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Abstract: In recent years, modularity has become increasingly present in the field of robotics
and mechatronics. The need to easily calculate and generate modular robots in an easier
and faster way and for a wide range of robotics projects has increased. This paper aims
to present a new modular software development method for an automatic configurator
of serial robots through the model-based development technique using the MATLAB
Simulink R2024b software. Using this functionality, the user has the possibility to configure,
generate, and analyze serial robots, starting from a kinematic scheme that complies with the
development requirements of the project. Having a high degree of flexibility and avoiding
multiple instances of debugging, caused by the need to use different environments, as well
as connectivity problems between them or a lack of support in development, the user has
the possibility to configure and reconfigure serial robots, easily adapting to the high degree
of dynamism in the development of current projects. Because of the modularity on which
the software development is based, the user has the possibility to optimize and improve
the quality and performance of the system, along with easy adaptation to the speed of
technological advancement.

Keywords: modularity; serial robots; robotics software; model-based development; inter-
changeable configuration

1. Introduction

Robotics is a field that focuses on the development and study of robots, encompassing
the modeling, design, and manufacturing of robotic systems. Industrial robots are exten-
sively employed in the automotive and electronics industries, as well as in other fields [1].
In today’s manufacturing industry, vision-guided robotic picking systems play a vital role
in automating various tasks. However, achieving rapid changeover and adaptability for
diverse workpiece types has remained a significant challenge [2]. Modular robotic systems
are systems that are composed of modules that can be disconnected and reconnected in
different arrangements to form a new system, enabling new functionalities [3]. The term
“modular robotics” refers to a family of robotic systems composed of interconnected smaller
units called “modules”, joined together by docking interfaces [4]. Modularity offers signifi-
cant functional and economic advantages over more traditional fixed-structure robots. The
ability to reconfigure the morphology by rearranging their parts enables modular robots to
adapt to changes in the environment [4]. The robot’s links are connected in serial by rotary
or translatory motion joints, which form a kinematic chain. The kinematic chain end is
called the end-effector or gripper, which is modeled on the human hand [5]. Modularity
is a means of decomposing a large and complex system or product into small, simple,
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independent, and manageable modular units that can be easily composed, decomposed,
and replaced, and it can be frequently found in both nature and industrial systems [6].

Software process simulation modeling is increasingly being used to address a variety
of issues, from the strategic management of software development to supporting process
improvements [7]. Not only do modeling and simulation help to provide a better under-
standing of how real-world systems function, but they also enable us to predict system
behavior before a system is built and analyze systems accurately under varying operating
conditions [8]. MATLAB is a powerful environment for linear algebra and graphical presen-
tation that is available on a wide range of computer platforms [9]. Nowadays, new product
development makes strong use of IT tools, such as virtual simulation tools. The main
motivation for the introduction of virtual simulation tools in new product development
is to speed up development and reduce costs. Virtual simulation tools can achieve much
more than simply speeding up product development and reducing the cost [10-13]. At the
same time, however, they also trigger profound changes in problem solving [10]. One of
the most important motivations for the introduction of virtual simulation tools is that the
cost and time requirements of physical experiments are not always compatible with the
strict time and cost constraints of the new product development process [11]. The ability to
predict the maximal performance of an industrial robot in executing non-deterministic tasks
can improve process productivity through time-based planning and scheduling strategies.
These strategies require the configuration and comparison of a large number of tasks in
real time for decision making; therefore, an efficient task execution time estimation method
is required [12].

The automotive industry was the first to promote the development of large-scale
applications of model-based systems technology and, as a result, produced some of the
most advanced prototypes and products [13]. Model-based systems provide a good basis for
problem solving because they are based on the separation of the problem solving algorithm
from the model and the compositionality of this model, which addresses the variant
problem. Once a library of suitable component models is established, only a structural
description of this device (e.g., obtained from design data) is required to automatically
generate a system model and, based on it, a dedicated problem solving system for this one
device [13].

