
Academic Editor: Christos Douligeris

Received: 19 November 2024

Revised: 30 December 2024

Accepted: 15 January 2025

Published: 20 January 2025

Citation: Garanina, N.; Anureev, I.;

Kondratyev, D. Polynomial Exact

Schedulability and Infeasibility Test

for Fixed-Priority Scheduling on

Multiprocessor Platforms. Appl. Syst.

Innov. 2025, 8, 15. https://doi.org/

10.3390/asi8010015

Copyright: © 2025 by the authors.

Published by MDPI on behalf of the

International Institute of Knowledge

Innovation and Invention. Licensee

MDPI, Basel, Switzerland. This article

is an open access article distributed

under the terms and conditions of the

Creative Commons Attribution (CC

BY) license (https://creativecommons.

org/licenses/by/4.0/).

Article

Polynomial Exact Schedulability and Infeasibility Test for
Fixed-Priority Scheduling on Multiprocessor Platforms
Natalia Garanina *,† , Igor Anureev † and Dmitry Kondratyev †

The Artificial Intelligence Research Center, Novosibirsk State University, 630090 Novosibirsk, Russia;
i.anureev@g.nsu.ru (I.A.); d.kondratev2@g.nsu.ru (D.K.)
* Correspondence: n.garanina@g.nsu.ru
† These authors contributed equally to this work.

Abstract: In this paper, we develop an exact schedulability test and sufficient infeasibility
test for fixed-priority scheduling on multiprocessor platforms. We base our tests on pre-
senting real-time systems as a Kripke model for dynamic real-time systems with sporadic
non-preemptible tasks running on a multiprocessor platform and an online scheduler
using global fixed priorities. This model includes states and transitions between these
states, allows us to formally justify a polynomial-time algorithm for an exact schedula-
bility test using the idea of backward reachability. Using this algorithm, we perform the
exact schedulability test for the above real-time systems, in which there is one more task
than the processors. The main advantage of this algorithm is its polynomial complexity,
while, in general, the problem of the exact schedulability testing of real-time systems on
multiprocessor platforms is NP-hard. The infeasibility test uses the same algorithm for
an arbitrary task-to-processor ratio, providing a sufficient infeasibility condition: if the
real-time system under test is not schedulable in some cases, the algorithm detects this. We
conduct an experimental study of our algorithms on the datasets generated with different
utilization values and compare them to several state-of-the-art schedulability tests. The
experiments show that the performance of our algorithm exceeds the performance of its
analogues while its accuracy is similar.

Keywords: real-time systems; exact schedulability test; sufficient infeasibility test; fixed
priority; non-preemptive tasks; Kripke model

1. Introduction
For safety critical real-time systems, the problem of determining whether tasks are

completed on time is crucially important. In real-time systems theory, such a problem is
called the schedulability test. The opposite test for failure to meet a deadline in a system
is the infeasibility test. In particular, these concepts are closely related to a response-time
analysis which the paper [1] proposes for the AUTOSAR (AUTomotive Open System
ARchitecture), an open automotive software standard with a multi-core OS architecture
specification. The authors analyze AUTOSAR inter-core task synchronization in the context
of non-preemptive fixed-priority multi-core scheduling. The schedulability analysis of
Google’s multi-Tensor Processing Unit (TPU) edge AI accelerators is another important
case for sporadic non-preemptive fixed-priority rigid gang scheduling [2].

For real-time systems with tasks running on a single processor or strictly assigned to
one of the processors of a multiprocessor platform, algorithms for the schedulability test are
well developed and studied [3]. However, for real-time systems running on multiprocessor

Appl. Syst. Innov. 2025, 8, 15 https://doi.org/10.3390/asi8010015

https://doi.org/10.3390/asi8010015
https://doi.org/10.3390/asi8010015
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/asi
https://www.mdpi.com
https://orcid.org/0000-0001-9734-3808
https://orcid.org/0000-0001-9574-128X
https://orcid.org/0000-0002-9387-6735
https://doi.org/10.3390/asi8010015
https://www.mdpi.com/article/10.3390/asi8010015?type=check_update&version=1

Appl. Syst. Innov. 2025, 8, 15 2 of 21

platforms with an arbitrary allocation of tasks among processors, this problem is NP-
hard for most schedulers [4]. At the same time, there are polynomial algorithms for the
narrow classes of systems [3]. Therefore, various algorithms [5–8] are developed to test the
sufficient conditions for the schedulability of systems, which evaluate real-time systems
pessimistically: if the conditions are met, the system is considered to have passed the test,
otherwise, its schedulability cannot be estimated. In [9], it is shown that often, with such
an approach, a significant number of schedulable systems, up to 50%, can be rejected as
probably non-schedulable. Similar results are shown by experiments in which sufficient
tests are compared with each other [6–8]. Therefore, the development and improvement of
exact methods remains a relevant task for various types of systems with different scheduling
methods [9–14].

In addition to the development of specialized methods for exact schedulability testing,
there are a number of works that use general formal methods from programs and systems
analysis [15]. General formal methods can provide models, algorithms, and capabilities
for the exact solution of the main problem of real-time system schedulability, which are
not presented in specialized approaches. For example, Refs. [16,17] study a fixed-priority
scheduler representation for a multiprocessor system and systems of non-preemptive
self-suspending tasks using timed automata. The paper [18] models a special case of the
system in the Promela language [19] of the SPIN verifier [20], and the paper [21] presents
a Promela model for a single-processor system. In [22], the authors use graph games to
simplify the reachability problem in the exact schedulability test. In a recent paper [14],
we used the Kripke model to formalize a real-time system with an abstract scheduler. We
implement this abstract formalization for the global fixed priority and the earliest-deadline
priority schedulers, as well as preemptive and non-preemptive tasks, in Promela [23]. Our
experiments with the model checker SPIN and Promela models for these real-time systems
show that the exact schedulability test is only reliably completed for five processors and
six tasks. As we increase the number of processors and tasks, the SPIN test begins ti take too
long. This expected result motivates us to develop a more practical approach, as described
in this paper.

In this paper, we study the problem of an exact schedulability test for systems in
which sporadic tasks have a global fixed priority (GFP) and are not preemptive (NP). Such
systems are known to be particularly sensitive to task parameters such as their execution
time and relative deadline. At the same time, the class of real-time systems in which
sporadic tasks should not be preempted and have a strictly defined priority—NP-GFP
systems—is quite wide. In such systems, task preemption can be expensive due to the
complexity or impossibility of restoring the context of interrupted jobs or computations.
This class includes, for example, systems for distributing resources (memory, physical space
in a warehouse) among occasionally arriving consumers (computing processes, cargo),
message transmission systems with different message importance and/or urgency, big
data processing systems, the trajectory and velocity planning of emergency rescue vehicles
for collision avoidance [24], critical exception processing tasks in avionics and spacecraft
industry control systems, etc. There are several works on schedulability tests for variants
of such systems [1,2,6–8,17,25–28]. We discuss them in Section 5.

We propose an approach to the schedulability test problem that uses a formal represen-
tation of real-time systems as Kripke models, which are widely used in program and system
verification [29]. This representation allows us to formulate the schedulability test problem
as a reachability problem: any task of a real-time system may miss its deadline if the “bad
state” corresponding to this situation is reachable in the corresponding Kripke model of
the system. Using the inverse transition relation of the Kripke model for real-time systems
in which there is one less processor than there are tasks, we distinguish 14 possible cases to

Appl. Syst. Innov. 2025, 8, 15 3 of 21

analyse the backward reachability from the bad state. Five of these cases are unreachable
from the initial state, which means that the system is schedulable. The remaining cases
show that the missed deadline state is reachable, so in these cases, the system fails the
schedulability test. Each of these cases can be described in terms of comparisons of task
parameters, namely their execution times and deadlines. We integrate these comparisons
into two first-order logical inequality predicates that take into account all the tasks in the
system. The truth of these predicates corresponds to a negative verdict of the schedulability
test for the real-time system under test. Thus, an algorithm that checks the truth of these
predicates for the tasks of the system performs an exact schedulability test. The time
complexity of this exact test is quadratic in the number of tasks. Since these predicates
correspond to the exact non-schedulability of real-time systems with one less processor
than there are tasks, we show that they can be used for an algorithm that partially solves the
non-schedulability problem for systems with an arbitrary ratio of processors to tasks. This
algorithm, which tests the sufficient condition for non-schedulability, also has quadratic
time complexity. In addition, we propose an algorithm for partitioning the system into
clusters of k tasks and k− 1 processes, while simultaneously applying our schedulability
test. Comparative experiments show that our schedulability and non-schedulability tests
have a significant advantage in execution speed even compared to sufficient tests, and the
non-schedulability testing algorithm is almost as accurate as the state-of-the-art algorithm
from [28].

