, integrating diverse
quality information that cannot be assessed with a single metric alone. This approach
allows for clearer identification of potential defects when SSIM, PSNR, or MSE values
exceed a threshold. Furthermore, if the Scombined result deviates from a specific standard,
the difference image technique is applied to visually confirm changes in the product. The
difference image technique calculates pixel-level differences between two images, effec-
tively highlighting surface defects or color changes. This method allows for accurate
identification of defect locations, providing a basis for operators to address issues imme-
diately if necessary. In conclusion, by using the SIFT algorithm to align the product’s
position and orientation, applying the Scombined formula to assess quality, and employing
the difference image technique to visually detect minor defects, this study contributes to
enhancing overall quality management.

3.1. Image-Based Product Quality Inspection and Feature Matching Techniques
3.1.1. Rotation and Scale Invariance in Image Comparison Using SIFT Algorithm

As shown in Figure 5, after loading two images, the SIFT (scale-invariant feature
transform) algorithm is used to detect keypoints within the images and calculate descriptors
for those keypoints. SIFT is an algorithm designed to detect keypoints that are invariant
to scale, rotation, and illumination changes, enabling it to reliably find consistent features
even under various transformations [38]. The first step of the SIFT algorithm is to locate
keypoints in the scale space. This is achieved by using a Gaussian filter to process the image
at different scales, allowing the detection of important keypoints by identifying extrema
(maxima and minima) at each scale. The process of finding keypoints in the scale space,
where a Gaussian blur is applied, utilizes the difference of Gaussian (DoG) method [39]:

D(x, y,σ) = (G(x, y, kσ)− G(x, y,σ)) ∗ I(x, y) (1)

Here, G(x, y, σ) represents the image with Gaussian blur applied at scale σ, I(x, y) is
the original image, and k denotes the scale factor. In this process, the differences between
images at each scale are computed to identify extrema (maxima/minima), which are
detected as keypoints [39–41]. By calculating the gradient magnitude and orientation of
the pixels surrounding each keypoint, a principal orientation is assigned to each keypoint
to ensure rotational invariance. The gradient magnitude m(x, y) and orientation θ(x, y) are
computed using the following equations:

m(x, y) =
√

L(x + 1, y)2 − L(x − 1, y)) +
(

L(x, y + 1)− L(x, y − 1))2 (2)

θ(x, y) = tan−1 (
L(x, y + 1)− L(x, y − 1)
L(x + 1, y)− L(x − 1, y)

) (3)

Here, L(x, y) represents the intensity of the image, m(x, y) is the gradient magnitude
at that position, and θ(x, y) is the gradient orientation. Based on the calculated orientation
information, a principal direction is assigned to each keypoint, enabling the keypoints to
maintain rotational invariance [39–41]. To proceed with the matching process between the
two images, the Euclidean distance between each descriptor is calculated to assess their
similarity. The distance between two descriptors, p and q, is defined as follows:

d(p, q) =

√√√√128

∑
i=1

(pi − qi)
2 (4)
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Here, pi and qi represent the iii-th components of the two descriptors, respectively.
The smaller the Euclidean distance, the more similar the two descriptors are considered, en-
abling the matching of keypoints between the two images. Once the matching is completed,
the rotation angle between the two images can be estimated, and this angle is calculated
using the following equation:

θ = tan−1 (
y2 − y1
x2 − x1

) (5)

Here, (x1, y1) and (x2, y2) represent the coordinates of the matched keypoint pairs
in the two images, respectively. Using this equation, the rotation angle between the two
images can be estimated, allowing for rotation correction and image restoration based on
this information. Additionally, by calculating the distance between the matched keypoints,
the scale variation between the two images can be assessed, enabling the determination of
whether the image has been scaled up or down.
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Figure 5. This figure illustrates the process of image alignment and analysis using the SIFT algorithm.
The blue arrows represent the orientation of the detected keypoints based on intensity gradients, while
the green circles and dots indicate the location and scale of the keypoints. The green lines connect the
matched keypoints between two images, enabling visualization of their correspondence for rotation
and alignment. The histograms in the figure provide a quantitative analysis of the matched keypoints,
where the red histograms represent the angle distribution, and the blue histograms represent the
distance distribution, offering insights into the rotational and geometric transformation between the
two images.