Organizations today are facing rising labor costs and a shortage of workers and
are therefore investing in robotics. Robots can perform tasks that most humans cannot,
such as working in difficult conditions and being able to generate data with the utmost
precision [14]. In the past, robots were predominantly used in manufacturing to perform
labor-intensive tasks that were hazardous for humans. As robots’ capabilities rapidly
increased, they were used for routine tasks that required speed, agility, and dexterity, such
as spot welding, stacking, drilling, cutting, and so on. Today, autonomous cars increasingly
incorporate sensors and machine learning, which increase the types of tasks that can be
undertaken. Therefore, robots can be used for a growing number of activities within firms,
including transporting goods, assessing quality, testing products, and so on. One of the
main reasons that firms adopt robots is their performance in terms of productivity and
therefore production. Usually, robots can work continuously and perform functions 24 h a
day [15].

In recent years, an increasing emphasis on the modularity of robots has emerged,
generating them with the help of command-and-control software. There is a wide range of
software that allows the generation and analysis of robots and the possibility of manipulat-
ing their individual components.

Computer modeling, simulation, and implementation tools have been widely used to
support and develop nonlinear control, robotics, and MATLAB/Simulink courses. MAT-
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LAB, with its toolboxes, such as Simulink, is one of the most widely accepted software
packages and is used by researchers to enhance teaching regarding the transient and
steady-state characteristics of control and robotics [16].

In Industry 4.0, robots are regarded as one of the key components. In recent years,
collaborative robots (cobots) have risen in relevance and have been included in the industry
to perform tasks alongside humans [17].

The digital era necessitates robotic automation, which utilizes intelligent automation
technologies to streamline processes and execute tasks according to predetermined pro-
grams, thus automating the process. The adoption of robotic process automation fosters
significant increases in productivity and efficiency across various sectors [18].

From the point of view of robot producers, such unprecedented diffusion has neces-
sitated the development of innovative safety features, aimed at making the use of cobots
increasingly secure and accessible to the wider public [19].

In the era of rapid development and prototyping, limitations like multiple software
programs used in the calculation and generation of robots, multiple debugging activities,
and different software with different language programs make development activities
difficult. The need to know the connections between such tools can lead to higher effort and
the higher consumption of resources and time to solve errors, as compared to the necessary
investments for development and creation. The increased amount of knowledge required,
together with the large number of tools, makes development activities more challenging
for the user. Starting with these, this paper aims to develop a user-oriented application that
will help a user to configure serial robots in an environment, being guided step by step
throughout its use.

Considering the computing power and the vast engineering functionalities of the
MATLAB Simulink software, MATLAB is the software that the authors propose to use as
the source program in the development of this functionality.

In this paper, the main goal is to develop a new modular and compact Simulink
function, using the model-based development technique, where the user can configure
serial robots starting from the number of kinematic couples, the specific type of movement,
the geometric parameters, and the generalized coordinates of each component. After
calculating the kinematic couplings and determining the configuration of the serial robot,
the end-effector will be attached. This block will calculate the displacements, velocity,
and accelerations for the end-effector and for each kinematic coupling separately in the
three-dimensional space. These aspects will be represented in specific graphs.

The application will be developed on several layers, each of them having the possibility
to be individually managed, giving the application modularity from the beginning.

2. Materials and Methods

The motivation for the development of this application comes from the need to realize
a project in a compact and well-structured environment. Moreover, it comes from the need
to be able to realize a prototype in an easier way, without requiring a large range of software
programs or additional ones to be able to configure and design a complete project.

At the same time, there is the need for an application that is easy to use, in which it
is not necessary to invest additional time in its operation or in its connection with other
software. The focus has to be oriented towards the realization of the calculations needed
for the specific robot, where there are no administrative blocking points caused by the used
tools. Finally, there exists the need to bring all of the necessary information into one place,
with the possibility of realizing a large project with a focused set of knowledge.

The main goal of this project is to create a function that gives the user the possibil-
ity to generate any configuration for a serial robot, with the opportunity to include as
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many degrees of mobility as needed, having only fifth-class kinematic couples (rotation or
translation). Such a function would ultimately enable one to configure, calculate, analyze,
and reconfigure as many combinations of robots as possible in the shortest possible time,
making it more efficient not only from the point of view of time but also from the point of
view of resources.