The rest of the paper is organized as follows. In Section 2, we recall the basic definitions
of real-time systems and scheduling and formalize real-time systems with non-preemptive
tasks and a global fixed priority scheduler as Kripke models. Section 3 presents the
main results of our work: an analysis of the backward reachability from bad states and
algorithms for schedulability and infeasibility tests that exploit this analysis. We describe
our experiments in Section 4, providing details of the implementation. In Section 5, we
discuss related work and our results. Our conclusion is given in Section 6.

2. A Real-Time Kripke Model for a Real-Time System with a Dynamic
NP-GFP Scheduler

We consider that a real-time system is a set of tasks T = (T1, ..., Tn), where each task
Ti = (Ci, Di, Pi) has an execution time Ci, a relative deadline Di, and a minimum period Pi. Each
task Ti ∈ T can generate a potentially infinite number of jobs, each of which requires Ci

units of time. These jobs must be completed before Di time units after the release time.
Release time instants are separated by at least Pi time units. If there are no other restrictions
on the jobs’ releases, these tasks are referred to as sporadic tasks. In this paper, we study the
base case of real-time systems in which all task parameters are integers and Ci < Di ≤ Pi.
All jobs are executed on m processors. If the number of processors is less then the number
of tasks (m < n), we need a scheduler to decide which job to run next. We assume that
scheduling decisions are taken at discrete time instants, starting from 0. The schedulability
test problem is used to detect whether each job of each task in a real-time system is completed
before its deadline. We say that a real-time system is safe (schedulable) if the schedulability
test gives a positive verdict for it. If the schedulability test gives a negative verdict for a
real-time system, then this system is unsafe (infeasible). In the rest of the paper, we fix the
real-time system T described above.

The scheduler must specify the conditions under which jobs are allowed to run on
available processors. There are many types of schedulers that use different conditions and
combinations of them. Some of the conditions are listed below.

Appl. Syst. Innov. 2025, 8, 15 4 of 21

• Global Fixed Priority (GFP). The set of tasks is ordered: T1 has the highest priority, Tn

has the lowest priority, and a job of a task with a lower number takes precedence over
a job of a task with a higher number.

• Early Deadline-First (EDF). The job with an earlier deadline has a higher priority.
This priority is dynamic, because tasks (and their jobs) can have different priorities at
different points in time.

• Non-preemption. No job can be preempted by another job.
• Preemption. A job may be interrupted by another job with a higher priority.
• Dynamic scheduling. In a multiprocessor system, the jobs of each task can be executed

on different processors (including the part of the job remaining after preemption).
• Static scheduling. In a multiprocessor system, all the jobs of each task are executed on

one predetermined processor.

In our work, we focus on a dynamic scheduler with global fixed priority for non-preemptive
jobs (NP-GFP).

Kripke models are used, in particular, in formal methods for model checking programs
and systems [29]. In this paper, we apply them to formalize the schedulability test problem
as a problem of the (un)reachability of missed deadline states. Recall the definition of a
Kripke model. Let a set of atomic propositions Prop be given. A Kripke model is a tuple
M = (S, S0, R, L), where

• S is a finite set of states of S;
• S0 ⊆ S is a set of initial states;
• R ⊆ S× S is a total transition relation between states;
• L : Prop −→ 2S is an evaluation function that connects the states of the model and the

truth of atomic propositions.

Inspired by paper [4], we introduce the current values of the tasks’ parameters as
follows. For every task i ∈ T, let tuple si = (i, C′i , D′i , P′i , reli, badi) be a state of task i, where

• C′i ≤ Ci is the time remaining until the job of this task is completed;
• D′i ≤ Di is the time until the deadline for completing a job of this task;
• P′i ≤ Pi is the time until the next permissible release of a job of the task;
• reli ∈ B is a Boolean variable that indicates a job release: it becomes true when task i

releases a job, and it becomes f alse when the job is completed.
• badi ∈ B is a Boolean variable that indicates that a job is about to miss its deadline: it

is f alse if C′i ≤ D′i , and it becomes true otherwise.

For brevity, we refer to the Boolean constants true and f alse as 1 and 0, respectively.
For representing the processors’ load, we introduce variable busy: a number of jobs that
are currently being executed (busy ≤ m). Every global state s of our model is composed
of tasks’ states and the state for the processors’ load. For global state s, let s.C′i , s.D′i , s.P′i ,
s.reli, s.badi, and s.busy be projections of s on its components for every i ∈ [1..n].

In our Kripke model, for the dynamic non-preemptive GFP-scheduler, we use a
predicate go(i, s, t) that is true if task i starts to execute the job at the s-successor state t,
and f alse otherwise: go(i, s, t) ≡ (|Maji|+ s.busy < m) ∨ s.C′i < Ci, where Maji = {j ∈
[1..n] | j < i ∧ t.relj ∧ t.C′j = t.Cj} is the set of released jobs with higher GFP priority that
have not yet started execution. Note that when s.C′i < Ci, the job of task i is executed and
since in this case go(i, s, t) = true, it continues to execute, i.e., it is not preempted.

To estimate the change in the processor load busy, we need to compute the amount of
change cl(s, t). This number takes into account the number of tasks whose jobs have just
been approved for execution by the scheduler and the number of tasks whose jobs have just
completed. To compute cl(s, t), we introduce predicate f in(i, s) for just completed jobs that
is true if task i completes its job in state s, and f alse otherwise: f in(i, s) ≡ s.C′i = 0∧ s.reli.

Appl. Syst. Innov. 2025, 8, 15 5 of 21

We treat go(i, s, t) and f in(i, s) as integer numbers (1 for true and 0 for f alse), so cl(s, t) =
∑n

i=1(go(i, s, t)− f in(i, s)).
Let Prop be a set of propositions consisting of arithmetic comparisons of current values

of tasks’ parameters and propositions about a number of running jobs.
We define the real-time system T with a dynamic non-preemptive GFP-scheduler as

the real-time Kripke model MT = (ST , sT
0 , RT , LT), where

• The finite set of states ST = ∏n
i=1({i} × [0..Ci]× [0..Di]× [0..Pi]×B×B)× [0..m]

for global state s ∈ ST , si = (i, C′i , D′i , P′i , reli, badi) is a projection of s on task i;
• The initial state sT

0 = ∏n
i=1{(i, Ci, Di, Pi, 0, 0)} × {0} represents the one-element set of

initial states;
• The total transition relation RT ∈ ST × ST is defined by composing relations for i-task

projections of global states s and t as follows.
(s, t) ∈ RT if t.busy = s.busy + cl(s, t) and one of the following points holds:

1. si = (i, Ci, Di, Pi, 0, 0), and

(a) ti = (i, Ci, Di, Pi, 0, 0)—task i does nothing;
(b) ti = (i, Ci, Di − 1, Pi − 1, 1, 0), and ¬go(i, s, t)—task i releases a job and

the job is not started;
(c) ti = (i, Ci − 1, Di − 1, Pi − 1, 1, 0), and go(i, s, t)—task i releases a job and

the job is immediately started;

2. si = (i, C′i , D′i , P′i , 1, 0), ti = (i, C′i , D′i − 1, P′i − 1, 1, 0) with s.D′i > 0, and
¬go(i, s, t)—task i is waiting for permission to run its job;

3. si = (i, C′i , D′i , P′i , 1, 0), ti = (i, C′i − 1, D′i − 1, P′i − 1, 1, 0) with 0 < s.C′i < Ci,
0 < s.D′i < Di, s.C′i ≤ s.D′i , and go(i, s, t)—task i executes its job;

4. si = (i, 0, D′i , P′i , 1, 0), or si = (i, Ci, D′i , P′i , 0, 0), or si = (i, Ci, Di, P′i , 0, 0), and

(a) if s.P′i = 0

i. ti = (i, Ci − 1, Di − 1, Pi − 1, 1, 0), and go(i, s, t)—task i completes
its job normally, and it releases a new job, that starts immediately;

ii. ti = (i, Ci, Di − 1, Pi − 1, 1, 0), and ¬go(i, s, t)—task i completes
its job normally, and it is releases a new job that does not start
immediately;

iii. ti = (i, Ci, Di, Pi, 0, 0)—task i completes its job normally, and it
does not release a new job;

(b) if s.D′i = 0 and s.P′i > 0, then ti = (i, Ci, Di, P′i − 1, 0, 0)—task i completes
its job normally and waits for the next release;

(c) if s.D′i > 0, then ti = (i, Ci, D′i − 1, P′i − 1, 0, 0)—task i completes its job
normally and waits for the next release;

5. si = (i, C′i , C′i − 1, P′i , 1, 0) and ti = (i, C′i , C′i − 1, P′i , 0, 1)—a job of task i. Task i
will definitely miss the deadline, so task i goes to the “bad” state;

6. si = (i, C′i , C′i − 1, P′i , 0, 1) and ti = (i, C′i , C′i − 1, P′i , 0, 1)—task i is in this “bad”
state forever.