3.1.2. Defect Detection Using a Combined SSIM, PSNR, and MSE Evaluation

Figure 6 shows the difference images between A product and B product, obtained
through pre-processing with SIFT, as well as the difference image between the two. To
quantitatively evaluate the similarity between the two images, SSIM, PSNR, and MSE were
applied. These metrics were used to accurately compare and detect defects between normal
and defective products, enabling efficient identification of product defects. The restored
images were evaluated using SSIM, PSNR, and MSE to quantitatively assess the similarity
between the two images, and the formulas for each method shown below in Table 1 [42,43].
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Figure 6. This figure shows the difference images for products A and B, along with the numerical
results of SSIM, PSNR, and MSE derived from the difference image analysis.

Table 1. Formulas and descriptions for SSIM, MSE, and PSNR Metrics.

Metric Formula

SSIM

(2µxµy+C1)(2σxy+C2)
(µ2

x+µ2
y+C1)(σ2

x+σ2
y+C2)

(6)

µx and µy: The mean brightness values of the two images
σ2

x and σ2
y: The variance of each image

σxy: The covariance between the two images
C1 and C2: Constants for stability

MSE

1
mn

m
∑

i=1

n
∑

j=1
[I1(i, j)− I2(i, j)]2 (7)

I1(i, j) and I2(i, j): The pixel values at the i, j coordinates of the two images
m and n: The dimensions of the image

PSNR
10log10 (

MAX2
I

MSE ) (8)
MAXI: The maximum possible pixel value in the image
MSE: The mean squared error between the two images

By applying SSIM, PSNR, and MSE to the restored images, a quantitative evaluation
was performed based on structural similarity, signal-to-noise ratio, and mean squared error
between the two images. SSIM measures the structural similarity of the images, PSNR
assesses the signal-to-noise ratio, and MSE analyzes the detailed pixel differences, enabling
an overall evaluation of similarity. These metrics can vary according to specific criteria set
by the user and may be interpreted differently depending on the goals, application area, and
quality requirements of the image processing task. Therefore, users can establish standards
for each metric according to the project’s objectives and requirements and evaluate image
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similarity based on these standards. For example, in manufacturing processes where defect
detection is critical, even minor defects may significantly impact results. Thus, an SSIM
value of 0.95 or higher could indicate an acceptable product, and a PSNR value of 40 dB or
higher could suggest good quality [42]. In the case of MSE, a lower value signifies fewer
differences between the two images. Therefore, to ensure consistent interpretation within
Scombined, the inverse of MSE is used in calculations. This approach allows for a more
intuitive interpretation, where a higher Scombined score indicates greater similarity between
the images. Finally, the similarity score Scombined, reflecting the weights of SSIM, PSNR,
and MSE, is calculated as follows:

Scombined = ωSSIM ∗ SSSIM +ωPSNR ∗ SPSNR +ωMSE ∗ 1
SMSE

(9)

The weights ωSSIM, ωPSNR, and ωMSE in the Scombined formula sum to 1 and are ad-
justed based on the characteristics that each metric evaluates. This adjustment is not just
about evaluating the images but also about focusing on the specific defects and characteris-
tics of the product. First, if the overall appearance or structure of the product is important,
the weight of the SSIM metric, ωSSIM, is increased. SSIM evaluates the structural similarity
of the image, focusing on structural elements such as the patterns, edges, and textures of
the product. This is suitable in situations where structural defects are critical, such as in the
bending of metal products or the consistency of patterns in textiles. Second, when noise or
distortion on the product’s surface is the focus, the weight of the PSNR metric, ωPSNR, is
increased. PSNR plays a significant role in examining surface scratches or the finishing of
lens surfaces. Third, when fine pixel-level defects are of particular importance, the weight
of the MSE metric, ωMSE, is increased. MSE precisely calculates the differences between
pixels, making it ideal for processes that need to detect very small defects. In conclusion,
the weights in the Scombined formula are set according to the product’s characteristics and
the type of defects being emphasized. By adjusting the weights according to the specific
features of each metric, the efficiency and accuracy of defect detection can be improved.

