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Abstract: Key performance indicators (KPIs) are crucial for managing business performance
and optimization strategies. However, traditional KPIs are inflexible and cannot adapt
to changes in staff, business units, functions, and processes. To address this issue, this
paper proposes a method that combines statistics, machine learning (ML), and artificial
intelligence (AI) to augment traditional KPIs with the flexibility of data-driven automation
(DDA) techniques. This study builds a model that takes traditional KPIs generated by an
integrated ecosystem as input data and assesses the suitability and correlation of the data
using statistical techniques, such as Bartlett’s test of sphericity and the Kaiser–Meyer–Olkin
(KMO) test of sampling adequacy. The model then employs exploratory Factor Analysis
(FA) techniques to identify correlations and patterns, prioritize KPIs, and automatically gen-
erate smart KPIs for business optimization. The model is designed to adapt automatically
by creating new KPIs as the business evolves and data change. A case study evaluation
validates this approach, showing that DDA techniques can effectively create smart KPIs for
business optimization. This approach provides a flexible and adaptable way to manage
business performance and optimization strategies, enabling organizations to stay ahead of
the competition and achieve their goals.

Keywords: process-driven automation; data-driven automation; machine learning; artificial
intelligence; business optimization

1. Introduction
The rapid advancement of technology has led to unprecedented business growth

through mergers and acquisitions (Mohammadi et al., 2018) [1]. This growth necessitates
the development of effective optimization techniques to ensure success and sustainabil-
ity [2,3]. This makes optimization a key driver for business success and sustainability
strategies [2,3]. Challenges such as the lack of real-time information, absence of value chain
optimization, shortage of integrated systems, ineffective communication from decision-
makers to individual workers, and isolated pockets of information prompt the need for
business optimization [4].

Organizations create a plan to achieve their objectives guided by their business strategy.
The success of these objectives relies on defining clear business objectives, which are
translated into key success factors using key performance indicators (KPIs) which can be
calculated at different business levels, including operational, tactical, and strategic ones.
Well-formulated and visualized KPIs have been shown to encourage productive business
engagements and continuous improvement. However, traditional KPIs are designed using
process-driven automation techniques that rely on strict rules, instructions, procedures,
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computations, and configurations set by industry experts and stakeholders. This approach
makes KPIs inflexible, passive, and unintelligent, as they cannot adjust to changes in the
business environment and cannot proactively manage performance.

Therefore, this research is aimed at inventing a model to supplement traditional KPIs
by looking at business data, identifying relationships and trends, and creating new smart
KPIs (SKPIs) that dynamically adjust themselves as business evolves and data change. To
achieve this, this study uses a data-driven automation model that leverages cross-functional
KPIs (CFKPIs) generated within an integrated ecosystem. The CFKPIs are then validated
for correlation and suitability using machine learning (ML) techniques, namely, Bartlett’s
test of sphericity and the Kaiser–Meyer–Olkin (KMO) test of sampling adequacy. This
study further uses ML to implement decision engines and predictive analytics. In addition,
artificial intelligence (AI) techniques of exploratory Factor Analysis (FA) were employed to
identify data patterns, correlations, and significance levels of CFKPIs. This, in turn, helped
to create SKPIs tailored for business optimization. To achieve this, the following research
objectives were formulated:

The first objective was to create a ground-breaking model that serves as a complemen-
tary tool to traditional KPIs.

The second objective was to develop and implement mechanisms within the model
that enable SKPIs to dynamically recalibrate in response to shifting business dynamics.

The third objective was to evaluate the practical application and effectiveness of the
data-driven (DDA) model.

This study holds great importance in advancing the field of business optimization by
introducing a new approach to KPIs. By achieving the aims and objectives of this study,
the dynamic and adaptive nature of SKPIs contributes to the creation of more resilient
and responsive business strategies. This ensures competitiveness and sustainability in an
ever-evolving business landscape.

The remainder of this article is structured as follows: Section 2 provides an overview
of related studies on automation categories and techniques, key performance indicators,
and business optimization. Section 3 introduces the methodology that utilizes statistics,
ML and AI techniques, to devise an innovative model that produces intelligent KPIs for
business optimization. Section 4 presents the research results, where the effectiveness of
the model is evaluated through a case study. Section 5 discusses the research results, and
Section 6 concludes this study with implications, recommendations, and potential areas for
future research.

2. Related Literature
Optimization is a vital and indispensable process in the business realm, as it meticu-

lously examines and enhances productivity, efficiency, and overall performance, as empha-
sized by Chang et al. [2] and Rondini et al. [3]. This process plays a pivotal role in ensuring
the long-term sustainability and viability of businesses, exerting its influence across a broad
spectrum of operational domains, including Finance; Human Resources; Information and
Communications Technology; Customer Service; Maintenance; Production; Logistics, Sales,
and Marketing; Product and Service Development; Research and Development; Health and
Safety; and Integrated Planning, as noted by Telukdarie et al. [4] and Hu and Feng [5].

Given the paramount importance of optimization in driving business success, this
literature review undertakes an in-depth examination of the multifaceted dimensions of
business optimization. This review encompasses a comprehensive analysis of business
optimization, business strategies, key performance indicators, and automation techniques,
with the goal of providing a nuanced understanding of the complex interplay between
these critical components. By exploring the intricacies of business optimization, this review
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aims to contribute to the existing body of knowledge, providing valuable insights for
businesses seeking to optimize their operations and achieve sustainable success.

2.1. Business Optimization

The process of business optimization entails a detailed analysis and improvement of a
business’s productivity, efficiency, and performance. This is crucial for ensuring the long-
term sustainability and viability of the business, as it enables the organization to operate
effectively and adapt to changing market conditions over time. Business optimization
can be applied to various facets of an organization, as mentioned in the introduction of
this section.

Numerous studies have explored the application of various methods to business
optimization. For instance, Yang et al. [6] employed the Bat algorithm (BA) to solve
complex engineering design and business optimization problems. In contrast, Mobin
et al. [7] utilized evolutionary algorithms (EAs) to address engineering and business
optimization challenges. Dominy et al. [8] applied geometallurgy techniques to establish
three-dimensional (3D) models that enable the optimization of net present values (NPVs)
and effective orebody management in the mining sector.

Wang and Cao [9] developed an implicit rule-based recommendation algorithm (IR-
RMINER) to reveal complex and implicit relationships between transactions and to increase
the reliability of study recommendations. Smith et al. (2014) [10] applied a mixed-integer
program (MIP) solution to create a life-of-business optimization system (LOBOS) that
optimizes production scheduling and the granularity of production volumes at a large
copper mining complex.

Himeur et al. (2022) [11] applied ML and AI big data analytics to enhance building
automation and management systems (BAMSs). By applying supervised and unsuper-
vised one-class support vector machine (OCSVM) ML algorithms, their study successfully
detected energy anomalies in residential and office buildings and optimized energy perfor-
mance in sports facilities, addressing key challenges in BAMS.

Krishna (2023) [12] conducted an in-depth examination of the transformative effects
of ML and AI on supply chain transportation, drawing on the existing literature and
case studies. This research revealed that the strategic application of predictive analytics,
route optimization algorithms, and real-time decision-making enables AI and ML to drive
significant improvements in logistics, including enhanced optimization, cost savings, and
agility, ultimately leading to more efficient and effective supply chain operations.

James et al. [13] developed a system that leverages big data and ML to optimize
business intelligence. Using the k-means clustering algorithm, the system analysed a
sample report from the Nigerian National Petroleum Corporation (NNPC) and generated
predictive outputs to guide managerial decisions. Their study also explored the application
of deep learning algorithms for time-series data analysis, demonstrating the potential for
improved results using stacked neural network layers.

Yuen et al. [14] proposed a metaheuristic-based framework to solve the comprehensive
index tracking problem (IPT). This framework considers various constraints and optimizes
tracking errors and excess returns. Simulation studies demonstrated competitive results
using a genetic algorithm, particle swarm optimization, a competitive swarm optimizer,
and differential evolution. This framework can incorporate additional practical constraints
and has potential for future applications with various metaheuristics and datasets.

Redchuk and Mateo [15] studied ML and AI adoption in the steel manufacturing
industry to optimize processes. Their study showcased the potential of new AI-/ML-based
business models in traditional industries. The results demonstrate that a No-Code/Low-
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Code solution outperformed conventional analytic approaches, highlighting the potential
for AI/ML democratization in traditional industries.

These studies demonstrate the extensive use of ML and AI methods to drive business
optimization and improve organizational performance. Bharadiya [16] asserts that ML
algorithms facilitate the automation of data analysis tasks, including data cleansing, feature
extraction, and transformation using statistical techniques. By streamlining these processes,
businesses can accelerate data analysis and minimize manual intervention. Moreover, the
integration of ML and AI enables the detection of data anomalies, the revelation of hidden
patterns, and the provision of actionable insights for optimizing business processes through
underlying statistical techniques. This, in turn, allows organizations to pinpoint areas of
inefficiency, enhance operational workflows, and drive overall performance improvements.