With advancements in technology, time becomes increasingly compressed. For this
reason, users require all components to be accessible and intuitive. Starting with this, this
project aims to create a MATLAB Simulink function that requires minimal investment of
time in understanding its operation. At the same time, we seek to offer the highest level
of capability and performance with minimal knowledge about its implementation. We
adopt a user-oriented usability perspective, providing one of the easiest ways to approach
building, calculation, and robot configuration. At the same time, this application aims
to create a graphical representation of the displacement, velocity, and acceleration of the
robot’s kinematic couples and also for its end-effector, in accordance with the design and
implementation requirements of a wide range of projects.

2.1. General Information

In the paper “Design and Realisation of the Simulation Model of the Stewart Platform
using the MATLAB-Simulink and the Simscape Multibody Library” [20], written by P.
Noskievi¢ and D. Walica, MATLAB’s Simscape Multibody Link is used to create and
manipulate a Stewart robot. CAD software is used to generate a 3D model of the Stewart
robot. Before being able to implement the robot in Simscape Multibody Link, the generated
files from CAD have to be adapted to MATLAB using an add-on, which will transform
the information into a format that can be interpreted by the Simscape library. This process
prolongs the time required in building the robot, requiring a large amount of time for the
projection of the model. After creating the CAD model and transferring the information to
the Simscape library, it is necessary to create a Simulink model to be able to control and
manipulate the robot. This model needs to be created with the help of the library, which
requires particular knowledge. After completing the CAD and creating the Simulink model
based on the Simscape Multibody Link library, it is possible to visualize the robot using the
Mechanics Explorer interface.

Following this development path, some weak spots have been identified in the use of
this workflow. The first is the need for the prototyping of a CAD model and the need of
knowledge of the library for Simscape Multibody Link to be able to create the Simulink
models from scratch. At the same time, the possibility of connectivity and communication
errors between the various programs used is observed. The use of multiple software
programs simultaneously to reach the final point of generating the desired robot is not a
user-oriented approach. The use of multiple software packages brings the need to have
knowledge in their use and to invest time in possible debugging activities, as well as the
need for multiple licenses, in addition to the actual time required for the development,
generation, calculation, and analysis of the robots. All of these factors lead to the sub-
optimal use of resources and time.

In the paper “Implementation of a Two Wheel Self-Balanced Robot using MATLAB
Simscape Multibody” [21], written by S. Mohapatra, R. Srivastava, and R. Khera, the same
development path is presented using the MATLAB Simscape Multibody Link library. The
first necessary step is to design a CAD model. After this, the CAD is converted using an
additional tool into a data type that is read by the MATLAB Simscape Multibody Link
library; then, the MATLAB Simulink model will be developed.

The need for knowledge has been identified in the design and prototyping of a robot
model in order to create a CAD model. This process is time-consuming. Moreover, there
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is a need for several tools in creating the CAD model. Furthermore, add-ons to convert
CAD files into files that are readable by the MATLAB software are necessary. As a final
step, knowledge of the use of the MATLAB Simulink software from scratch is required, as
well as an understanding of the use of the MATLAB Simscape Multibody Link library.
For comparison purposes, Table 1 presents a description of a regular robot’s configura-

tion and simulation using the standard method and the proposed method.

Table 1. Comparison of the standard method and proposed method.

Comparison Area

Standard Method

Proposed Method

Development of a 3D model of
the robot

A CAD model must be created.

A robot schematic must be created.

Connectivity and programs used

The end-user must use multiple
software packages. The end-user must
have knowledge about the connections
of the used tools to be able to convert the
information from the 3D modeling tool
to MATLAB. The end-user must import
the information into MATLAB and
verify its correctness and also conduct
troubleshooting if needed.

The end-user uses only the proposed
MATLAB function.

Modeling and use of the method

After the import is finished, the end-user
must compile the model and create a
second Simulink model for simulation.
The end-user must configure the
parameters of each block, establish a
connection, and verify the correctness of
the model.

The end-user enters the necessary
information regarding the robot
design into the MATLAB Simulink
functionality block.

The end-user will be guided by the
function with the help of assistive
questions.

Results and interpretation

After running the program, the user will
have access to the Mechanics Explorer
platform to view the robot.

After running the function block, the
calculated matrices are presented
together with the graphs for the
displacement, velocity, and
acceleration.