• The evaluation function L : Prop −→ 2ST
is standard: it assigns comparison proposi-

tions to those states in which they are true.

In MT, a path π = s0, s1, . . . is a sequence of states si ∈ ST such that ∀i ≥ 0 (si, si+1) ∈ RT.
An initial path starts from the initial state. A path can be finite or infinite. We denote the finite
path π = s0, . . . , sn as π(s0, sn).

We refer to the state of the real-time system T in which D′i = C′i − 1 for some tasks
i as a bad state, since there is no time left for task i to meet its deadline. Bad states in
the Kripke model MT are the set Bad_States = {s ∈ ST | ∃i ∈ [1..n] : s.badi = 1}. The

Appl. Syst. Innov. 2025, 8, 15 6 of 21

proposition Bad =
∨n

i=0(s.badi = 1) describes this set of states. In these settings, the exact
schedulability test for the real-time system T is to satisfiability check the LTL formula
ΦT = G(¬Bad) in the real-time Kripke model MT : the real-time system never reaches a
state in which some tasks are in their bad state.

3. Backward Reachability-Based Schedulability Test
The idea of our backward reachability analysis for the exact schedulability test comes

from model checking techniques for safety properties: if it is impossible to reach initial
states of a model from “bad” model states using the inverse of the transition relation of
this model, then “bad” states are unreachable and the model is safe. Note that the inverse
of the transition relation may not be total, since the set of the model states may include
states that are not reachable from the initial states. The set of bad states defined above can
be represented as a union of particular bad states: Bad_States = Bad1 ∪ . . . ∪ Badn, where
Badi = {s ∈ Bad | s.badi = 1}. Note that in real-time systems with non-preemptive tasks
under a GFP scheduler, when the number of processors is one less than the number of tasks
Badi = {s ∈ Bad | s.badi = 1 ∧ ∀j ∈ [1..n] : j ̸= i → s.badj = 0}, i.e., exactly one task can
enter into a bad state, because otherwise there are some points where multiple released
tasks do not occupy a free processor. To perform the exact schedulability test in these
systems, it is important to check the unreachability of each set Bi. We also suppose that
Pj = Dj (actually, in real-time systems, it is often not necessary for a job to complete before
it can release again. “This requirement is consistent with the throughput requirement that
the system can keep up with all the work demanded of it at all times’’ ([3] p. 41).). In the
rest of our paper, we consider only such systems.

Let us fix a task i whose job misses its deadline, and the corresponding set Badi. In
every state s ∈ ST which goes to a bad state bi ∈ Badi ((s, bi) ∈ RT), all the processors are
busy; this is shown as s.busy = m, because in the opposite case, a i-job can capture some
processors and start. Based on this observation, we conduct a backward reachability-based
analysis. We consider 14 critical cases with different relative occurrences of tasks’ release
times and execution points closest to the bad state bi. To carry this out, we analyze “lifelines”
of the corresponding tasks in the next section. This analysis shows whether the bad state
is reachable from the initial state or whether backward steps from the bad state lead to a
state that is unreachable from the initial state. The former means that the real-time system
is unsafe (infeasible) and the latter means that the system is safe (schedulable).

3.1. Backward Reachability-Based Case Analysis

To determine the safety (schedulability) of a real-time system under the above con-
ditions, it is important to consider 14 key cases, as shown in Figure 1. In pictures, for
every task j, the bold lines represent decreasing values of D′j (the time remaining until
the deadline of a released job) and dashed lines represent decreasing or standing values
of C′j (the time remaining until a job completion). We call these lines the lifelines of the
corresponding task. The release of a job is indicated by a filled square for the deadline
initial value Dj and a filled circle for the execution initial value Cj. The completion of
a job is marked with an empty circle (C′j = 0), and the job deadline is marked with an
empty square (D′j = 0). If the exact release or completion time of a job is not important,
the job lifeline does not end in a square or circle. We consider four types of jobs and their
corresponding tasks w.r.t. their lifelines: red, green, blue, and gray jobs/tasks.

• The red job i is a bad job that goes to bad state bi with a red lifeline. Its release occurs
in state ri. The previous release and execution of the red task occurs in state ei

p or rei
p,

with completion in state f i
p.

Appl. Syst. Innov. 2025, 8, 15 7 of 21

• The green job j is a job with the last release and execution in state rej before bad state
bi and with completion after the bad state. It has a green lifeline. Its previous release
is in state rj

p and its previous starting execution point is in state ej
p.

• THe blue job k with the blue lifeline is the last one before state rej, which is released
and starts executing in state rek and finishes after bad state bi. All other jobs of the
other tasks start even earlier and are supposed to be completed after bad state bi. They
are irrelevant for our analysis except for the fact that they occupy m− 2 processors
until the bad state.

• The gray job with the gray lifeline represents the red or blue job. It is started for
execution in state el and is completed in state f l .

Figure 1. Backward reachability-based case analysis.

The vertical light red line in the pictures represents a bad state: the moment when
the time until the deadline is less than the execution time (the diagonal square) but job
execution has not started (the horizontal execution lifeline). The vertical light green line
marks the impossible state when (1) at least two jobs are released but neither has started
or (2) the priority is violated. This state cannot be reached from the initial state, hence
conditions imposed on the deadline and time of execution for pictures with green lines are
a criterion for safe (schedulable) real-time systems. Briefly speaking, every picture without
the green line shows that there is a sequence of job releases that results in a missed deadline
and every picture with the green line shows that every reverse sequence of transitions from
a bad state results in an impossible system state that cannot be reached from the initial state
(in fact, for each case there is only one possible reverse sequence).

The picture cases describe all the relevant combinations of the relative occurrence of
release/start states for the red, green, and blue jobs (ri, bi, rei

p, ei
p, f i

p, rej, ej
p, rj

p, rek, ek
p, el ,

f l) and their priorities (i > j and i > k, i < j and i < k, k < i < j, and the case j < i < k
is included in case i < j), since the number of processors is one less than the number of
tasks. Let state s be earlier than s′ (s ⪯ s′) if there is a finite path from s to s′ ((s, s′) ∈ RT∗).
When the order of states on a path does not matter, we write s ∼ s′, and states with the
same position on a path are considered equal s = s′. Each case can be described in terms of
execution times and deadlines of these picture jobs. We say that the case is safe if there are

Appl. Syst. Innov. 2025, 8, 15 8 of 21

some states in the picture case that are unreachable from the initial state of MT . Otherwise,
the case is unsafe.

The first eight pictures in Figure 1 show the cases where the red task i is the last task:
i = n. The last release of the red task before the bad state is in state ri and none of the
other tasks completes its job before bi. Between ri and bi, the remaining execution time C′i
is stable and equal to Ci, but the time until deadline D′i decreases.

Case 1.

i > j and i > k: rek ⪯ rej ⪯ ri ⪯ bi—all jobs are released before the last release of the red job.
This case is unsafe. Every task j < i can start its job before (or in) state ri, since there are m
processors. Since none of them complete their job before bi, i-job goes into the bad state
due to its late release.
The condition for this picture is ∀j ̸= i : Di < Cj.