2.2. Business Strategy

A business strategy is a high-level plan designed to enable a company to achieve
specific business objectives. The ultimate goal of a business strategy is to drive growth,
establish a strong competitive advantage, and deliver robust financial performance [17].
The success of a business strategy is paramount, as failure to achieve desired outcomes may
necessitate a strategic overhaul or potentially even threaten the company’s viability [18].

For a business vision, or generic strategy, to be successful, it must be situated within
a comprehensive strategic framework [19]. This framework is underpinned by multiple
strategies, each with its own distinct objectives and action plans. These strategies are
interconnected, with objectives defined for each strategy supporting and reinforcing the
objectives of other strategies [20]. This interdependency fosters a cohesive and aligned
strategic approach.

The objectives defined within each strategy are subsequently translated into specific
targets, which are then pursued through the implementation of lower-level strategies.
To ensure the success of a business strategy, it is essential to measure and manage the
performance of strategic objectives. This critical aspect of strategic management is discussed
in the subsequent section, where the focus shifts to the performance measurement and
management of strategic objectives.

2.3. Key Performance Indicators

An effective business strategy implementation relies heavily on the establishment of
clear objectives, which are meticulously monitored and refined through the utilization
of key performance indicators (KPIs). KPIs serve as detailed specifications that facilitate
the tracking of business objectives, providing a tangible measure of success and progress
towards organizational goals [21–23]. To ensure the successful implementation of KPIs, it
is essential that an organization’s vision and strategy are clearly defined, communicated,
and aligned with the overall objectives. This enables the establishment of meaningful and
constructive KPIs that effectively measure performance and drive business success [24].
A well-defined vision and strategy should be translated into expressive KPIs for each
organizational level, including top management, middle management, line management,
and the shop floor [21].

Visualizing KPIs is crucial, as this facilitates regular performance discussions, cross-
functional assessments, and the escalation of critical topics to management meetings [25,26].
This enables organizations to identify areas for improvement, track progress, and make
data-driven decisions. Traditionally, KPI definitions are based on predefined rules and
calculations tailored to specific business models [22,27].

By adopting a structured approach to KPI development and implementation, organi-
zations can ensure that their business strategies are effectively translated into actionable
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objectives, ultimately driving success and sustainability. This involves establishing clear
and measurable goals, defining relevant KPIs, and regularly reviewing and refining perfor-
mance metrics to ensure alignment with organizational objectives.

2.4. Automation Categories and Techniques

Automation is achieved through the application of technologies to perform tasks and
manage processes with minimal human interaction. The adoption of advanced technologies
for automation can enhance user experience and customer satisfaction through the use
of software robots across core processes in the organization [28]. Automation has been
adopted in such business sectors as manufacturing, mining, insurance, banking and finance,
education, real estate, inter alia [29]. The automation process is divided into two categories,
viz., process-driven automation (PDA) and data-driven automation (DDA).

PDA uses (a) robotic desktop automation (RDA) to automate manual processes that
are performed at a desktop level, such as completing a form or typing a letter and (b) robotic
process automation (RPA) to automate manual processes centrally by providing self-service
facilities that enable machines and programs to interact with information through their user
interfaces in a process-oriented way. These self-service facilities are available around the
clock through pre-programmed digital triggers, freeing humans from performing repetitive
and mundane tasks [30,31].

DDA employs ML and AI techniques. ML enables predictive analytics and decision
engines in different areas of the business, helping leadership in making the right decisions
at the right time for business sustainability and success [32]. Madakam et al. [33] claim
that ML yields intelligence aptitude by learning from data with the help of algorithms and
subject experts. AI enables deductive and inductive analytics to discover data patterns,
correlations, and contextual meaning to data [31]. Goher et al. [32] praise AI for its ability
to integrate into human decision-making and to play a vital role in everyday lives through
technologies such as the Internet of Things (IoT), cloud comping, and macro services.
Upadhya et al. [31] claim that AI is one of the cutting-edge technologies that is utilized to
automate business operations, processes, and services.

2.5. Summary of Related Literature

A thorough examination of existing studies reveals that business optimization is
a multifaceted and intricate topic, encompassing a broad range of statistical, ML, and
AI methods and strategic approaches. Researchers have employed these methods and
approaches to address complex engineering and business optimization challenges.

The success of an organization is heavily dependent on its strategic framework, which
comprises multiple interconnected strategies that collectively drive business outcomes. The
relationships between these strategies are critical, and KPIs play a vital role in monitoring
and improving business objectives. A clear and well-defined vision and strategy are
essential prerequisites for achieving success, as they provide a roadmap for organizational
decision-making and actions.

In addition, automation technologies, including robotic desktop automation, robotic
process automation, machine learning, and artificial intelligence, can be leveraged to en-
hance business optimization. These technologies can be applied using either process-driven
or data-driven approaches, each offering distinct benefits and advantages. By understand-
ing and effectively utilizing these various facets of business optimization, organizations
can develop and refine their strategic frameworks, ultimately leading to improved overall
performance and sustained competitiveness.
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3. Research Methodology
This research aims to supplement traditional methods of defining KPIs by integrating

DDA techniques for business optimization and sustainability. The focus is on analysing
business data generated by systems integrated through PDA to identify patterns, corre-
lations, and trends within the data. This will enable the creation of SKPIs that can adjust
dynamically to changing business conditions. The methodology depicted in Figure 1 en-
compasses two segments. The first segment involves the development of the DDA model
through a four-step process of performing data sourcing; data sampling; ML (data valida-
tion, decision engines, and predictive analytics); and AI (patterns and correlations, KPI
significance, and SKPIs). The second segment involves evaluating the developed model
using case study methods, considering the complexities of an ecosystem that generates
substantial amounts of performance-relevant data.
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In addition to the studies reviewed in Section 2.1, Hao et al. [29] used a data-driven
method to diagnose multiplicative key performance degradation in automation processes.
This method was aimed at identifying low-level components that increase the variability
of process variables and consequently cause degradation in performance. Gao et al. [34]
applied data-driven metadata inference to learn from building automation systems (BASs)
to reduce energy consumption in residential and commercial building stocks in the US.
Upadhya et al. [31] used ML and AI to achieve automation and a data-driven design of
polymer therapeutics. Their research was meant for gene delivery, drug delivery, bioactive
polymers, drug design, antimicrobial polymers, and organic synthesis.

These studies extracted data produced by process-driven systems in various industries
and applied data-driven methods to achieve further automation and to draw engineering
insights. These studies extensively employed various techniques, including advanced
statistics, ML, and AI, to realize data-driven models. This validates the effectiveness of data-
driven methods in supplementing process-driven systems by achieving further automation,
extracting and interpreting meaningful patterns and trends from data. Therefore, this study
borrows some of the data-driven techniques exhibited by the respective studies to create a
data-driven model for smart KPIs to optimize and sustain businesses.

This research is buttressed by an integrated ecosystem that leverages the transfor-
mative power of the 4IR integrations, specifically, vertical, end-to-end, and horizontal
integrations, through the lens of PDA. Building on the foundational work from previous
studies [35–38], this study adopts a comprehensive framework that defines and operational-
izes these three 4IR integrations.

The vertical integration, a critical component of this framework, enables real-time
connectivity between physical machinery on the shop floor and sensors, control systems,
manufacturing systems, and Enterprise Resource Planning (ERP) systems. This networked
manufacturing system facilitates seamless communication and information flow between
different sections and processes, ensuring that data flow effortlessly from the shop floor to
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the top floor (ERP) and back. This integration enables organizations to respond rapidly to
changing market conditions, optimize production processes, and improve overall efficiency.

End-to-end digital integration, another vital component of this framework, enables
organizations to track products throughout their entire lifecycle, from inception and de-
sign, manufacturing and distribution, usage by customers, and eventual end of life. This
integration facilitates real-time monitoring and management of products, ensuring optimal
performance and efficiency. By leveraging end-to-end digital integration, organizations can
improve product quality, reduce waste, and enhance customer satisfaction.

Horizontal integration, the third pillar of this framework, fosters digital collaboration
between suppliers, organizations, branches, third-party companies, and customers. This
integration is achieved by converging ICT systems, processes, and data flows across these
business partners, resulting in a fully integrated supply chain. By leveraging horizontal
integration, organizations can improve supply chain efficiency, reduce costs, and enhance
collaboration with stakeholders.