In order to use the application, it is necessary to carry out an analysis of the desired

movement, along with the schematization of the robot’s movements, attaching a coordinate
system [Tp]...[T], [n € NI n > 0] to each element. To realize this, the robotic schematic
reference shown in Figure 1 is proposed.

X0

[Tn]

20 4 qi

Figure 1. Attachment of coordinate systems and robot elements.
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The relative motion between two consecutive elements can be described by a
4 x 4 homogeneous matrix. This matrix is called a transfer/transformation matrix and has
the form
a1 412 413 A14
a1 A2 d23 24 )
31 A3 4a33 34
0 0 0 1

where a14, a54, a34 represent the coordinates of the origin with the higher index in rank with
the coordinate system with the lower index.

The remaining elements of the matrix A; ;11 are the cosines of the angles between the
axes of the system, [T;] and [T ; 4], and are given by the relations

a11 = cos(Ox;j, Oxiy1);a1p = cos(Ox;, Oy, 1 );a13 = cos(Oxj, Ozj11q) ()
az1 = cos(Oy;, Oxi11);ax = cos(Oy;, Oy;,1);a23 = cos(Oy;, Ozit1) (3)
a31 = cos(0z;, Oxit1);az = cos(Oz;, Oy, );as3 = cos(Oz;, 0z 1) (4)
R; P;
A= |1 1 5
i 0 1] ®)
R; = [3 x 3] — Orientation sub-matrix

P; = [3 x 1] — Position sub-matrix

- The geometric parameters are given for the first kinematic couple that realizes the
movement between the systems [Tj] and [T;].

- For the following kinematic couplings, the geometric parameters are required in
relation to the kinematic coupling attached to the preceding element.

- The geometric parameters of the end-effector will be determined in relation to the
coordinate system [T},] attached to element n.

The matrix P, is generated, which is the matrix of the coordinates of point M in relation
to the system [T}], along with the end-effector (EF), which represents the characteristic
point of the robot.

Py

Py

P,
1

Pn - (6)

To establish the parking position, the generalized coox1 wzgsa rdinates g; for each
kinematic couple will have a value of 0; later, it is possible to change their values through
the user interface.

For the simulation of the robot, homogeneous transfer matrices will be generated,
which are calculated with the following formula:

-1
Ao =TT, Aiist @)

The position of the characteristic point attached to the final effector in relation to
the system [Tp], expressed with the help of the transfer matrices, will be calculated using
the relation

-1
Po = [Ty Aiis1-P 8)
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Ai,i+1 =

cos(
sin(

0
0

0
0

i)
i)

The Denavit-Hartenberg homogeneous operator method assumes that the elements

of homogeneous transformation matrices of size 4 x 4 can be expressed using four inde-

pendent parameters, called Denavit-Hartenberg parameters. These are defined as follows:

angle 0,—the angle between the axes x;_; and x;;

distance a;—the distance between the origins O;_; and O; measured on the x; axis;
distance d;—the distance between the origins O;_; and O; measured on the z;_; axis;
angle o;—the angle between the z;_; and z; axes.

The transformation of the coordinates between the elements i and i + 1 results in a

sequence of four elementary movements, namely

a rotation with the angle 6; performed around the z; axis;
a translation with the distance d; along the z; axis;

a translation with the distance 4; along the x; axis;

a rotation with the angle a; around the x;; axis.

The homogeneous transformation matrix of size 4 x 4 characterizes the relative

movement between the elements i and 7 + 1. It is obtained after obtaining the product of

the homogeneous matrices that characterize the four movements:

—sin(6;) 0 0|1 0 O O (1 0 0 a] |1 0 0 0
cos(6;) 0 0|0 1 0O O[O0 1 O O[O0 cos(a;) —sin(a;) O ©)
0 1 0[l0 01 4||l0 01 0||0 sin(w) cos(r) O
0 0 1{(0 0 0 1|0 0 0 1]|O 0 0 1
cos(0;) —sin(0;)-cos(w;)  sin(6;)-sin(a;)  a;-cos(6;)
sin(0;)  cos(0;)-cos(w;) —cos(0;)-sin(a;) a;-sin(6;)
Ajjiy1 = . (10)
’ 0 sin(a;) cos(a;) d;
0 0 0 1

2.2. Application Overview

In the following paragraphs, the process of creating the MATLAB Simulink function

for the structure of a serial robot will be explained.