Case 2.

i > j and i > k: rek ⪯ rj
p ⪯ ri ⪯ ej

p ⪯ rej ⪯ bi—the green job is released after the last release
of the red job.
This case is safe. Task j > i releases and starts its job in state rej between ri and bi. To
prevent i-job from running in the state prev(rej) that precedes state rej, task j must also run
its job in that state. Therefore, prev(rej)j = (j, 1, 1, 1, 0) due to the period restriction Pj = Dj.

Consider the state ej
p which is in Cj transitions before rej. This state is the beginning of the

previous execution of j-job. During the path π(ej
p, rej), D′j = C′j due to the definition of

relation RT (non-preemptively). In Dj − Cj transitions before ej
p, state rj

p keeps the previous

release of j-job. On the path π(rj
p, ej

p), C′j is stable: C′j = Cj due to D′j = C′j = Cj at state ej
p.

Let the other m− 1 blue tasks start their jobs before rj
p (other cases are in items 5–8 of this

list). The last release of the red job may occur before or after ej
p. The latter case is described

in items 3, 4, and 6–8 of this list. The release of the red task before ej
p corresponds to the

state where the green task j and the red task i do not execute their tasks, despite the fact
that one processor is free (the others are busy with other tasks). This state is unreachable
from the initial state due to the transition relation RT .
The condition for this picture is ∃j ̸= i : (Di ≥ 2 · Cj ∧ (∀k ̸= j ∧ k ̸= i : Ck ≥ Dj + Cj)).

Case 3.

i > j and i > k: (rek ∼ ei
p) ⪯ rj

p ⪯ (ej
p = f i

p) ⪯ ri ⪯ rej ⪯ bi—as Case 2—but the last red
release occurs after the previous green execution state, and the previous red completion

Appl. Syst. Innov. 2025, 8, 15 9 of 21

occurs in the previous green execution state.
This case is unsafe. Here, we consider the last red release ri between the green release rej

and the state ej
p, after which the green job is executed. Certainly, the red task can start and

then complete its job at ej
p to prevent the green task from starting (the other m− 1 blue

tasks start their job before rj
p). Therefore, there is a sequence of releases from the initial

state that leads to the bad state.
The condition for this picture is ∃j ̸= i : (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj ∧ (∀k ̸= j ∧ k ̸=
i : Ck ≥ Dj + Cj)).

Case 4.

i > j and i > k: rek ⪯ rj
p ⪯ rei ⪯ (ej

p = f i
p) ⪯ ri ⪯ rej ⪯ bi—as Case 3—but the previous

red execution state occurs after the previous green release.
This case is safe. It is almost the same as the previous case, but the execution time of the red
job is less than the stable period of the green-dashed lifeline. Therefore, the red release and
execution cannot prevent green from executing because of the fixed priority: if the green
and red tasks are ready to start jobs at the same time, the green job must start. There is no
path in MT that leads to such a situation.
The condition for this picture is ∃j ̸= i : (Cj ≤ Di < 2 · Cj ∧ Ci ≤ Dj − Cj ∧ (∀k ̸= j ∧ k ̸=
i : Ck ≥ Dj + Cj)).

Similar to the above analysis of the lifelines of red and green tasks where the blue
task started before rj

p, the next four cases consider the releases of the blue task k that occur

between the last two releases of the green task: rj
p ⪯ rek ⪯ rej.

Case 5.

i > j and i > k: ek
p ⪯ rj

p ⪯ ri ⪯ ej
p ⪯ rek ⪯ rej ⪯ bi—as Case 2—but the last blue release

occurs after the previous green execution state.
This case is safe. This case repeats the reasoning for Case 2 and it is easy to see that any
release position of the blue task between rj

p and rej does not affect this reasoning.
The condition for this picture is ∃j ̸= i : (Di ≥ 2 · Cj ∧ (∀k ̸= j ∧ k ̸= i : Ck ≥ Cj)).

Case 6.

i > j and i > k: el ⪯ rj
p ⪯ (ej

p = f l) ⪯ rek ⪯ ri ⪯ rej ⪯ bi—as Case 3—but the last blue
release occurs after the previous green execution state and before the last release of the red job.
This case is unsafe, and is similar to Case 3. Here, we consider the blue release between the
red release and state ej

p, after which the green job is executed. Since there are two releases

after ej
p, either a red or blue task can complete their job at ej

p to prevent the green job from
starting. Again, there is a sequence of task releases from the initial state that leads to the

Appl. Syst. Innov. 2025, 8, 15 10 of 21

bad state.
The condition for this picture is ∃j ̸= i : (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj ∧ (∀k ̸= j ∧ k ̸=
i : Di ≤ Ck ≤ 2 · Cj)).

Case 7.

i > j and i > k: ei
p ⪯ rj

p ⪯ rek ⪯ (ej
p = f i

p) ⪯ ri ⪯ rej ⪯ bi—as Case 6—but the last blue
release precedes the previous green execution state.
This case is almost the same as the previous one, except that the last blue release occurs
between rj

p and ej
p. This fact obliges the red task to prevent the green one from being started,

as in Case 3. As before, there is a path from the initial state that leads to the bad state.
The condition for this picture is ∃j ̸= i : (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj ∧ (∀k > j :
2 · Cj ≤ Ck ≤ Dj + Cj)).

Case 8.

i > j and i > k: (ek
p ∼ ei

p) ⪯ rj
p ⪯ (ej

p = f i
p) ⪯ ri ⪯ rek ⪯ rej ⪯ bi—as Case 7—but the last

blue release follows the last release of the red job.
This case is unsafe. In the previous case, we move the blue release to a position between
the red release and the green last release. Due to the stability of the red dotted lifeline, the
reasoning for the previous blue states is similar to the reasoning for the previous green
states (Case 2). Combined with the need to prevent the green job from being executed, as
in the previous cases, we again obtain a sequence of releases from the initial state that leads
to a bad state.
The condition for this picture is ∃j ̸= i : (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj ∧ (∀k ̸= j ∧ k ̸=
i : Cj < Ck < Di)).

We resume the above reasoning regarding Cases 1–8 as follows.

Lemma 1. If i = n, then T is unsafe if ∀j ̸= i : (Di < Cj) or ∃j ̸= i : (Cj ≤ Di < 2 ·Cj ∧Ci >

Dj − Cj).

The last six pictures in Figure 1 show the cases where the red task i is the greatest task:
i = 1 (Picture 9) and the cases where the red task i is the middle task: 1 < i < n (pictures 10–14).

Case 9.

i < j and i < k: rek ⪯ rej ⪯ ri ⪯ bi—all jobs are released before the last release of the red job.
This case is unsafe. Every task j > i can start its job before (or in) state ri, since there are
m processors. Since none of them complete their jobs before bi, the i job goes into the bad

Appl. Syst. Innov. 2025, 8, 15 11 of 21

state due to its late release and non-preemptivity.
The condition for this picture is ∀j ̸= i : Di < Cj.

Case 10.

k < i < j—rek ⪯ rej ⪯ ri ⪯ bi—all jobs are released before the last release of the red job.
This case is unsafe. We have exactly the same case as the previous one: again, each task
j < i starts its job before (or in) state ri, and i job misses its deadline because there is no free
processor to execute it.
The condition for this picture is ∀j ̸= i : Di < Cj.

Case 11.

i < j: rek ⪯ rj
p ⪯ ri ⪯ ej

p ⪯ rej ⪯ bi—the green job is released after the last release of the
red job.
This case is safe. Let there be a green task j > i that releases and starts its job in state rej

between ri and bi. However, this is an impossible situation, since the red task must start
its job at rej due to the fixed priority. The following pictures 12–14 consider only the cases
where (blue) tasks with lower priority than the red task release and start executing their
jobs before ri.
The condition for this picture is ∃j > i : (Di ≥ Cj ∧ (∀k ̸= j ∧ k ̸= i : Ck ≥ Cj)).

Case 12.

j < i < k: rek ⪯ rj
p ⪯ ri ⪯ ej

p ⪯ rej ⪯ bi—the green job is released after the last release of
the red job.
This case is safe for the same reason as Case 2.
The condition for this picture is ∃j < i : (Di ≥ 2 · Cj ∧ (∀k ̸= j ∧ k ̸= i : Ck ≥ Dj + Cj)).