Figure 2 depicts the integrated ecosystem that underpins this study, illustrating the
interconnectedness of these three 4IR integrations and their role in realizing PDA. This
ecosystem serves as a foundation for exploring the complex relationships between PDA,
4IR integrations, and business performance and for developing strategies that leverage
these integrations to drive business success.
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The DDA model was rigorously evaluated through a real-world case study, which
was implemented in a company that had successfully achieved a 4IR integrated ecosystem
through PDA. As noted by Margherita and Braccini [39], an integrated ecosystem typically
generates vast amounts of data. Therefore, it was crucial for the research team to collect
and analyse data that aligned with this study’s objectives: the adoption of data-driven
automation techniques to supplement traditional methods of defining KPIs for business
optimization and sustainability.

The existing literature reveals that a typical integrated ecosystem comprises various
enterprise functions, each encompassing multiple business functions that utilize diverse
processes. These processes, in turn, consist of multiple process steps, each employing
one or more resources. The performance of these ecosystem constituents is measured
through KPIs, which provide valuable insights into the ecosystem’s overall efficiency
and effectiveness [40].

To evaluate the DDA model, the research team observed, extracted, and sampled data
generated by the KPIs that measured the performance of the process-driven ecosystem’s
constituents. This data-driven approach enabled the team to assess the efficacy of the DDA
model in optimizing business processes and improving overall performance.



Appl. Syst. Innov. 2025, 8, 10 8 of 30

To ensure the accuracy, reliability, and integrity of the data, a rigorous and systematic
analysis was conducted using a range of advanced ML techniques. These techniques were
employed to validate the data, identify patterns and trends, and provide actionable insights
that could inform business strategies and could drive organizational success.

ML’s statistical techniques played a critical role in facilitating the development of
decision engines, which enabled informed decision-making and supported strategic plan-
ning. Additionally, predictive analytics capabilities were established, allowing for the
forecasting of future trends and outcomes. By leveraging these statistical techniques, this
research aimed to provide a comprehensive understanding of the data, identify areas of
improvement, and drive business growth.

To uncover hidden insights and relationships within the data, AI exploratory Factor
Analysis (FA) techniques were employed. These techniques facilitated the discovery of
complex data patterns and correlations, enabling the identification of KPIs that have a
significant impact on performance management. Furthermore, the analysis allowed for the
automatic creation of SKPIs, which provide a more nuanced and dynamic understanding
of business performance. Figure 3 depicts the high-level algorithm of the SKPI model.
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By leveraging these exploratory FA techniques, this research aimed to provide a deeper
understanding of the relationships between KPIs and business performance, ultimately
informing data-driven decision-making and strategic planning. This study’s findings
have important implications for organizations seeking to optimize their performance
management systems, drive business growth, and maintain a competitive edge in today’s
fast-paced and data-driven business environment.

3.1. Data Sourcing and Sampling

Data sourcing and sampling is a pivotal process, as the validity of the model outcomes
depends on the dataset provided to the model. Illustrated in Figure 4, the process of data
sourcing and sampling commenced with the identification and review of journal articles
and reports from companies with published inventories of KPIs from respective ecosystems.
Subsequently, companies that produced real-world KPI data were identified and requested
to make data available where possible. These data were statistically analysed to select only
correlated data. Subsequently, a scientific method was applied to create more correlated
data that would be sufficient to develop the model.
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Data sampling involved determining and selecting only KPIs that were correlated with
other KPIs in the whole dataset. This was achieved by calculating correlation coefficients
of the KPIs through Equation (1). KPIs that had negative (<0) or positive (>0) correlations
with other KPIs were selected, while those KPIs with correlation values of zero (0) were not
selected, as they indicated that they were not correlated with other KPIs in the whole dataset.

c =
cov

(
kpii, kpij

)
σkpii σkpij

(1)

where c is the correlation coefficient, cov
(

kpii, kpij

)
is the covariance of ith and jth KPIs, σkpii

is the standard deviation of the ith KPI, and σkpij
is the standard deviation of the jth KPI.

Subsequent to successful data sampling, a scientific method was applied to create more
data (correlated random KPI values) from the correlated data sample through Equation (2).
Creating correlated random KPI values ensured that there are adequate data to build the model.

x(kpii) = random(≤ (kpi i),≥ (kpii), kpii, σ(kpii)) (2)

where x(kpii) is the expected random value for the ith KPI, ≤ (kpii) is the minimum value
of the ith KPI, ≥ (kpii) is the maximum value of the ith KPI, kpii is the value of the ith KPI
in the distribution, kpii is the mean of the ith KPI, and σ(kpii) is the standard deviation of
the ith KPI. The final KPI dataset needed to be validated for its statistical suitability and
adequacy to build the model, as discussed in the next section.

3.2. Machine Learning
3.2.1. Data Validation

Data sampling ensured that only KPIs that exhibited correlations with other KPIs in
the whole dataset were selected. The sampled data were used to create additional correlated
data for the KPIs, resulting in more data to build the model. However, not all KPIs were
guaranteed to be sufficiently correlated with other KPIs in the dataset to build the model.
Therefore, data validation was performed to ensure that there are enough correlations
between the KPIs and that the KPI dataset was suitable for the application of exploratory
FA techniques. Data validation was performed through Bartlett’s test of sphericity and the
KMO test of sampling adequacy techniques, as discussed in the following subsections.

Bartlett’s Test

Bartlett’s test of sphericity calculates a p-value to verify if the observed variables
correlate. If Bartlett’s test produces a p-value of 0, this means that the variables in the
dataset are correlated and statistically significant; else, the variables are not correlated and
are statistically insignificant [41]. In a study that psychometrically evaluated the disease-
related fear scale (D-RFS) in adults with epilepsy, Shamsalinia et al. [42] successfully
applied Bartlett’s test in order to corroborate correlations between data items of 50 epileptic
patients. Singh et al. [43] successfully applied Bartlett’s test to confirm correlations between
300 potential enablers of the effective implementation of environmental Lean Six Sigma
(LSS) in Macro, Small, and Medium Enterprises (MSMEs). For the purpose of this study,
Bartlett’s test was applied on the dataset to confirm correlations between KPIs, as illustrated
in Equation (3).

p = f (d f , t) (3)

where d f is the degrees of freedom that indicates the number of independent KPIs whose
values have the freedom to vary, t is the test statistic value that indicates if KPIs are
correlated, and p (p-value) is the indicator of whether the KPIs are significantly correlated.
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KMO Test

The KMO test is applied to verify the suitability of data for the application of exploratory
FA techniques by determining the adequacy of each of the observed variables for the complete
model. KMO calculates the variance ratio amongst all observed variables. KMO values range
between 0 and 1, and a KMO less than 0.60 is deemed unsatisfactory [42]. Balhara et al. [44]
successfully applied KMO to measure the sampling adequacy of students’ data in a study
that developed and validated a brief psychometric scale for gaming disorder and hazardous
gaming (GDHG). Rostami et al. [45] successfully applied KMO to test the adequacy of the
answers to a 22-item questionnaire from 220 pregnant women in a study that developed a
tool for predicting Hepatitis B virus (HBV) infection in pregnant women. For the purpose
of this research, the KMO test was applied to determine the adequacy of the KPI dataset to
produce SKPIs through exploratory FA techniques based on Equation (4).

kmo =
∑ j ̸=kr2

jk

∑ j ̸=kr2
jk + ∑ j ̸=ku2

jk
(4)

where r2
jk is the correlation matrix between KPIs (from kpij to kpik) that determines how

each KPI is correlated to other KPIs in the same dataset, u2
jk is the partial covariance matrix

that determines the correlation between two KPIs when other KPIs are not considered,
kmo is the value that determines the adequacy of the KPI dataset for the application of FA
techniques to produce SKPIs.

3.2.2. Decision Engines and Predictive Analytics
Properties of KPIs

Each KPI is embedded within a complex hierarchical framework, comprising multiple
interconnected layers. Specifically, each KPI is characterized by a set of attributes, including
enterprise function, business function, business process, process step, and resource. To
provide a meaningful business context and to facilitate informed decision-making, these
properties were systematically assigned to each KPI, as depicted in the hierarchical structure
in Figure 5, subsequent to a rigorous validation process.
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Assigning properties to KPIs enables the development of decision engines and pre-
dictive analytics, allowing performance to be managed from the perspectives of these
properties. Moreover, changes in one property can have a ripple effect, influencing other
properties, business performance, and KPI values. Identifying these interdependencies
enables the recognition of properties that underpin good and bad business performances,
ultimately informing optimization decision-making and actions.

Understanding the extent of interdependencies and the influence of these properties
on business performance enables predictive analytics. Specifically, the model can leverage
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this knowledge to predict future business performance by monitoring the behaviour and
status of KPI properties. By doing so, organizations can proactively identify areas of
improvement, optimize their operations, and drive business success.