3.2. Product Counting Algorithm Using Camera-Based Skeleton Tracking and Body Part Detection
3.2.1. Classification of Counting Classes Based on Body Part Detection

In this study, we developed a product counting system that applies the YOLOv8 Pose
algorithm to detect the human body and correct errors that occur when a person steps onto
the load cell [44,45]. The core of the research lies in using a camera and algorithm to detect
human body parts in real time, distinguishing factors that affect weight data measured
by the load cell and reducing counting errors. Body parts that influence load cell weight
measurements were categorized into four classes, and the load cell’s weight measurement
actions were controlled according to each class. As shown in Figure 7, the control images
illustrate the situations of full upper body detection, partial upper body detection, lower
body detection, and no detection.

• Full Upper Body Detection: When the full upper body is detected within the load
cell area, weight measurement is temporarily paused. This is because the structure,
in which the camera views the load cell from above, may result in the lower body or
other body parts not being detected. When the full upper body is detected, weight
measurement is paused to eliminate the influence of the body on the load cell, and the
measurement resumes once the upper body moves away from the load cell.

• Partial Upper Body Detection: In partial upper body detection, only a part of the
upper body is detected within the load cell area. During this time, the load cell
continuously reads weight data in real time, and only when the weight change meets
the stabilization value is it considered valid. Weight changes less than 0.5 kg are
regarded as insignificant fluctuations and are not included in the count. Therefore,
when partial upper body detection occurs, the load cell measurement continues, but
small weight changes are ignored, and only meaningful changes are reflected in
the count.
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• Lower Body Detection: When the lower body is detected within the load cell area,
weight measurement is paused. The weight of the lower body directly affects the
load cell, so weight changes are not measured while the lower body is detected.
Measurement resumes when the lower body moves away from the load cell area.

• No Detection: If the camera does not detect any part of the body over the load cell, the
load cell continuously measures weight changes in real time and counts the product
based on the weight variations. In the no detection state, the load cell counting
process proceeds normally, and the measured weight changes are used to calculate the
product count.
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Figure 7. This figure shows the case-based operation in the load cell counting system using a body
detection algorithm.

3.2.2. Overall Flowchart of the Product Counting Algorithm

The load cell used in the product counting system for Figure 8 can weigh up to 2000 kg
and has a resolution of 500 g. While higher resolution increases the precision of the load cell
system, it also raises the cost. Load cells with high resolution enable precise measurements,
but in many cases, the level of precision exceeds what is required in industrial settings. In
particular, the products measured in this system mostly weigh over 1 kg, so a resolution of
500 g is sufficient for accurate weight counting. This study focuses on developing a method
to count products using weight increments of 500 g, based on these conditions.

3.2.3. Unit Weight Calculation and Counting Method Using Image Differencing Technique

As presented in Figure 9, image difference techniques are employed to determine the
unit weight of a product [46–48]. The image differencing method detects the number of
products placed on the load cell and calculates the unit weight based on the total weight
of the products. During the initial setup, a certain number of products are placed on the
load cell, and the unit weight is calculated by using the number of products detected
through image differencing and the total weight measured by the load cell. This technique
enables accurate detection of the number of products, minimizing weight measurement
errors caused by product placement. To enhance the reliability of the image differencing
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method, adjustments were made to compensate for external factors such as camera angle,
lighting, and background noise. This ensures minimal impact from environmental changes
on product detection, improving the accuracy of the product counting process.