Case 13.

j < i < k: ek
p ⪯ rj

p ⪯ ri ⪯ ej
p ⪯ rek ⪯ rej ⪯ bi—as Case 2—but the last blue release occurs

after the previous green execution state.
This case is unsafe for the same reason as Case 6.

Appl. Syst. Innov. 2025, 8, 15 12 of 21

The condition for this picture is ∃j < i : (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj ∧ (∀k < i : Di ≤
Ck ≤ 2 · Cj)).

Case 14.

j < i < k: (rek ∼ ei
p) ⪯ rj

p ⪯ (ej
p = f i

p) ⪯ ri ⪯ rej ⪯ bi—as Case 2—but the last red
release is after the previous green execution state and the previous red completion is at the
previous green execution state.
This case is unsafe for the same reason as Case 3.
The condition for this picture is ∃j < i : (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj ∧ (∀k < i : Ck ≥
Dj + Cj)).

We resume the above reasoning regarding Cases 9–14 as follows.

Lemma 2. If i < n, then T is unsafe iff ∀j ̸= i : (Di < Cj) or ∃j < i : (Cj ≤ Di < 2 ·Cj ∧Ci >

Dj − Cj).

3.2. Algorithms for Schedulability and Infeasibility Tests

Summarizing Lemmas 1 and 2, we formulate a general criterion for checking the safety
(schedulability) and unsafety (infeasibility) for real-time systems with n tasks executed on
n− 1 processors:

Theorem 1. The real-time system T with n tasks executed on n− 1 processors is unsafe (infeasible)
if there exists task i, such that

• ∀j ̸= i (Di < Cj), or
• ∃j < i (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj).

Algorithm 1 is based on this theorem. It returns “NO” if an input real-time system is
unsafe (infeasible) and “YES” if this system is schedulable. Obviously, the time complexity
of this algorithm is O(n2), which makes our schedulability test using this algorithm faster
than any state-of-the-art exact schedulability test for a real-time system with the non-
preemptive global fixed-priority scheduler running on a multiprocessor platform.

Algorithm 1 The base algorithm for the exact schedulability test

Input: real-time system T with n tasks and n− 1 processors.
Output: YES/NO

1: for i = 1 to n do
2: if ∀j ̸= i (Di < Cj) then return NO
3: end if
4: if ∃j < i (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj) then return NO
5: end if
6: end for
7: return YES

It is easy to see that if we add several tasks to the system T, the above unsafety criteria
remain the same but the safety criteria (pictures with bright green lines) do not work in the
new settings, since they are based on the absence of tasks for the full load of processors,
and in the presence of additional tasks, this assumption is violated. In this case, Algorithm
1 can be redefined as Algorithm 2 in order to perform a pessimistic sufficient infeasibility

Appl. Syst. Innov. 2025, 8, 15 13 of 21

test for a real-time system. Algorithm 2 returns “NO” if an input real-time system is unsafe
(infeasible) and “UNKNOWN” if the unsafety criterion is false. It recognizes real-time
systems that are unschedulable even if the number of processors is just one less than the
number of tasks.

Algorithm 2 The algorithm for the sufficient infeasibility test

Input: real-time system T with n tasks and m processors (m < n− 1).
Output: NO/UNKNOWN

1: for i = 1 to n do
2: if ∀j ̸= i (Di < Cj) then return NO
3: end if
4: if ∃j < i (Cj ≤ Di < 2 · Cj ∧ Ci > Dj − Cj) then return NO
5: end if
6: end for
7: return UNKNOWN

Note that both algorithms have quadratic time complexity with respect to the number
of tasks, since they contain two nested loops that iterate and pairwise compare all the tasks
of the input system in turn. The outer loop is specified by the “for” statement, and the
two successive inner loops are specified by the universal and existential quantifiers. Our
algorithms do not use backward reachability as such. Backward reachability is necessary
for analyzing cases 1–14 of the bad state reachability. The combinatorial nature of backward
reachability in our work disappears due to the condition of the number of tasks and
processors n = m + 1: under this restriction, the backward paths from bad states are
uniquely defined by inequalities on the values of the time parameters of the system’s tasks.
These inequalities are provided for each of the cases 1–14. These cases generalize into the
inequalities of Theorem 1, which are used in Algorithms 1 and 2 and are computed in
constant time.

3.3. Using the Schedulability Test for Checking Systems with an Arbitrary Number of Processors

So far, we have assumed that our scheduler uses dynamic scheduling: in a multipro-
cessor system, such a scheduler determines the next (according to its priority) ready task
to be executed by any of the freed processors. In static scheduling on a multiprocessor
system, only one of many processors is assigned a set of tasks in advance, and the scheduler
schedules each task for its assigned processor. We propose semi-dynamic scheduling: the set
of tasks is divided into groups in advance, each of which is assigned not one processor,
as in static scheduling, but several ones. This technique allows us to effectively use our
schedulability test proposed in the previous section. The idea is to partition the task set
into 1-test groups that include (1) ni + 1 tasks to be executed on ni processors, and (2) the
remaining groups of nj tasks to be executed on mj processors, such that the numbers nj and
mj are small enough for exact schedulability testing these groups, using known methods
such as [9,17] or using the SPIN verifier [14]. Such partitioning depends on the ratio of the
number of tasks and processors. In general, this partition problem can be represented as a
version of the well-known bin-packing problem, widely used in the analysis of real-time
systems [3,30]. The bins here are multiprocessor clusters, and items are tasks. This version
is quite complex, since the size and number of bins depend on both the size and number
of items.

We propose the following algorithm that constructs 1-test groups for a desired par-
tition of a real-time system T, taking into account the task utilization Ci/Di and partially
tests T. Let procedure Test1(T) use Algorithm 1 to return a schedulability verdict for a
real-time system T, and procedure sort(T) sort the tasks of real-time system T by their
utilization value from highest to lowest. The following procedures preserve this sorting:

Appl. Syst. Innov. 2025, 8, 15 14 of 21

f irst(T, k) returns the first k tasks in T, head(T) returns the first task in T removing it from
T, remove_ f irst(T, k) removes the first k tasks from T, and replace(T, k, x) replaces task k
in T with task x. Our Algorithm 3 takes a real-time system running on a multiprocessor
platform as the input and returns a set of 1-test groups for this system or a result FAIL,
which means that the algorithm cannot find a partition with schedulable groups of the
required size. The algorithm first sorts the tasks of the real-time system T by their utilization
from largest to smallest. It then successively divides the number of processors by two (line
4), testing the schedulability of the corresponding number of the first most-expensive tasks
using Algorithm 3 (line 8). If it finds that this set of tasks is not schedulable, it replaces
these tasks with less expensive ones in line 13, until it either makes a schedulable set T′

(line 17) or fails to do so (line 15).

Algorithm 3 The algorithm for constructing 1-test groups in semi-dynamic scheduling

Input: real-time system T with n tasks and m processors (m < n).
Output: a set of 1-test groups GT or FAIL

1: sort(T)
2: GT

1 ← ∅
3: while m > 1 or |T| = m + 1 do
4: m← ⌊m/2⌋
5: k← m + 1
6: T′ ← first(T, k)
7: T′′ ← T \ T′

8: while ¬Test1(T′) and k > 0 do
9: if T′′ = ∅ then

10: T′′ ← remove_first(T \ T′, m + 2− k)
11: k← k− 1
12: end if
13: replace(T′, k, head(T′′))
14: end while
15: if k = 0 then return FAIL
16: end if
17: GT

1 ← GT
1 ∪ {T′}

18: T ← T \ T′

19: end while
20: GT ← GT

1 ∪ {T}
21: return GT

Note that this algorithm does not search for an optimal 1-test partition or even a
feasible one in the sense that if our algorithm fails to find a partition, it may still exist.
However, it can be used as a fast preprocessing tool before using more sophisticated and
accurate methods. In the future, we plan to develop more efficient partitioning algorithms
for finding 1-test groups.

4. Experiments
In this section, we describe two experiments. The first experiment refers to the

schedulability test, and the second refers to the infeasibility test. For the experiments, we
develop a framework [31], which is written in SBCL [32], a dialect of the Common Lisp
language. We use a laptop with Intel(R) Core(TM) i7-10510U CPU @ 1.80 GHz 2.30 GHz
and RAM 16.0 GB.