3.3. Artifical Intelligence
3.3.1. Data Patterns and Correlations

To uncover underlying patterns and correlations within the KPI data, we employed ex-
ploratory analysis techniques. Specifically, we utilized exploratory FA methods, which involve
reducing the complexity of multiple correlated variables into a smaller set of unobserved
variables, known as factors. These factors are characterized by similar response patterns,
enabling the identification of underlying structures within the data [41]. In the context of this
study, the application of exploratory FA techniques facilitated the reduction of a large number
of KPIs into fewer, more manageable groups. The formation of these groups was determined
through the calculation of eigenvalues, as described in Equation (5).

av = λv
av − λv = 0
(a − λi)v = 0

(5)

where a is the matrix of KPIs, v is the vector of KPIs arranged in n rows and n columns,
λ is the value of each KPI, and i is the identity matrix with rows of [λ, 0] and [0, λ]. The
number of eigenvalues greater than one equals the number of groups of KPIs created by
the model. Subsequently, the groups of KPIs were created, and rotated factor loadings
were calculated to determine correlation coefficients (strengths) of the observed KPIs to the
respective groups based on Equation (6).

l =
[√

λ̂1 ê1

√
λ̂2 ê2 . . .

√
λ̂i êi

]
(6)

where l is the rotated factor loading, and λ̂i êi is the eigenvalue–eigenvector pairs. Rotated
factor loadings were further used to calculate the variance explained by each of the KPIs in
every group and the variance explained by each group in the entire dataset.

Creating groups of KPIs decreases data complexity by reducing a large number of
KPIs into fewer groups. KPIs in one group are linearly correlated and interdependent on
each other but not strongly correlated to and interdependent on KPIs in other groups. This
taxonomizing makes it easy to distinguish between KPIs that are significantly correlated
and those that are not. A change in one KPI can affect the rest of the KPIs in the same group.
This interdependency means that changes in one or more properties of a KPI can affect
properties of other KPIs in a group, thus affecting performance positively or negatively. KPI
groups enable the effective identification and management of KPIs that strive to achieve
common goals. Moreover, these groups can help reveal the common goals shared by the
correlated and interdependent KPIs.

3.3.2. Significance Levels of KPIs

Discovering the individual impact of each KPI on performance management is crucial.
This knowledge enables organizations to allocate attention and optimization resources
effectively, prioritizing the most critical KPIs and their associated properties. FA techniques
utilize communalities to quantify the proportion of variance in each observed variable that
is explained by underlying common factors [42]. In this study, we leveraged communalities
to assess the level of significance of each KPI on performance management. By applying
Equation (7), we calculated the variance in each KPI that is accounted for by common groups
of KPIs. This approach allowed us to evaluate the individual contribution of each KPI to
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performance management, providing valuable insights for informed decision-making and
optimization strategies.

h2
i = r2

i1 + r2
i2 + r2

i3 + . . . + r2
ij (7)

where h2
i is the communality of the ith KPI in all groups, and r2

ij is the proportional variance
of the ith KPI in the jth group.

Each KPI is associated, to a certain degree, with all groups of KPIs but cannot have
the same degree of association with more than one group. Therefore, it was pivotal to
calculate the degree to which each of the KPIs is associated with each group. This was
performed by calculating the variance explained by each KPI in the respective groups
based on Equation (8). One or more KPIs can dominate a group if they equally explain the
biggest variances. Determining the dominance (significance) level of each KPI in a group
enables the organization to prioritize or give urgent attention to the most significant KPIs
and related properties.

r2
ij =

(
lij
)2 × 100 (8)

where r2
ij is the proportional variance of the ith KPI in the jth group, and lij is the factor

loading of the ith KPI in the jth group. Each KPI is finally assigned to a group that retains
the most variance for that particular KPI, ensuring that a KPI is associated with only
one group.

The identified groups of KPIs collectively capture a significant portion of the total
variance within the entire dataset. This proportion represents the combined level of
significance or contribution that these groups of KPIs have on performance management.
Furthermore, each individual group of KPIs explains a distinct proportion of the total
variance in the dataset. This proportion indicates the degree of significance or contribution
that each group of KPIs has on performance management. Notably, the first group explains
the largest proportion of variance, while the last group explains the smallest proportion.
Consequently, the group of KPIs that explains the most variance has the greatest impact on
performance management, whereas the group explaining the least variance has relatively
less impact.

To determine the significance level of each group of KPIs on performance manage-
ment, we computed eigenvalues using rotated factor loadings. Specifically, we calcu-
lated the proportion of total variance explained by each group of KPIs, as illustrated in
Equation (9). This approach enabled us to quantify the relative importance of each KPI
group in influencing performance management.

λ̂j = (g1l1)
2 + (g1l2)

2 + . . . + (g1ln)
2 (9)

where λ̂j is the eigenvalue of the jth KPI group, gj is the jth KPI group, and ln is the nth
rotated factor loading.

3.3.3. SKPIs

The grouping of KPIs results in the creation of new, previously unknown SKPIs, where
each KPI within a group is treated as a variable. As illustrated in Figure 4 of Section 3.2.2,
the highest-level property of each variable (KPI) is the enterprise function. Therefore,
identifying the dominant enterprise function within each SKPI is crucial. To achieve this,
we measured the most dominant variable (i.e., the KPI with the highest variance or rotated
factor loading) within each SKPI and determined its associated enterprise function. The
enterprise function with the highest dominance becomes the owner of the SKPI, and the
SKPI is subsequently named after this dominant enterprise function. In cases where two or
more enterprise functions exhibit equal dominance, they share ownership of the SKPI. This
study utilized Equation (10) to formulate SKPIs and associate them with their respective
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dominant enterprise functions, providing a structured approach to SKPI creation and
ownership assignment.

skpiie f
= f

(
kpi1e f j

, kpi2e f j
, kpi3e f j

, . . . , kpine f j

)
(10)

where e f is the enterprise function, skpiie f
is the ith smart SKPI mapped to the most

dominating e f , and kpine f j
is the nth variable of the ith SKPI and is associated with the jth

e f . An evaluation is pivotal for demonstrating the model’s effectiveness to produce SKPIs
in order to optimize a business and to yield success and sustainability.

3.4. Prototype Evaluation

This study evaluated the effectiveness of a prototype through a case study. A prototype
was used as this can demonstrate the feasibility of a new idea or technology, especially
when dealing with innovative concepts or unexplored territories [46] Using a prototype, re-
searchers can test and validate their ideas or concepts before investing significant resources
in a full-scale development [47]. This approach was also chosen because it helps to identify
potential flaws or areas of improvement early in the process [48]. Hence, this segment
discusses the methods and techniques used to evaluate the effectiveness of the prototype.

3.5. Case Study

The prototype was evaluated through a case study and observations to provide a
practical and real-world context for evaluation. Case studies were selected because they
allow for a detailed examination of the prototype’s strengths and weaknesses, enabling
researchers to gather nuanced insights that may not be apparent in controlled environ-
ments [49]. In addition, case studies facilitate the exploration of intricate interactions that
prototypes may exhibit in complex systems, providing a holistic view of the prototype’s
performance in a dynamic environment. Overall, the use of case studies in a prototype eval-
uation allows for a realistic and comprehensive evaluation of the prototype’s performance
in practical scenarios that mimic actual usage conditions [46].

3.6. Summary

This study aims to revolutionize the definition of KPIs by integrating DDA into tradi-
tional methodologies. By leveraging DDA to analyse business data, underlying patterns,
correlations, and trends can be uncovered, ultimately enabling the creation of dynamic
SKPIs. This research employed a four-stage model development approach, encompassing
data sourcing, sampling, ML, and AI. The model’s efficacy was subsequently evaluated
through a real-world case study conducted within a highly integrated ecosystem, character-
ized by vertical, end-to-end, and horizontal integrations. This study utilized ML to validate
data integrity, develop decision engines, and create predictive analytics. AI was employed
to identify patterns and correlations, determine KPI significance, and generate SKPIs. Data
validation was ensured through Bartlett’s test of sphericity and the KMO test of sampling
adequacy. Decision engines and predictive analytics were developed using KPI properties,
while an exploratory analysis revealed data patterns through FA. The significance of each
KPI was measured, leading to the creation of SKPIs associated with dominant enterprise
functions. The model’s optimization potential was evaluated in a real-world business
setting, and the results obtained using this method are presented in the following section.
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4. Results
This section comprehensively discusses the evaluation of the model through a real-

world case study at a highly integrated ecosystem that encompasses vertical, end-to-end,
and horizontal integration layers of 4IR.

4.1. Data-Driven Automation: Case Study

The case study was performed at an open pit uranium mining company. The mine
has an integrated ecosystem with six systems, viz., Enterprise Resource Planning (ERP) for
managing business functions within a centralized and integrated system, Geology and Mine
Planning (GMP) for ensuring the feasibility of profitably extracting minerals from identified
resources, a Modular Management System (MMS) for managing mining production and a
fleet of equipment in the open pit, a Fuel Management System (FMS) for controlling the fuel
supply and consumption, a Tire Management System (TMS) for monitoring and managing
the utilization and lifecycle of tires and rims, and a Manufacturing Execution System (MES)
for production management in the processing plant where uranium is extracted from ore
and is processed into finished products. The participating systems in the vertical integration
were ERP, FMS, MMS, TMS, and MES. The end-to-end integration was made of ERP, GMP,
MMS, and MES. The horizontal integration consisted of ERP, FMS, MMS, TMS, GMP,
and MES.