Starting with the mathematical models, MATLAB Simulink requires the following

system and sub-system blocks to be generated:

W o NG BN

o
XN = o

Rotation around the X-axis sub-system model;
Rotation around the Y-axis sub-system model;
Rotation around the Z-axis sub-system model;
Translation along the X-axis sub-system model;
Translation along the Y-axis sub-system model;
Translation along the Z-axis sub-system model;

Null sub-system model (matrix unit);

Movement module function sub-system model;
Robotic configuration sub-system model;

End-effector sub-system model;

The sub-system of the input parameters’ manipulation;
Displacement, velocity, and acceleration sub-system model;
Robot generation functionality model.

The robotic generation functionality structure is shown in Figure 2.
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Rotation| |Rotation| Rotation| | Translation |  Translation  Translation

-~ Null ¥ z x ¥ 7z

i Movement module sub-system
) ) Inputs manipulation Y 5 - )
Inputs +—  subsystem  —beed - I NN Displacement, Veloeity and

— > Outputs
Acceleration sub-system 2

S — End Effector sub-sy

Robot sub-system

Robotic generation functionality model

Figure 2. Robotic generation functionality structure.

The following steps represent the working method of the functionality.

Step 1:The end-user will introduce the inputs through the input port (geometric parameters,
generalized coordinates, number of modules, type of movement of the modules).

Step 2:The inputs will be processed in the input manipulation sub-system.

Step 3:Based on the inputs, the type of movement will be configured and calculated in the
movement module sub-system through the null, rotation X, rotation Y, rotation Z,
translation X, translation Y, and translation Z sub-systems.

Step 4:Based on the inputs, the robot modules will be configured and calculated together
with the end-effector inside the robot sub-system.

Step 5:The displacement, velocity, and acceleration will be calculated and represented as
graphs in the displacement, velocity, and acceleration sub-system.

Step 6:The calculated information and graphs will be sent outside, in the robotic generation
functionality model, through the output port.

2.3. Development of the MATLAB Simulink Serial Robot Functionality

Simulink is a block diagram environment used to design systems and sub-systems
with several domain models, in which the user can create a simulation before moving
forward to hardware and deployment without writing code.

In the following paragraphs, the development of the MATLAB Simulink functionality
block will be presented.

As a first step, the seven Simulink models (three translations, three rotations, and the
null block) used in the motion type model shown in Figure 2 will be created. The next
step is to create the motion type block and incorporate it, together with the final effector
block, into the robot block. This will be followed by the development of the displacement,
velocity, and acceleration calculation block. Finally, all of these will be incorporated into
the modular robot generation and calculation function.

2.3.1. Development of the Movement Sub-System Models

In the following, the rotational and translational motion models will be created, along
with the unitary matrix model, to further create the entire motion block.
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For the translational couple along the x axis, the homogeneous transfer matrix will be

used and converted to Simulink:

A

Tx __
ii+1

o O O

S = O O

0
1
0
0

gi +ax
ay
az
1

(11)

The Simulink model in which AiTi’frl is adapted to the block diagram is presented in

Figure 3.
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Figure 3. Translation along the (a) X- and (b) Y-axis sub-system models.
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For the translational couple along the y axis, the homogeneous transfer matrix will be

used and converted to Simulink:

A

Ty _
i+l —

S O O

S O = O
O = O O

Ay
gi +ay
az

(12)
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The Simulink model in which AT,y

: 11 is adapted to the block diagram is presented in

Figure 3.
For the translational couple along the z axis, the homogeneous transfer matrix will be
used and converted to Simulink:

10 0 4
010 a

A7 — Y 13

i,i+1 0 0 1 Qi+11z ( )
0 0 0 1

The Simulink model in which AZZ-’ 1 is adapted to the block diagram is presented in
Figure 4.

B

@

=

a41

®
5
¥

Bm-
gl -
&

v

» Reshape . @

ooooo

>
2

(@D
(@D,
Az

o

L

a44

Figure 4. Translation along the Z-axis sub-system model.