The first experiment compares our Algorithm 1 with state-of-the-art algorithms in
this field. For our experiments, we chose algorithms developed for the same class of
real-time systems as in our paper, namely non-preemptible tasks with the GFP scheduler.
For our comparison, we selected the most successful algorithms for schedulability testing:

Appl. Syst. Innov. 2025, 8, 15 15 of 21

LeeShin2014 from [6] and BaekLee2020 from [8]. Their higher performance compared to
other similar algorithms [7,25–27] is confirmed by the experiments presented in the corre-
sponding sections of papers [6,8]. We run experiments on all datasets for every mentioned
algorithm and compare their performance with the performance of our algorithm.

We refer to our algorithm and the compared algorithms as ALg1, LeeShin2014, and
BaekLee2020, respectively. The experiment uses a dataset consisting of 40,000 task sets.
Our experiments satisfy the following requirements:

1. A period of every task in every set of the dataset is equal to its deadline: Ti = Di;
2. Every set of tasks in every set of the dataset is deadline-monotonic, i.e., tasks with a

lower deadline have a higher priority;
3. The number of tasks is one more than the number of processors: n = m + 1.

Here, Items 1 and 2 are the constraints that are used in [6,8] to compare the LeeShin2014
and BaekLee2020 algorithms with previously developed algorithms. Item 3 is the specifics
of our algorithm. We construct this dataset using the UUnifast algorithm [33,34], which
provides a uniform distribution of sets of tasks within a particular utilization. The paper [8]
also takes this algorithm for the experiments. Then, we sort the UUnifast resulting sets of
tasks by deadlines to ensure Item 2 of the requirements.

The results of the experiment are shown in Tables 1 and 2 and in Figure 2, respectively.
Table 1 and Figure 2a shows the total number of successful tests and their operation time.
The algorithm operation time is measured in internal time units of the Lisp machine.
The precise meaning of this quantity is implementation-defined; it may measure real
time, run time, CPU cycles, or some other quantity. One internal time unit equals 1/n
of a second for some implementation-defined integer value of n specified in the variable
internal-time-units-per-second. To show the distribution of successful schedulability
tests on utilizations, schedulability indicators in Table 2 and Figure 2b are divided into five
utilization classes, characterized by the representatives 0.2, 0.4, 0.6, 0.8, 1.0. The values of
the columns with algorithm names contain the ratios of successful schedulability tests to
the total number of tests (sets of tasks).

Figure 2. Performance of schedulability tests Alg1, LeeShin2014, and BaekLee2020: (a) an algorithm
operation time, and (b) an acceptance ratio.

Table 1. Performance of our schedulability test 1, schedulability test LeeShin2014, and schedulability
test BaekLee2020 in terms of algorithm operation time.

Parameters Alg1 LeeShin2014 BaekLee2020

Total successful schedulability tests number 15,063 10,035 10,035

Algorithm operation time 31,250 62,500 109,375

Thus, our algorithm shows better results in each utilization class compared to the al-
gorithms LeeShin2014 and BaekLee2020. Our algorithm is also faster than these algorithms.

Appl. Syst. Innov. 2025, 8, 15 16 of 21

Note that with the constraint n = m + 1, the algorithms LeeShin2014 and BaekLee2020
showed the same result on this dataset (both in absolute and relative numbers). Also note
that 0.0 for the 1.0 utilization class in the LeeShin2014 and BaekLee2020 algorithms does not
mean that these algorithms do not have successful tests. This only means that the number
of such tests is negligible (in this particular case, 3 successful tests out of 3271 sets of tasks
that fall into this class). It is also worth noting the small growth in the number of successful
tests in class 1.0. This artifact is associated with a relatively small total number of tests in
this class, due to the monotonization of the dataset.

Table 2. Performance of our schedulability test 1, schedulability test LeeShin2014, and schedulability
test BaekLee2020 in terms of acceptance ratio.

Utilisation Alg1 LeeShin2014 BaekLee2020

[0.0, 0.2) 0.87 0.81 0.81

[0.2, 0.4) 0.5 0.32 0.32

[0.4, 0.6) 0.22 0.07 0.07

[0.6, 0.8) 0.11 0.02 0.02

[0.8, 1) 0.17 0 0

The second experiment illustrates the performance of our Algorithm 2 on a dataset
also generated by the UUnifast algorithm [33]. To the best of our knowledge, there are no
algorithms that perform the impossibility test. The only similar algorithm is the algorithm
in [28]. However, we cannot compare it with our Algorithm 2 in terms of coverage, since
our algorithm starts with an already fixed priority, whereas this algorithm creates a priority
during the infeasibility test.

The results of the second experiment are shown in Tables 3 and 4 and in Figure 3.
Unlike the first experiment, in this case, we check infeasibility and remove restrictions
on the dataset such as n = m + 1 and the monotony of deadlines. Just like in the first
experiment, we show the distribution of successful tests. In this case, the values of the
column with the algorithm name contain the ratio of successful infeasibility tests to the total
number of tests. Figure 3 shows an increase in the number of successful tests with increased
utilization. Table 3 shows the total number of successful tests and their operation time.

Figure 3. Performance of our infeasibility test 2: (a) an algorithm operation time, and (b) an acceptance ratio.

Table 3. Performance of our Infeasibility Test 2 in terms of algorithm operation time.

Parameters Alg2

Total successful infeasibility tests number 15,625

Algorithm operation time 10,995

Appl. Syst. Innov. 2025, 8, 15 17 of 21

Table 4. Performance of our infeasibility test 2 in terms of acceptance ratio.

Utilisation Infeasibility Ratio

[0.0, 0.2) 0.09

[0.2, 0.4) 0.4

[0.4, 0.6) 0.75

[0.6, 0.8) 0.91

[0.8, 0.1) 0.94

As a side result of the experiments, a software infrastructure was obtained for con-
ducting such experiments in the form of a set of Lisp functions, including the functions
of generating datasets, serializing datasets, running algorithms on datasets, evaluating
the performance of algorithms, serializing the results of algorithms, etc. The results of the
experiments (including datasets) are available at the link [31].

Note, that the datasets are generated by the UUnifast algorithm [33], which provides a
uniform distribution of task time characteristics. All algorithms are not statistical, but strict
algorithms based on analytical computations. As a rule, when comparing the performance
of schedulability test algorithms, task set coverage criteria and time/resource character-
istics are used, as shown by the papers we cite. Statistical criteria such as error bars and
confidence intervals in schedulability test algorithms can be interpreted as the accuracy of
schedulability detection, i.e., algorithm performance (using real-time systems terminology).
Unfortunately, an exact schedulability test in general is a very resource-intensive task and
can only be used for small systems with no more than 8 processors and 12 tasks, as shown
in [17]. Therefore, obtaining error bars and confidence intervals in practice is impossible
for the sizes of the datasets that we used in our experiments.

5. Related Work and Discussion
One of the first sufficient schedulability tests for non-preemptive fixed-priority mul-

tiprocessor scheduling was described in Guan’s paper in el. published in 2008 [25]. The
authors bounded the number of tasks doing carry-in jobs in the “problem window” to
obtain this test. The definition of carry-in job is given as follows: a carry-in job is released
before the interval of interest, but its deadline is within the interval. To bound the number
of carry-in jobs, the authors consider jobs that execute as late as possible. This test is later
improved to quadratic time complexity [26].

Lee et al. propose a sufficient schedulability test for the same case without the carry-in
limitation [6]. In this test, they analyze job interference. Interference is the amount of
execution of other tasks that interferes with the execution of the task of interest. The
proposed test is based on using the upper bound of interference.

Davis et al. consider a superset of fixed-priority preemptive multiprocessor scheduling
and fixed-priority non-preemptive multiprocessor scheduling [27]. They call this superset
Global Fixed Priority Scheduling with Deferred Preemption (gFPDS). The authors propose
two types of sufficient schedulability test for this case: with and without the carry-in limita-
tion technique. These tests are interesting as generalizations of the two cases: preemptive
and non-preemptive scheduling.

In 2017, Lee proposed a test for non-preemptive fixed-priority multiprocessor schedu-
lability based on an improved carry-in limitation technique [7]. This improvement, related
to previous research, is to consider the critical instant for a task. The critical instant is the
point in time at which a job request results in the longest task response time.