4.2. Results of Data Sourcing and Sampling

The mine’s integrated ecosystem generates CFKPIs by aggregating datapoints from
various systems, enterprise functions, and organizational levels. The production of these
CFKPIs adheres to strict, predefined definitions, computations, and business rules es-
tablished by PDA methods. Our research used data-driven automation (DDA), which
leverages statistics, ML, and AI to augment traditional, rule-based methods for generating
CFKPIs, thereby creating more dynamic and intelligent performance indicators.

To initiate the DDA process, a sample of 100 CFKPIs was selected, focusing on data
generated in 2015 and associated with five key enterprise functions: Finance, Logistics,
Maintenance, Planning, and Production. This sampling effort yielded a comprehensive
dataset consisting of 300,000 datapoints (100 CFKPIs × 3000 observations each), as illus-
trated in Table 1. The selection of these CFKPIs was guided by the number of enterprise
functions, key performance areas, and available data sources within the mine.

To ensure the representativeness of the KPIs, the research design guaranteed cover-
age of all systems, key enterprise functions, and organizational levels within the mine.
The implementation of data-driven automation was facilitated through the Python pro-
gramming language, utilizing the Spyder Integrated Development Environment (IDE) and
Jupyter Notebook. The subsequent sections provide a detailed discussion of the data-driven
automation implementation.
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Table 1. CFKPIs elicited from the mine’s systems.

Component Changes Consumption vs. Budget Benchmark Failure Cost/Operating Hour Maintenance Ratio (Planned vs. Unplanned Maintenance)
Failure per position Cost per hour Failure cost/tonne Manual tag transactions (hours)
Failures Cost per ton Failure cost per operating hour Material per category (per period)
Pressure measurements Cost vs. budget Failure cost per tonne Mechanical vs. electronic recon
Tyre tread utilization Cost/value of inventory (fitted vs. unfitted) Failure type per position Medium-term plan (tonnes per period)
(Modular vs. FMS) Crusher feed (total) Fresh rock vs. cover Metres drilled
Acid (per period) Cycle times Fuel burn rates MTBF
Average downtime per failure type Depletion vs. plan Grade (per period) MTTR
Average fuel consumption per cycle or round trip Detailed failure report Grades Number of failures per position
Average payload Dilution per material category (per period) Holes drilled OEE
Average repair time per failure type Direct to crusher vs. stockpile/rehandling Holes probed Ore moved (per period)
Avg. tyre life (hours) Distance covered Holes sampled Ore tonnes moved
Blasted inventory Drill rates Idle fuel consumption Payloads below target payload
Blasted reserve available Drilled reserve Infill drilling metres Payloads over target payload
Bowser—receipts vs. issue Drilled reserve available Infill metres vs. budget Powder factor
Broken reserve Empty fuel consumption Items in suspense account Reserve model
Budget vs. actual tyres used ENGEN—receipts vs. issue Laden fuel consumption Rod life
Availability Failed vs. worn tyre scraps Litre/tonne.km Scheduled maintenance adherence
Consumption per hour Failed vs. worn tyre scraps (%) Litres per metre Short-term plan (tonnes per period)
Fuel consumption per ton Failure cost Maintenance availability Stock level (split by valuation class: new, repaired, or twinning)
Stock tank levels Tonnes per hour Total tonnes moved Waste tonnes moved
Survey tonnes vs. modular tonnes Tonnes per litre Total tyre cost Wear/tonne (mm/ton)—only for trucks
Threshold limits exceeded Top breakdown count per machine Total tyre cost (NAD/ton) Wear cost
TKPH Breakdown per machine Use of availability Wear per tonne
Tonnes per drill metre Total reserve (drill and broken) Waste (per period) Wear rate (operating hrs/mm)
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4.3. Results of Machine Learning

ML learning was applied in this study to achieve data validation, decision engines,
and predictive analytics to help management make the right decisions at the right time to
establish competitive advantage, success, and sustainability for this business.

4.3.1. Results of Data Validation

All the CFKPIs sampled in Section 4.2, as shown Table 1, were validated for correlation
and suitability for data-driven automation. The Bartlett’s test of sphericity was applied
on 300 000 datapoints (100 CFKPIs × 3000 observations each) based on Equation (3) of
Section 3.2.1. The results reveal that the dataset of CFKPIs encompassed enough correlations
and was statistically significant (t-value: −936,049.849; p-value: 0.000). Subsequently, the
KMO test of sampling adequacy was applied on 300 000 datapoints based on Equation (4)
of Section 3.2.1. This test yielded 0.999, indicating the marvellous adequacy of the CFKPI
dataset for data-driven automation. Table 2 illustrates the results of validating the CFKPI
dataset through Bartlett’s test of sphericity and the KMO test of sampling adequacy for the
year 2015.

Table 2. Results of data validation.

Bartlett’s Test of Sphericity t-Value (t) −936,049.849

Degrees of freedom (df ) 99

Significance (p-value) 0.000

Kaiser–Meyer–Olkin (KMO) measure of sampling adequacy 0.999

4.3.2. Results of Decision Engines and Predictive Analytics

CFKPIs were analysed comprehensively following the successful implementation
of data validation techniques. All five hierarchical levels of the properties introduced
in Section 3.2.2 were maintained by each CFKPI. Figure 6 illustrates the average fuel
consumption per cycle CFKPI incorporated into the five-level properties structure. The
average fuel consumption per cycle belongs to the Logistics enterprise function. The
Logistics enterprise function encompasses three business functions, viz., Inbound Logistics,
Internal Processes, and Outbound Logistics. These business functions encompass multiple
processes each. The Internal Processes business function and two fuel-related processes
are demonstrated. The Internal Processes business function encompasses, inter alia, such
processes as “Store Fuel” and “Measure Fuel Consumption per Cycle”. The first process
(Store Fuel) encompasses the “Dispense Fuel in the Tank” and “Record Dispensed Fuel”
process steps. The first process step uses three resources, viz., “Fuel Tank”, “Dispenser
Truck”, and “Dispenser Truck Driver”. The second process step uses two resources, viz.,
“Operator” and “Industrial Tablet”.

The second process (Measure Fuel Consumption per Cycle) encompasses three process
steps, viz., “Read and Record Fuel Consumption”, “Get and Record Cycle Counts”, and
“Compute Fuel Consumption per Cycle”. The first and second process steps use two
resources each, viz., “Operator” and “Industrial Tablet”. The third process step uses two
resources, viz., “Server” and “Application Software.”

This structure facilitated efficient troubleshooting through the 5 WHYs root cause
analysis technique adopted from [50]. A practical scenario is investigating a sudden
increase in fuel consumption at the mine, as illustrated in Figure 7.
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Discovering the root cause of a sudden increase in fuel consumption resulted in
informed optimization decision-making. A project to prevent the inaccurate recording of
fuel consumption was initiated by enhancing TMS to automatically read through sensors
and record fuel consumption. This enhancement eliminated human intervention and
unnecessary resources, sped up recording processes, and provided accurate recordings of
fuel consumption. An inaccurate recording of cycle counts was rectified by enhancing MMS
with a geographical positioning system that records the round trips of trucks in real-time.

The same 5 WHYs technique discussed above was applied to find the root cause of
exceptional performances (i.e., accurate reporting of fuel consumption) indicated by the
average fuel consumption per cycle CFKPI. The root cause of exceptional performance was
the automation of process steps. That is, automating the recording of fuel consumptions
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and cycle counts yielded positive results, and the mine consequently invented a strategy
for optimizing business through process automation.

Furthermore, discovering the extent to which CFKPI properties influence performance
enabled predictive analytics. The average fuel consumption per cycle was predicted by
observing the number of cycles made by ore-hauling trucks. Reducing the number of cycles
through proper planning (e.g., scheduling of trucks only when there is ore to be hauled
and the daily target has not been achieved) reduced the fuel consumption and resulted
in significant cost savings over time. The decision engines and predictive analytics were
subsequently employed by the mine for all the company KPIs.

There was a possibility that the data patterns for CFKPIs could experience sudden
changes or anomalies over time, which could potentially undermine the accuracy and
reliability of the model’s results. Therefore, we incorporated data visualization to enhance
anomaly detection capabilities. By leveraging visual representations of data, domain ex-
perts, including business analysts and subject matter experts, gained valuable insights into
the business context. This enabled them to provide informed guidance on what constitutes
normal behaviour, expected patterns, and typical trends within the data. Consequently, this
collaborative approach facilitated a more accurate identification of anomalies and supports
data-driven decision-making. Furthermore, we had options to address data anomalies, such
as data imputation, interpolation, or error deletion. However, we opted to preserve the raw
data to identify and fix underlying issues. This approach was supported by the application
of the 5 WHYs root cause analysis to investigate a sudden increase in fuel consumption
at the mine. This approach allowed stakeholders to examine the underlying causes of
the anomaly, enabling a deeper understanding of the CKPI in question and applying
relevant solutions.