For the rotation couple around the x axis, the homogeneous transfer matrix will be
used and converted to Simulink:

1 0 0 Ay
Ay = |g St e (14)
’ sin (q;)  cos(q;) az
0
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The Simulink model in which Ai{j‘rl is adapted to the block diagram is presented in

Figure 5.
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& 5|3
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lsllelle
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|

A4

Be@ B

£

@ (b)

Figure 5. Rotation around the (a) X- and (b) Y-axis sub-system models.

For the rotation couple around the y axis, the homogeneous transfer matrix will be
used and converted to Simulink:

cos(q;) 0 sin(gq;) ax
R 0 1 0 ‘
s y 15
ii+1 —sin(q;) 0 cos(q;) az "
o o0 0 1

The Simulink model in which Ainrl is adapted to the block diagram is presented in
Figure 5.

For the rotational couple around the z axis, the homogeneous transfer matrix will be
used and converted to Simulink:

cos(q) —sin(g) O a
i : : 0 a
AR,’Z _ Sln(qz) COS(lx]Z) Yy 1
1,i+1 0 0 1 a, (6)
0 0 0 1

The Simulink model in which Afﬁrl is adapted to the block diagram is presented in

Figure 6.
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Figure 6. (a) Rotation around the Z-axis and (b) null (matrix unit) sub-system models.

For the null sub-system, the unit matrix will be used and converted to Simulink.
The Simulink model is presented in Figure 6.
To create the sub-systems, the following elements are used:

Constant to set the fixed values of the 4 x 4 matrix elements;
Input (g;, ax, ay, a;) and output ports;

Terminator;

Mux;

Reshape to shape the input to a 4 x 4 matrix;

Display to visualize the matrix.

2.3.2. Development of Movement Module Function

The blocks created in the previous subsection will be used to create the modular
movement type selection block. This is presented in Figure 2 in the movement model
sub-system.

To call the blocks already created, the MATLAB Simulink model block will be used, as
well as a system constant called “Movement_Type”. This will be generated with values
from 0 to 6, as shown in Figure 7 in the “General Info about Type_of Movement” box.
Using the system’s constant, the type of movement will be selected through a switch block.
Once the movement is selected, all of the other unused matrices will result in the unity
matrix. Therefore, in the end, all matrices will be multiplied, but the result of the calculation
will depend only on the model chosen by the constant. The MATLAB Simulink model of
the movement module is presented in Figure 7.



Appl. Syst. Innov. 2025, 8, 21

13 of 23

T

Movement_type case[4]

case (5]

case (6]

case [O) p=

caso[ 1=~

case (2} f---

dofaut: f===

Figure 7. Movement type modular block.
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To create the sub-system, the following elements are used:

Mux;

2.3.3. Robotic Configuration Sub-System Model

Demux;

Switch case action block;
Model block;
Display;

Matrix multiply block.

Input (g;, ax, ay, az, Movement_type) and output ports;
Switch case block;

In the following, the robot sub-system block presented in Figure 2 will be created. In

its implementation, all previously developed sub-systems will be called upon.

A new constant will be used for the active number of modules, through which the

inserted kinematic couplings will be unlocked. Similarly to the previous point, the Simulink

model block will be used to call the module of the modular movement type created. At

this point, the number of inputs for the robot block will increase, and they will be created

for each individual kinematic couple. For this experiment, three kinematic couples will be

used, as shown in Figure 8. In this system, the geometric parameters of the final effector will

be entered as inputs, where a 4 x 4 matrix will be created, with the geometric parameters

corresponding to the three-dimensional positioning.
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Figure 8. Modular robot block.

e )
N >}
p >= 2N Ay
—
"
[ >
P Ax
L =3 Ay
—

ah’

Modul_Miscare

—bhovemen(_(ype 4

Output
M1
Matrix
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Px

Efector_Final
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To create the sub-system, the following elements are used:

MATRIX_EE
MatrixMultiply2

Input (gp1i, axmi, ayMi, Azmi, Movementyype, Number acive,yoyus» Pxs Py, Pz) and output

ports;

Switch block;
Constant block;
Model block;
Mux;

Demux;

Matrix multiply block.