Appl. Syst. Innov. 2025, 8, 15 18 of 21

The first exact schedulability test for the special case of fixed-priority non-preemptive
multiprocessor scheduling is provided by Yalcinkaya et al. in 2019 [17]. This special
case considers self-suspensible tasks with fixed preemption points. The authors reduce
schedulability analysis to the reachability problem in synchronized automata (TA). They
use the UPPAAL model checker [35] to solve this reachability problem.

Baek and Lee, in 2020 [8], improved the interference upper bound proposed in 2014 [6].
This improvement is based on the analysis of tasks with higher priority than the task
of interest.

In [28], Chwa and Li propose the first infeasibility test for fixed-priority non-
preemptive multiprocessor scheduling. This approach finds a task priority that makes a
set of tasks schedulable. If this algorithm cannot create such a priority for a particular set
of tasks, the set is infeasible. The main feature of the proposed approach is the checking
of a special constraint on the infeasibility of a task. This constraint is based on an analysis
of the bounds of the sum of the total number of executions of higher priority tasks in
the problem window for the task of interest. Using this constraint eliminates the need to
consider all combinations of priority assignments, since this constraint depends only on
the higher-priority tasks. Thus, this approach is based on the constraint testing using a
decreasing order of priorities.

The main advantage of our work compared to the above is the quadratic complexity
of the exact test for multiprocessor scheduling (Algorithm 1). If a tasks’ parameters are
unstable, this test can be used without modification at a higher planning level as an online
acceptance test to determine the schedulability of the system with changed characteristics,
which, however, remains within the specified task-to-processor ratio.

On the one hand, our exact test is directly applicable only to systems with a certain
ratio of the number of processors and tasks. Actually, a specific combination of the number
of tasks and processors n = m + 1 is quite rare in practice, although there is an example of
such a combination: map-reduce data processing, where a map is executed in m parallel
threads and there is no separate processor for reduce.

But on the other hand, we additionally propose Algorithm 3, which makes our exact
test applicable to systems with any tasks-to-processors ratios. This algorithm is the first
proof-of-the-concept version for partitioning the set of tasks and processors into groups to
which our test can be applied. This partitioning is a variant of the bin-packing problem,
widely used in the analysis of real-time systems. Improving this algorithm for more optimal
partitions requires a particular intensive study which is out of the scope of this paper. We
leave it for our future research. We also suppose that increasing the number of tasks even
by 1 (n = m + 2) immediately makes the exact schedulability test for NP-GFP systems
NP-hard. Similar cases of jump complexity increase are the travelling salesman problem
for n = 3 and n = 4 or 2-SAT and 3-SAT problems. It is imperative that this fact should be
proved, but this is out of the scope of our paper. We also leave this proof for the future.

As for the infeasibility testing Algorithm 2, the modification of our schedulability
test algorithm can be used for arbitrary task-to-processor ratios, and due to its quadratic
complexity, our infeasibility algorithm is rather fast. Unfortunately, we cannot compare our
algorithm with the infeasibility test from [28], since that test tries to determine the priority
that makes a task set schedulable, and says that the task set is infeasible if no such priority
exists, while our infeasibility test deals with a given priority.

6. Conclusions
In our paper, we propose representations of real-time systems as Kripke models and

the use of such representations for a new method of schedulability analysis using backward
reachability. This method allows us to justify an algorithm for an exact schedulability test

Appl. Syst. Innov. 2025, 8, 15 19 of 21

that has quadratic complexity for a special class of real-time systems in which there is one
more task than the processors. This time complexity is significantly better than the complex-
ity of exact general analysis for such systems. Based on this method, we also develop an
algorithm for testing the infeasibility of real-time systems with arbitrary processor-to-task
ratios, which also has quadratic time complexity. Comparative experiments show the
competitiveness of our approach, since it detects the infeasibility of real-time systems in
significantly less time and with slightly worse accuracy. To extend the scope of our exact
schedulability test, we propose an algorithm for splitting a set of tasks into groups of k for
execution on k− 1 processors, which simultaneously performs the schedulability test of
the grouped tasks.

Our future plans include developing more efficient algorithms for partitioning the
system’s tasks into execution clusters on a suitable set of processors to improve the ap-
plicability of our exact schedulability test to real-time systems. We also plan to adapt
our backward reachability method to iteratively decrease the number of processors, or
to prove that any decrease in this number leads to a sharp increase in the number and
complexity of inequalities used by the algorithm of our method. In addition, we will study
the applicability of our method to preemptive tasks and other scheduling priorities.

Author Contributions: Conceptualization, N.G.; methodology, N.G.; software, I.A.; validation, N.G.
and I.A.; formal analysis, N.G., I.A., and D.K.; investigation, D.K.; resources, D.K.; data curation,
I.A.; writing—original draft preparation, N.G.; writing—review and editing, N.G., I.A., and D.K.;
visualization, I.A. and D.K.; project administration, N.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was supported by a grant for research centers, provided by the Analytical Center
for the Government of the Russian Federation in accordance with the subsidy agreement (agreement
identifier 000000D730324P540002) and the agreement with the Novosibirsk State University, dated
27 December 2023 No. 70-2023-001318.

Data Availability Statement: All the data, algorithms, and results of the research presented in this
paper are publicly available in the repository https://github.com/anureev/Schedulability-Testing-
Framework-and-Experiments under MIT license (accessed on 16 January 2025).

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Negrean, M.; Ernst, R. Response-time analysis for non-preemptive scheduling in multi-core systems with shared resources.

In Proceedings of the 7th IEEE International Symposium on Industrial Embedded Systems (SIES’12), Karlsruhe, Germany,
20–22 June 2012; pp. 191–200.

2. Sun, B.; Kloda, T.; Chen, J.; Lu, C.; Caccamo, M. Schedulability Analysis of Non-preemptive Sporadic Gang Tasks on Hardware
Accelerators. In Proceedings of the 2023 IEEE 29th Real-Time and Embedded Technology and Applications Symposium (RTAS),
San Antonio, TX, USA, 9–12 May 2023; pp. 147–160.

3. Liu, J.W.S. Real-Time Systems; Prentice Hall: Hoboken, NJ, USA; 2001; 610p.
4. Bonifaci, V.; Marchetti-Spaccamela, A. Feasibility Analysis of Sporadic Real-Time Multiprocessor Task Systems. Algorithmica

2010, 63, 763 – 780. [CrossRef]
5. Brandenburg, B.B.; Gül, M. Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with

Semi-Partitioned Reservations. In Proceedings of the 2016 IEEE Real-Time Systems Symposium (RTSS), Porto, Portugal, 29
November–2 December 2016; pp. 99–110. [CrossRef]

6. Lee, J.; Shin, K.G. Improvement of real-time multi-coreschedulability with forced non-preemption. IEEE Trans. Parallel Distrib.
Syst. 2014, 25, 1233–1243. [CrossRef]

7. Lee, J. Improved schedulability analysis using carry-in limitation for non-preemptive fixed-priority multiprocessor scheduling.
IEEE Trans. Comput. 2017, 66, 1816–1823. [CrossRef]

8. Baek, H.; Lee, J. Improved schedulability test for non-preemptive fixed-priority scheduling on multiprocessors. IEEE Embed. Syst.
Lett. 2020, 12, 129–132. [CrossRef]

https://github.com/anureev/Schedulability-Testing-Framework-and-Experiments
https://github.com/anureev/Schedulability-Testing-Framework-and-Experiments
http://doi.org/10.1007/s00453-011-9505-6
http://dx.doi.org/10.1109/RTSS.2016.019
http://dx.doi.org/10.1109/TPDS.2013.2297098
http://dx.doi.org/10.1109/TC.2017.2704083
http://dx.doi.org/10.1109/LES.2020.2966681

Appl. Syst. Innov. 2025, 8, 15 20 of 21

9. Burmyakov, A.; Bini, E.; Lee, C.G. Towards a Tractable Exact Test for Global Multiprocessor Fixed Priority Scheduling. IEEE
Trans. Comput. 2022, 71, 2955–2967. [CrossRef]

10. Zhou, Q.; Li, G.; Zhou, C.; Li, J. Limited Busy Periods in Response Time Analysis for Tasks Under Global EDF Scheduling. IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst. 2021, 40, 232–245. [CrossRef]

11. Burmyakov, A.; Bini, E.; Tovar, E. An exact schedulability test for global FP using state space pruning. In Proceedings of the
23rd International Conference on Real Time and Networks Systems, Lille, France, 4–6 November 2015; RTNS ’15; Association for
Computing Machinery: New York, NY, USA, 2015; pp. 225–234. [CrossRef]