The application of ML on CFKPIs enabled deeper insights into business performance.
This helped in determining the root causes for good and poor performances, resulting in
informed business decisions. Predictive analytics was achieved by observing the properties
of each CFKPI and by predicting the future performance outcomes based on the behaviours
of these properties.

4.4. Artificial Intelligence

This research adopted an inductive approach to apply an exploratory analysis through
FA techniques to complete DDA. The inductive research approach examines collected data,
looks for patterns and correlations, and develops theories that could explain patterns and
correlations in the data [51].

4.4.1. Results of Data Patterns and Correlations

Exploratory FA techniques were applied on 300,000 datapoints of CFKPIs to develop
an inductive research approach. These techniques discovered, through the calculation of
eigenvalues based on Equation (5) of Section 3.3.1, eleven groups of CFKPs that shared
significant common patterns and correlations. Significant common patterns and correlations
were determined by observing eigenvalues greater than one. The calculated eigenvalues
were (1) 52.895, (2) 1.5856, (3) 1.495, (4) 1.405, (5) 1.332, (6) 1.269, (7) 1.247, (8) 1.189,
(9) 1.153, (10) 1.109, and (11) 1.096. Therefore, eleven groups of CFKPIs were created using
the orthogonal rotation method (varimax) in order to produce a rotated factor loading for
each CFKPI. The rotated factor loadings were calculated using Equation (6) of Section 3.3.1.
CFKPIs in each group were significantly correlated and interdependent on each other.
The correlations and interdependencies of CFKPIs in the 1st group are illustrated by the
Interrelationship Diagram (ID) in Figure 8. An ID reveals cause-and-effect relationships
that are not easily recognizable [52].
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This ID reveals CFKPIs that were drivers (D) and the ones that were outputs (O). Inputs
from the driving CFKPIs are denoted by arrows labelled with a “D”, and outputs from
output CFKPIs are denoted by arrows labelled with an “O”. Each CFKPI can be influenced
directly or indirectly by one or more driving or output CFKPIs, and the same CFKPI can be
a direct or an indirect driver of other CFKPIs. For example, the truck speed (D) directly
drove (influenced) the average fuel consumption per cycle (O) and fuel consumption per
tonne hauled (O), thus indirectly driving fuel bowser receipts and issues (O). The average
fuel consumption per cycle (O) and fuel consumption per tonne hauled (O) were also direct
drivers of the amount of fuel received and issued by the bowser (O). That is, a decrease in
fuel consumption reduced the amount of fuel dispensed (issued) from the bowsers and
consequently decreased the amount of fuel to be replenished (received) in the bowsers.
The increase in fuel consumption resulted in more fuel dispensed from and replenished in
the bowsers.

The correlations and interdependencies of CFKPIs in the 1st group revealed by this ID
are further clarified by the Causal Loop Diagram (CLD) in Figure 9. A CLD reveals variables
that have direct influence on other variables, that is, variables that trigger occurrences of
other variables [53].

The success of the mine’s cost-saving business strategy was underpinned by, amongst
other factors, the ability of the Logistics enterprise function to plan accurately. The ability of
the Logistics enterprise function to plan accurately was underpinned by the relationships
and interdependencies of the CFKPIs in one or more groups. The drill rates determined the
time it took before a drill failed when in operation. The life of the drill rod was determined
by the time it took before the rod failed when in operation. The number of broken reserves
was determined by the drill rates. Broken reserves determined the available blasted
inventory. The blasted inventory resulted in the number of tonnes to be excavated, loaded,
and hauled. This resulted in the fuel consumption per tonne hauled. The amount of fuel
consumption per tonne hauled was also influenced by the speed of trucks during hauling.
The speed of trucks also influenced the rate at which tyres failed or got worn out and the
average fuel consumption per cycle. The failed and worn-out tyres had a direct impact on
the cost of the tyre failure. The fuel consumption per ton and blasted inventory enabled
a comparison between mining production (Modular) and fuel consumption (FMS). The
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fuel consumption per cycle and fuel consumption pet tonnes hauled enabled a comparison
between the bowser receipts and issues. The fuel consumption per tonne hauled directly
influenced the average fuel consumption per cycle. The bowser receipts vs. issues and tyre
failure costs directly influenced the mine’s operational costs. The mine’s operational costs
reflected the accuracy level (%) of logistical planning. Increasing the level of accuracy in
logistical planning became the common goal for the CFKPIs in the 1st group. Consequently,
the logistical planners used the CFKPIs and relevant constituents in the 1st group to
fine-tune planning. ID techniques were further employed to reveal the relationships and
interdependencies of CFKPIs in the 2nd group, as illustrated in Figure 10.
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The ware rate was the main driver in the 2nd group, as it directly drove the breakdowns
per truck, failure type per position, and average tyre life and indirectly drove the total tyre
cost and component changes. The relationships and interdependencies of the CFKPIs in
the 2nd group are clarified comprehensively by the CLD depicted in Figure 11.
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The 2nd group of CFKPIs contributed to the mine’s cost-saving strategy by revealing
whether the maintenance plan was adhered to in order to reduce the amount of unplanned
downtime, which increased operational costs. The wear rate caused tyre failures in various
positions of the trucks (i.e., right–front, left–front, right–rear, left–rear). The wear rate
determined the average tyre life, which in turn contributed to the total tyre cost. Tyre
failures caused breakdowns that required changes of components. Changes of components
affected the average tyre life and contributed to the tyre cost. The tyre cost directly affected
the mine’s operational costs. The operational costs revealed the level of maintenance
adherence achieved by the mine’s Maintenance enterprise function. Enhancing the level of
maintenance adherence became the common goal for the CFKPIs in the 2nd group. The
ID and CLD techniques were applied to all eleven groups to reveal the relationships and
interdependencies between CFKPIs that served common goals.

4.4.2. Significance Levels of CFKPIs to Performance Management

Communalities were calculated using Equation (7), introduced in Section 3.3.2, to
discover the significance level of each CFKPI on the performance management of the mine’s
operations. The top ten CFKPIs with highest communalities, illustrated in Figure 12, had
the most significant impact on the performance management of the mine’s operations.
Therefore, optimizing the properties of these CFKPIs guaranteed positive performance
results for the mine’s operations.

The average fuel consumption per cycle held a maximum of 0.774 of the total com-
munality. This means that the variation in the average fuel consumption per cycle could
have had a maximum of a 77.4% impact on the performance management of the mine’s
operations, followed by ore tonnes moved (0.730), tonnes per drill metre (0.723), scheduled
maintenance adherence (0.717), drill rates (0.714), failed vs. worn tyre scraps (0.712), cost
vs. budget (0.711), blasted reserve available (0.703), depletion vs. plan (0.701), and modular
vs. FMS (0.699).

Each CFKPI was associated, to a certain degree, with all groups of CFKPIs. The
proportional variance was calculated, using Equation (7), discussed in Section 3.3.2, to
discover the degree to which each CFKPI is associated with each group of CFKPIs. Each
CFKPI was assigned to a group that retained the most variance for that particular CFKPI,
ensuring that a CFKPI is associated with only one group. Moreover, a cut-off point of 0.4
for factor loadings was applied in order to keep only significant CFKPIs in the respective
groups. CFKPIs in the same group were considered to be highly correlated and influ-
ential to each other. This means that a change in one of the CFKPIs or its constituents
affected the rest of the members in the group. Therefore, managing CFKPIs as groups
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that strive to achieve respective common goals supplemented the ability to manage these
CFKPIs individually.
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The groups of CFKPIs collectively explained a proportion of the total variance in the
whole dataset. This variance proportion represented the collective level of significance or
contribution accounted for by these groups of CFKPIs on the performance management
of the mine’s operations. The analysis results reveal that the eleven groups of CFKPIs
collectively explained 61.637% of the variation in the whole dataset. This means that these
groups collectively accounted for 61.637% of the impact on the performance management
of the mine’s operations. Moreover, each group of CFKPIs explained a proportion of the
total variance in the CFKPI dataset. This proportion, calculated using Equation (9) of
Section 3.3.2, represented the significance or contribution degree accounted for by each
group of CFKPIs on the performance management of the mine’s operations. The 1st group
explained 8.084% of the variation. This means that the 1st group of CFKPIs accounted for
8.084% of the impact on the performance management of the operations of the mine. The
2nd group accounted for 7.086% of the impact, followed by the 3rd group (7.004/%), 4th
group (6.938%), 5th group (6.244%), 6th group (6.128%), 7th group (4.524/%), 8th group
(4.344%), 9th group (4.236%), 10th group (3.820%), and 11th group (3.230%). These groups
of CFKPIs formed a solid foundation for the SKPIs introduced in the next section. Table 3
summarizes the aforementioned individual and collective impact levels of the CFKPI
groups on the performance management of the mine’s operations. The extraction sums
of squared loadings represent eigenvalues greater than one that determine the number of
CFKPI groups to be created by the model. The rotated sums of squared loadings represent
rotated factor loadings that illustrate the variance explained by each group of CKPIs.