Wunit =
WTotal

Nproduct
(10)
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Here, Wunit represents the unit weight of the product, WTotal is the total weight
measured by the load cell, and Nproduct is the number of products detected using the image
differencing technique. Once the initial unit weight is established, the number of products is
calculated based on the change in weight measured by the load cell, following these steps:

• Weight Change Calculation: When products are added or removed, the weight change
is calculated by determining the difference between the current and previous weights
measured by the load cell. The weight change must exceed a certain percentage of the
unit weight (e.g., 0.5) to be considered valid. This prevents counting errors caused by
minor weight fluctuations.

∆W = Wcurrent − Wprevious (11)

• Stabilization Process: To improve counting accuracy, the system detects the point at
which the weight change stabilizes. Based on the number of data points received
per second, NDATA, if the same weight change is detected over a certain number
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of consecutive readings, the weight is considered stabilized, and the counting is
performed. This helps to reduce errors caused by temporary weight fluctuations
or noise.

• Precise Decimal Handling: The weight change is calculated with precision to the first
decimal places, and rounding or truncation is applied only at the time of counting.
This minimizes counting errors that may occur when multiple products are loaded
simultaneously. For example, if the weight change appears in increments of 0.5, it is
rounded up and reflected in the final count.

• Counting Execution: Once the stabilization process is complete, the number of prod-
ucts is calculated by dividing the weight change by the unit weight. During this
process, decimal values are carefully handled, and if the first decimal place is 0.5,
rounding up or down is applied to ensure the accuracy of the count.

• Stabilization Process: To enhance counting accuracy, the system detects when the
weight change stabilizes. Based on the number of data points received per second,
NDATA, if the same weight change is detected consistently over a certain number of
readings, the weight is considered stabilized, and counting is performed. This helps
reduce errors caused by temporary weight fluctuations or noise. Here, Cproduct repre-
sents the number of products, ∆W is the weight change, and Wunit is the unit weight.

Cproduct =
∆W

Wunit
(12)

• Count Error Correction: In this system, only products weighing 1 kg or more are
counted. If the weight change is less than 1 kg, it is excluded from the count. Specif-
ically, weight changes of 0.5 kg or less are considered minor fluctuations and are
disregarded in the count results. This prevents errors caused by small weight changes
and ensures that only the actual weight changes of the products are accurately reflected
in the count.

The experimental results presented in Figure 10 and Table 2 were obtained in collab-
oration with an automobile parts manufacturer to verify product accuracy. The test was
conducted by counting 10 products ranging in weight from 1 kg to 45 kg, achieving an
accuracy of 99.268% in the product coefficient test.

Overall Accuracy(%) =
∑ Accuracy for Each Test

Number of Tests
(13)

Table 2. Product counting accuracy test results.

Test Product Product
Weight

Actual
Quantity

Estimated
Quantity Accuracy (%)