12. Ranjha, S.; Gohari, P.; Nelissen, G.; Nasri, M. Partial-order reduction in reachability-based response-time analyses of limited-
preemptive DAG tasks. Real-Time Syst. 2023, 59, 201–255. [CrossRef]

13. Gohari, P.; Voeten, J.; Nasri, M. Reachability-Based Response-Time Analysis of Preemptive Tasks Under Global Scheduling. In
Leibniz International Proceedings in Informatics (LIPIcs), Proceedings of the 36th Euromicro Conference on Real-Time Systems (ECRTS
2024), Lille, France, 9–12 July 2024; Pellizzoni, R., Ed.; Schloss Dagstuhl—Leibniz-Zentrum für Informatik: Dagstuhl, Germany,
2024; Volume 298, pp. 3:1–3:24. [CrossRef]

14. Garanina, N.O. An Exact Schedulability Test for Real-Time Systems with Abstract Scheduler on Multiprocessor Platforms. Model.
Anal. Inf. Syst. 2024, 31, 474–494. (In Russian) [CrossRef]

15. Cheng, A.M.K. Real-Time Systems: Scheduling, Analysis, and Verification; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2002.
16. Guan, N.; Gu, Z.; Deng, Q.; Gao, S.; Yu, G. Exact Schedulability Analysis for Static-Priority Global Multiprocessor Scheduling

Using Model-Checking. In Proceedings of the Software Technologies for Embedded and Ubiquitous Systems; Obermaisser, R., Nah, Y.,
Puschner, P., Rammig, F.J., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4761,
pp. 263–272.

17. Yalcinkaya, B.; Nasri, M.; Brandenburg, B.B. An Exact Schedulability Test for Non-Preemptive Self-Suspending Real-Time
Tasks. In Proceedings of the 2019 Design, Automation & Test in Europe Conference & Exhibition (DATE), Florence, Italy,
25–29 March 2019; pp. 1228–1233. [CrossRef]

18. Staroletov, S.M. A Formal Model of a Partitioned Real-Time Operating System in Promela. Proc. Inst. Syst. Program. RAS 2020, 32,
49–66. [CrossRef] [PubMed]

19. SPIN. Promela Grammar. Available online: http://spinroot.com/spin/Man/grammar.html (accessed on 16 January 2025).
20. Holzmann, G.J. The Spin Model Checker, Primer and Reference Manual; Addison-Wesley Professional: Boston, MA, USA, 2003.
21. Sukvanich, P.; Thongtak, A.; Vatanawood, W. Formalizing Real-Time Embedded System into Promela. MATEC Web Conf. 2015,

35, 03003. [CrossRef]
22. Geeraerts, G.; Goossens, J.; Nguyen, T.V.A. A Backward Algorithm for the Multiprocessor Online Feasibility of Sporadic Tasks.

In Proceedings of the 2017 17th International Conference on Application of Concurrency to System Design (ACSD), Zaragoza,
Spain, 25–30 June 2017; pp. 116–125. [CrossRef]

23. Garanina, N. The Promela-Model for Real Time Systems with Four Schedulers. Available online: https://github.com/GaraninaN/
RealTimeSystems/blob/main/rts.pml (accessed on 16 January 2025).

24. Chen, T.; Cai, Y.; Chen, L.; Xu, X. Trajectory and Velocity Planning Method of Emergency Rescue Vehicle Based on Segmented
Three-Dimensional Quartic Bezier Curve. IEEE Trans. Intell. Transp. Syst. 2023, 24, 3461–3475. [CrossRef]

25. Guan, N.; Yi, W.; Gu, Z.; Deng, Q.; Yu, G. New schedulability test conditions for non-preemptive scheduling on multiprocessor
platforms. In Proceedings of the 2008 Real-Time Systems Symposium, IEEE, Barcelona, Spain, 30 November–3 December 2008;
pp. 137–146.

26. Guan, N.; Yi, W.; Deng, Q.; Gu, Z.; Yu, G. Schedulability analysis for non-preemptive fixed-priority multiprocessor scheduling. J.
Syst. Archit. 2011, 57, 536–546. [CrossRef]

27. Davis, R.I.; Burns, A.; Marinho, J.; Nelis, V.; Petters, S.M.; Bertogna, M. Global and partitioned multiprocessor fixed priority
scheduling with deferred preemption. ACM Trans. Embed. Comput. Syst. (TECS) 2015, 14, 1–28. [CrossRef]

28. Chwa, H.S.; Lee, J. Infeasibility Test for Fixed-Priority Scheduling on Multiprocessor Platforms. IEEE Embed. Syst. Lett. 2022,
14, 55–58. [CrossRef]

29. Clarke, E.M.; Henzinger, T.A.; Veith, H.; Bloem, R. Handbook of Model Checking; Springer: Berlin/Heidelberg, Germany, 2018;
Volume 10.

30. Coffman., E.G., Jr.; Csirik, J.; Galambos, G.; Martello, S.; Vigo, D. Bin Packing Approximation Algorithms: Survey and Classifica-
tion. In Handbook of Combinatorial Optimization; Pardalos, P.M., Du, D.Z., Graham, R.L., Eds.; Springer: New York, NY, USA, 2013;
pp. 455–531. [CrossRef]

31. Anureev, I. Polynomial Exact Schedulability and Infeasibility Test for Fixed-Priority Scheduling on Multiprocessor Platforms:
Experiments. Available online: https://github.com/anureev/Schedulability-Testing-Framework-and-Experiments (accessed on
16 January 2025).

32. Rhodes, C. Sbcl: A sanely-bootstrappable common lisp. In Proceedings of the Workshop on Self-Sustaining Systems, Potsdam,
Germany, 15–16 May; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5146, pp. 74–86.

http://dx.doi.org/10.1109/TC.2022.3142540
http://dx.doi.org/10.1109/TCAD.2020.2994265
http://dx.doi.org/10.1145/2834848.2834877
http://dx.doi.org/10.1007/s11241-023-09398-x
http://dx.doi.org/10.4230/LIPIcs.ECRTS.2024.3
http://dx.doi.org/10.18255/1818-1015-2024-4-474-494
http://dx.doi.org/10.23919/DATE.2019.8715111
http://dx.doi.org/10.15514/ISPRAS-2020-32(6)-4
http://www.ncbi.nlm.nih.gov/pubmed/18592456
http://spinroot.com/spin/Man/grammar.html
http://dx.doi.org/10.1051/matecconf/20153503003
http://dx.doi.org/10.1109/ACSD.2017.9
https://github.com/GaraninaN/RealTimeSystems/blob/main/rts.pml
https://github.com/GaraninaN/RealTimeSystems/blob/main/rts.pml
http://dx.doi.org/10.1109/TITS.2022.3224785
http://dx.doi.org/10.1016/j.sysarc.2010.08.003
http://dx.doi.org/10.1145/2739954
http://dx.doi.org/10.1109/LES.2021.3112671
http://dx.doi.org/10.1007/978-1-4419-7997-1_35
https://github.com/anureev/Schedulability-Testing-Framework-and-Experiments

Appl. Syst. Innov. 2025, 8, 15 21 of 21

33. Bini, E.; Buttazzo, G.C. Measuring the performance of schedulability tests. Real-Time Syst. 2005, 30, 129–154. [CrossRef]
34. Davis, R.I.; Burns, A. Priority assignment for global fixed priority pre-emptive scheduling in multiprocessor real-time systems.

In Proceedings of the 2009 30th IEEE Real-Time Systems Symposium, Washington, DC, USA, 1–4 December 2009; pp. 398–409.
35. Model Checking Tool UPPAAL. Available online: http://www.uppaal.com (accessed on 16 January 2025).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s11241-005-0507-9
http://www.uppaal.com

	Introduction
	A Real-Time Kripke Model for a Real-Time System with a Dynamic NP-GFP Scheduler
	Backward Reachability-Based Schedulability Test
	Backward Reachability-Based Case Analysis
	Algorithms for Schedulability and Infeasibility Tests
	Using the Schedulability Test for Checking Systems with an Arbitrary Number of Processors

	Experiments
	Related Work and Discussion
	Conclusions
	References