Table 3. Total variance for the year 2015.

CFKPI Group Extraction Sums of Squared Loadings Rotated Sums of Squared Loadings
Total % of Variance Cumulative% Total % of Variance Cumulative %

1 52.895 52.895 52.895 8.084 8.084 8.084
2 1.586 1.586 54.480 7.086 7.086 15.170
3 1.495 1.495 55.976 7.004 7.004 22.174
4 1.405 1.405 57.381 6.938 6.938 29.112
5 1.332 1.332 58.713 6.244 6.244 35.355
6 1.269 1.269 59.982 6.128 6.128 41.483
7 1.247 1.247 61.229 4.524 4.524 46.007
8 1.189 1.189 62.417 4.344 4.344 50.351
9 1.153 1.153 63.571 4.236 4.236 54.586

10 1.109 1.109 64.679 3.820 3.820 58.407
11 1.096 1.096 65.776 3.230 3.230 61.637
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4.4.3. Smart KPIs

Each group of CFKPIs became an SKPI that was previously unknown, and CFKPIs in a
group were treated as variables. Using Equation (10) of Section 3.3.3, the most dominating
variables of each SKPI were measured, and the enterprise functions associated with the
dominating variables (variables with the most variances or factor loadings) became the
proprietors of the SKPI. An SKPI belonged to a single enterprise function if the dominating
variables were from the same enterprise function or to more enterprise functions if more
than one associated variable from different enterprise functions equivalently dominated
that particular SKPI. Figure 12 depicts the SKPIs with associated variables, factor loadings,
and enterprise functions.

The grouping of CFKPIs resulted in the creation of previously unknown SKPIs, with
CFKPIs within each group being treated as variables. Utilizing Equation (10) of Section 3.3.3,
we identified the most dominant variables within each SKPI and determined the associated
enterprise functions. Specifically, the enterprise functions corresponding to the dominant
variables (i.e., those with the highest variance or factor loadings) became the owners of the
respective SKPIs.

An SKPI was assigned to a single enterprise function if the dominant variables orig-
inated from the same function. Conversely, an SKPI could be associated with multiple
enterprise functions if multiple dominant variables from different functions exhibited
equivalent influence on that particular SKPI. Figure 13 provides a visual representation of
the SKPIs, including their associated variables, factor loadings, and enterprise functions.
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The analysis revealed the dominant enterprise functions associated with each SKPI.
Specifically, the SKPIs were dominated by variables from the following enterprise functions:
SKPI 1 (Logistics); SKPI 2 (Maintenance and Finance); SKPI 3 (Finance and Planning); SKPI
4 (Finance); SKPI 5 (Logistics and Finance); SKPI 6 (Production); SKPI 7 (Logistics, Finance,
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and Maintenance); SKPI 8 (Maintenance); SKPI 9 (Production and Maintenance); SKPI 10
(Planning); and SKPI 11 (Logistics and Maintenance). Figure 14 illustrates the new SKPIs in
order of dominance for the year 2015.
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The mapping of SKPIs to their corresponding enterprise functions provided valuable
insights into the correlations between SKPIs, variables, and enterprise functions. The
dominant enterprise functions represented shared objectives that the variables within each
SKPI strived to achieve. This is substantiated by the ID and CLD presented in Section 4.4.1.
For instance, the most influential variables in the 1st SKPI originated from the Logistics
enterprise function, as illustrated in Figure 11. The overarching goal of these variables was
to optimize logistical planning accuracy, as depicted in Figure 8 of Section 4.4.1. Similarly,
the 2nd SKPI’s dominant variables belonged to the Maintenance and Finance enterprise
functions, as shown in Figure 11. The common objective of these variables was to optimize
maintenance adherence, thereby reducing unplanned and costly downtime, as illustrated
in Figure 10 of Section 4.4.1. This analysis revealed precise correlations between dominant
enterprise functions and the shared goals of variables within respective SKPIs.

Each SKPI comprised variables from multiple enterprise functions, each encompass-
ing various business functions. These business functions, in turn, consisted of multiple
processes across different organizational levels. Each process comprised several process
steps, which utilize various resources. This hierarchical structure enabled the mine to
pinpoint specific business functions, processes, process steps, and resources that required
optimization to achieve the shared objectives of the variables within a particular SKPI.

By identifying the enterprise functions that encompassed the most dominant vari-
ables within SKPIs, the mine could focus its attention on the relevant business functions,
processes, process steps, and resources. Furthermore, the SKPIs provided clarity on the
intricate relationships between business functions, processes, process steps, resources, and
their corresponding enterprise functions, thereby facilitating a more targeted approach to
optimization and improvement.

4.5. Evolutions of SKPIs

The DDA model identified the primary drivers of the business by applying ML and
AI techniques to the CFKPI dataset for the year 2015, as discussed in previous sections.
When the same techniques were applied to the CFKPI datasets for 2016 and 2017, distinct
business drivers emerged for each year. To ensure consistency, the same CFKPI names and
quantities used in the 2015 dataset were applied to the 2016 and 2017 datasets. The only
variation between the three datasets was the actual data values produced by these CFKPIs
for each year. This approach guarantees that the model is driven solely by data generated
by the mine’s systems, rather than changes in the CFKPI names, count, or other factors.
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Table 4 provides a summary of the key properties for each dataset, including the number of
datapoints, t, df, p-value, KMO, total variance explained, top ten significant CFKPIs, and
the resulting number of SKPIs.

Table 4. Dataset summary for the year 2015 to 2017.

Property Year 2015 Year 2016 Year 2017

Datapoints 300,000 300,000 300,000
t-value (t) −936,049.849 −976,670.406 −995,367.617
Degrees of freedom (df ) 99 99 99
p-value 0.000 0.000 0.000
KMO 0.999 0.999 0.999
Total variance explained 0.616 0.696 0.677
Number of new SKPIs (factors) 11 11 11

Top 10 CFKPIs with highest
business impact
(communalities)

Average fuel consumption per
cycle (0.774)
Ore tonnes moved (0.730)
Tonnes per drill metre (0.723)
Scheduled maintenance
adherence (0.717)
Drill rates (0.714)
Failed vs. worn tyre scraps
(0.712)
Cost vs. budget (0.711)
Blasted reserve available
(0.703)
Depletion vs. plan (0.701)
Modular vs. FMS (0.699)

Ore tonnes moved (0.872)
Drill rates (0.844)
Average fuel consumption per
cycle (0.826)
Tonnes per drill metre (0.819)
Scheduled maintenance
adherence (0.813)
Cost vs. budget (0.791)
Depletion vs. plan (0.771)
Modular vs. FMS (0.759)
Blasted reserve available (0.741)
Failed vs. worn tyre scraps
(0.739)

Tonnes per drill metre (0.795)
Ore tonnes moved (0.751)
Blasted reserve available
(0.737)
Scheduled maintenance
adherence (0.728)
Drill rates (0.718)
Average fuel consumption per
cycle (0.709)
Failed vs. worn tyre scraps
(0.705)
Cost vs. budget (0.701)
Modular vs. FMS (0.659)
Depletion vs. plan (0.601)

Table 5 presents a summary of the SKPIs generated by the model for each year from
2015 to 2017. Figure 15 provides a comparison of the changes in business drivers between
2015 and 2017, illustrating how the business evolved and data shifted over time.

Table 5. Evolution of SKPIs from the year 2015 to 2017.