1 A 6.00 184 183 99.46

2 B 43.58 24 25 95.83

3 C 3.10 254 254 100.00

4 D 3.93 92 91 98.91

5 E 11.80 42 42 100.00

6 F 4.27 66 67 98.48

7 G 14.44 35 35 100.00

8 H 4.23 111 111 100.00

9 I 1.35 50 50 100.00

10 J 2.30 30 30 100.00
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4. Discussion

This study proposes a robust image comparison method that combines traditional
image similarity metrics such as SSIM, PSNR, and MSE with the SIFT algorithm to quanti-
tatively evaluate differences between normal and defective products in the manufacturing
process. Conventional metrics like SSIM, PSNR, and MSE are insensitive to rotation and
positional changes, making it challenging to accurately detect defects when products are
captured from various angles. Specifically, for circular products or those with important
surface patterns, when the product is photographed in a rotated state, the image similarity
decreases, increasing the likelihood of misinterpreting a similar product as defective. To
overcome this limitation, the SIFT algorithm was employed to correct for rotation and scale
changes, allowing for more accurate and dependable image comparisons. The SIFT algo-
rithm detects key points within the image, calculates the orientation and scale of each point,
and generates descriptors invariant to these changes. This process enables images to be
restored to the same orientation, even when the product is rotated, significantly enhancing
the reliability of SSIM, PSNR, and MSE similarity metrics. For products such as wheels
or those with critical surface patterns, the accuracy of similarity evaluations improved
significantly after applying SIFT for angle restoration. Furthermore, to compensate for
the limitations of SSIM, PSNR, and MSE, a weighted combination score, Scombined, was
introduced. This score reflects the characteristics of each metric, allowing for a compre-
hensive evaluation of both the overall structure and fine differences of the product. The
experimental results demonstrated that Scombined enabled more precise defect detection
than using SSIM, PSNR, or MSE alone, and adjusting the weights for specific defect types
allowed for flexible adaptation to various defect scenarios.
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Additionally, the product counting system developed in this study applied the YOLOv8
Pose algorithm to effectively reduce counting errors caused when a person steps on the load
cell. By detecting the presence of a person through body detection, the system automatically
paused weight measurement when human influence was detected and resumed measure-
ment when nobody was detected, ensuring accurate product counting. To overcome the
resolution limitations of the load cell, the system used an image differencing technique
to determine the unit weight of the product, dividing the total weight by the number of
detected products to calculate an accurate count. This method involved loading a predeter-
mined number of products onto the load cell, measuring the total weight, and calculating
the unit weight based on the number of products detected using the image differencing
technique. Using this calculated unit weight, subsequent product counts were derived
by dividing the total measured weight by the unit weight. A key aspect of this process
was detecting the point at which weight changes stabilized before collecting data. Since
errors are likely to occur if weight measurements are not stabilized, the system included
a procedure for collecting data only when the weight had not changed for a period of
time. This helped to prevent errors caused by transient weight fluctuations and improved
counting accuracy. However, one limitation of this study is that the SIFT algorithm can be-
come computationally intensive in complex environments, which may affect performance
in real-time applications. Additionally, SIFT’s performance in detecting key points may
be influenced by external variables such as lighting changes and background complexity,
necessitating the use of complementary algorithms.

5. Conclusions

This study proposes a robust defect detection method that combines the SIFT algo-
rithm with traditional image similarity evaluation techniques such as SSIM, PSNR, and
MSE, enabling reliable quality inspection despite product rotation and scale changes. By
detecting key points in the image and correcting for rotation and scale using the SIFT
algorithm, the system demonstrated the capability for accurate quality control. Addi-
tionally, the introduction of the Scombined metric allowed for precise defect analysis by
leveraging the strengths of SSIM, PSNR, and MSE, offering flexible responses to various
defect scenarios. In the load-cell-based counting system, the YOLOv8 Pose algorithm
was employed to correct counting errors in real time when a person was on the load cell.
Furthermore, the image differencing technique was used to calculate unit weight, enabling
accurate product counting. Experimental results showed a high accuracy of 99.268% for
products weighing between 1 kg and 45 kg. In conclusion, this research demonstrated
that reliable defect detection can be achieved despite rotation and scale changes using the
SIFT algorithm, and accurate quality inspection and counting systems can be implemented
in manufacturing processes by utilizing the image differencing technique and YOLOv8.
This confirmed that high reliability and accuracy can be maintained even in real-time
manufacturing environments.

Future research should focus on improving the processing speed of the SIFT algorithm
and optimizing the system to maintain stable performance in conditions with lighting
changes or complex backgrounds. In particular, efforts should be made to simplify the
algorithm for enhanced real-time performance and to integrate machine-learning-based
predictive models for advanced automation in defect detection. Additionally, for the
load-cell-based counting system, it is essential to introduce technologies that enhance
resolution or develop methods capable of detecting smaller weight changes with greater
precision. Algorithms that can correct counting errors in real time should be advanced, and
the system’s stability must be reinforced to remain unaffected by external environmental
factors such as temperature and vibration. These advancements are expected to play a
crucial role in enhancing the efficiency of quality inspection and counting processes in
automated manufacturing systems.
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