Year 2015 Year 2016 Year 2017

SKPI Variance
Explained SKPI Variance

Explained SKPI Variance
Explained

Logistics_SKPI_1 8.084% Finance_SKPI_1 9.084% Production_SKPI_1 10.041%
Maintenance_Finance_SKPI_2 7.086% Finance_Logistics_SKPI_2 8.086% Production_Planning_SKPI_2 9.630%
Finance_Planning_SKPI_3 7.004% Logistics_SKPI_3 7.938% Finance_Logistics_SKPI_3 8.051%
Finance_SKPI_4 6.938% Planning_SKPI_4 7.244% Finance_SKPI_4 8.014%
Logistics_Finance_SKPI_5 6.244% Production_SKPI_5 7.004% Maintenance_SKPI_5 7.092%
Production_SKPI_6 6.128% Production_Planning_SKPI_6 6.524% Logistics Maintenance_SKPI_6 6.064%
Logistics_Finance_Maintenance_
SKPI_7 4.524% Finance Planning_SKPI_7 6.128% Finance_Planning_SKPI_7 5.524%

Maintenance_SKPI_8 4.344% Maintenance_SKPI_8 5.344% Logistics_SKPI_8 4.072%
Production_Maintenance_SKPI_9 4.236% Maintenance_Planning_SKPI_9 4.820% Logistics_Planning_SKPI_9 3.741%
Planning_SKPI_10 3.820% Logistics_Maintenance_SKPI_10 4.236% Planning_SKPI_10 2.946%

Logistics_Maintenance_SKPI_11 3.230% Logistics_Planning_SKPI_11 3.230% Logistics_Finance_Maintenance_
SKPI_11 2.537%

The DDA model reveals distinct business drivers for each year, from 2015 to 2017,
by identifying the most significant CFKPIs and by generating new SKPIs as the business
evolves and data change. The evolution of SKPIs over the three-year period provides
valuable insights into the shifting priorities of the mine’s operations. In 2015, during the
start-up phase, logistical variables related to organizing and planning played a dominant
role, with financial and integrated planning variables providing supporting functions. In
2016, as the mine expanded its operations and acquired more resources, financial manage-
ment variables took centre stage, steering the business towards its objectives. Production,
maintenance, and integrated planning variables played auxiliary roles during this period.
By 2017, as processes matured and resources were utilized to near full capacity, production
variables became the primary focus, driving efforts to achieve efficiency, reduced cycle
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times, customer satisfaction, and other key objectives. Financial management and inte-
grated planning variables continued to provide essential support to production variables
during this period.

Appl. Syst. Innov. 2025, 8, x FOR PEER REVIEW 27 of 32 
 

 

Failed vs. worn tyre scraps
(0.712) 
Cost vs. budget (0.711) 
Blasted reserve available  
(0.703) 
Depletion vs. plan (0.701) 
Modular vs. FMS (0.699) 

Depletion vs. plan (0.771)  
Modular vs. FMS (0.759) 
Blasted reserve available
(0.741) 
Failed vs. worn tyre scraps
(0.739) 

Average fuel consumption 
per cycle (0.709) 
Failed vs. worn tyre scraps 
(0.705) 
Cost vs. budget (0.701) 
Modular vs. FMS (0.659) 
Depletion vs. plan (0.601)  

Table 5 presents a summary of the SKPIs generated by the model for each year from 
2015 to 2017. Figure 15 provides a comparison of the changes in business drivers between 
2015 and 2017, illustrating how the business evolved and data shifted over time. 

Table 5. Evolution of SKPIs from the year 2015 to 2017. 

Year 2015 Year 2016 Year 2017 

SKPI 

V
ar

ia
nc

e 
Ex

pl
ai

ne
d 

SKPI 

V
ar

ia
nc

e 
Ex

pl
ai

ne
d 

SKPI 

V
ar

ia
nc

e 
Ex

pl
ai

ne
d 

Logistics_SKPI_1 8.084% Finance_SKPI_1 9.084% Production_SKPI_1 10.041% 
Maintenance_Finance_SKPI_
2 

7.086% Finance_Logistics_S
KPI_2 

8.086% Production_Planning_SKPI_2 9.630% 

Finance_Planning_SKPI_3 7.004% Logistics_SKPI_3 7.938% Finance_Logistics_SKPI_3 8.051% 
Finance_SKPI_4 6.938% Planning_SKPI_4 7.244% Finance_SKPI_4 8.014% 
Logistics_Finance_SKPI_5 6.244% Production_SKPI_5 7.004% Maintenance_SKPI_5 7.092% 

Production_SKPI_6 6.128% Production_Plannin
g_SKPI_6 

6.524% Logistics Maintenance_SKPI_6 6.064% 

Logistics_Finance_Maintenan
ce_SKPI_7 

4.524% Finance 
Planning_SKPI_7 

6.128% Finance_Planning_SKPI_7 5.524% 

Maintenance_SKPI_8 4.344% 
Maintenance_SKPI_
8 5.344% Logistics_SKPI_8 4.072% 

Production_Maintenance_SK
PI_9 4.236% 

Maintenance_Planni
ng_SKPI_9 4.820% Logistics_Planning_SKPI_9 3.741% 

Planning_SKPI_10 3.820% Logistics_Maintena
nce_SKPI_10 

4.236% Planning_SKPI_10 2.946% 

Logistics_Maintenance_SKPI
_11 3.230% Logistics_Planning_

SKPI_11 3.230% Logistics_Finance_Maintenanc
e_SKPI_11 2.537% 

 

Figure 15. Evolution of SKPIs from the year 2015 to 2017. Figure 15. Evolution of SKPIs from the year 2015 to 2017.

5. Discussion
The DDA model complements rigid, traditional CFKPIs by validating data for correla-

tions and adequacy; creating decision engines; enabling predictive analytics; discovering
hidden data relationships, trends, and patterns; prioritizing CFKPIs; and consequently,
creating SKPIs.

Discovering the properties of the CFKPIs enabled efficient troubleshooting through
the adoption of the 5 WHYs root cause analysis technique. The root causes for perfor-
mance predicaments were able to be traced from enterprise functions to business functions,
processes, process steps, and resources. This enabled the mine to locate and optimize
the components of the CFKPIs that caused underperformance. The mine was also able
to determine the components of the CFKPIs that underpinned good performances and
to pinpoint those components that required optimization. The properties were also used
for predictive analytics by monitoring the performance of the CFKPIs’ components and
subsequently predicting the future outcome. This allowed the mine to act swiftly and
optimize or replace the problematic components to avoid underperformance.

Creating fewer groups of CFKPIs reduced data complexity by revealing which CFKPIs
were correlated and the nature of their correlations. The application of the ID and CLD tech-
niques provided clarity on how the CFKPIs affected each other and how their correlations
and interdependencies contributed to the performance of the business strategy.

Determining the significance level of each CFKPI to performance management helped
the mine prioritize and pay appropriate attention to the right areas of the business. The
conversion of CFKPI groups into SKPIs enabled each group to be treated and managed as a
smart KPI that uses its variables and properties to manage performance. The association of
enterprise functions to SKPIs provided deeper insights into the correlation between the
dominant enterprise functions and respective variables. This ensured that the dominant
enterprise functions shared common goals with the collaborating variables of SKPIs. The
evolutionary nature of SKPIs enables the model to produce new SKPIs as business evolves
and data change. This evolution of SKPI dynamically reveals the most influential variables
and key business drivers. This would allow the business to align decisions to the actual, as
opposed to supposed, business needs.

The performance of the model does not rely on human influence to discover the most
influential variables and key drivers of the business; the model is purely data-centric. The
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elimination of human influence jettisons the dependency on individuals’ experience and
preferences in defining, prioritizing, and managing KPIs, which is the main purpose of this
study. The creation of SKPIs prompts for a closer look at the main influencers of business
performance. This study observed that logistic activities were pivotal during the start-up
of the business. Financial management activities played a big role as more resources were
acquired and utilized by the mine. Lastly, production operations contributed significantly
to realizing efficiency, reduced cycle times, and enhanced customer satisfaction when
operations had matured and resources were utilized effectively.

6. Conclusions
KPIs play a vital role in managing business performance. To be effective, KPIs must

align with the overall business strategy. Traditional methods for defining, prioritizing, and
managing KPIs rely heavily on process-driven automation, strict rules, and predefined
configurations. This study introduces a novel data-driven model that harnesses ML and AI
to define, prioritize, and manage KPIs based on business activities and internal and external
influences. This approach creates intelligent, self-regulating KPIs that ensure businesses
are measured and managed optimally.

Future research is necessary to test the effectiveness of this data-driven model across
various business sectors, including Manufacturing, Agriculture, Banking, Finance, Healthcare,
and more. This will help determine whether the model can be successfully applied beyond
the mining sector, making it a versatile tool for businesses across different industries.

6.1. Research Implications

This study has significant implications for the field of business optimization. By
introducing a new approach to KPIs that leverages data-driven automation techniques, this
study presents a dynamic and adaptive model for creating smart KPIs that can adjust to
changing business conditions. This model has the potential to enhance the resilience and
responsiveness of business strategies, ensuring competitiveness and sustainability in an
ever-evolving business landscape.

6.2. Practitioner Implications

This study discusses the advantages of the data-driven automation model over tradi-
tional methods of defining KPIs. This study shows how the model can complement the
rigid and passive KPIs with flexible and intelligent SKPIs that can adjust dynamically to
changes and can proactively manage performance. This study also shows how the model
can provide deeper insights into the data patterns, correlations, and significance levels of
the KPIs and how the model can reveal the main influencers and drivers of a business. This
study concludes that the data-driven automation model can enhance the field of business
optimization by introducing a new approach to KPIs that can help organizations achieve
their goals and stay ahead of the competition. This study also suggests future research
directions to test the model in various business sectors.
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