2.3.4. Displacement, Velocity, and Acceleration Sub-System Model

For the development of the next computational block, the output from the robot block

will be used. To create the displacement, velocity, and acceleration graphs, the resulting

final matrix of the end-effector, as well as each individual kinematic couple, will be analyzed

and decomposed in order to perform the necessary calculations for the representation of

each individual graph. This calculation module is shown in Figure 9.

To create the sub-system, the following elements are used:

Input and output ports;

Submatrix block;
Derivative block;
Mux;

Display;

Scope.
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Figure 9. Displacement, velocity, and acceleration calculation model block.

2.3.5. Robot Generation Functionality Model

All modules presented in the previous sub-sections are included in the final imple-
mentation of the generating function of modular robots, which is presented in Figure 10.
Here, the rotational and translational motion modules are incorporated, along with the
motion type modules. All of them are present in the robot sub-system.

Robotic_Questions

Robot
Active_Modules
—
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0 1 0)
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T q o q 1 >
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Figure 10. Generating function of modular robots.

Inside this block, all of the presented models in the previous sub-sections, and all
of the performed calculations, will be included. Using this module, the construction of
modular serial robots will be enhanced in terms of resource optimization and time, as
the information is collected in one step. In the end, the development progress, along
with the simplified information, will ease the system’s understanding for new users, and
even students will have the possibility to improve their knowledge in the calculation and
development of serial robots.
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3. Results

In order to validate the calculations of the function, the example of the R; Ry R, robot,

as shown in Figure 11, is proposed.

§ZO,21,22

X2,X3

Y0, Y1

Figure 11. Schematic of the R;R, Ry, robot that will be analyzed.

The defining matrices of the robot will be written as follows:

A =

Ay =

where

sin(g,)  cos(q,
0 0
0 0
cos(q,) O
0 1
—sin(q,) 0 cos(q,)
0 0
cos(g5) 0
0 1
—sin(gq5) 0
0 0
I3
0
P =
M~ 10
1
12 =30 [m]

0
0
1
0

_ o O O

(17)

(18)

(19)

(20)

(21)
(22)
(23)
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In order to complete the input information that will be used to validate the proposed

serial robot, the questionnaire presented in Figure 12 will be completed. Based on the

questionnaire answers, the robot drawn in Figure 11 will be built.

Information about robot 1:
Please enter the number of active robot modules between 1 and 3--->
Please enter the generalized coordinate value for module 1 ---------- >

Please enter the geometric parameters:

Ax >
Ay >
Az >
Please enter the type of movement for module 1 --------mmmmmmmmnnv >

(See General Info about Type of Movement)

Module 2 (If applicable)

Please enter the generalized coordinate value for module 2 ---------- >
Please enter the geometric parameters for module 2:

Ax >

Ay >

Az >

Please enter the type of movement for module 2 >
(See General Info about Type of Movement)

Module 3 (If applicable)

Please enter the generalized coordinate value for module 3----------- >

Please enter the geometric parameters for module 3:

Ax >

Ay >

Az >

Please enter the type of movement for module 3 >
(See General Info about Type of Movement)

Please enter the geometric parameters End Effector:

Px >

Py >

Pz >

Figure 12. Robotic questions—questionnaire.
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After running the created MATLAB Simulink model, the calculation results for the
matrices of the My, My, M3 couples and of the end-effector (the matrix Matrix_EE) will be
obtained, as illustrated in Figure 13.

4 Robot N
—»] Number_Active_Modules

N bl

B M1R1 [

ojlullelle
(=]

ojlellojl=
lall=ile

—»{Aym1

— AzM1
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9 1][ o
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q q o 1
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—» TmM3

LIS L 0 1 0 o]
(D [ o q 1] 29

MATRIX_EE |-
of 9 o 1

EER1
—»{Py

Pz
N /

Figure 13. The result of the generating function of modular robots in the parking position.

In order to obtain a visual representation of the R, Ry Ry robot, Figure 14 was generated.
In this figure, the plot of the R;Ry R, robot is presented. The kinematic couples My, M,
and M3 are represented by a green sphere. The robot’s end-effector is represented by a red
sphere. Next to each kinematic couple and next to the end-effector are the 3D positional
values, which are also presented in Figure 13 in the matrices MR, MaR1, M3Rq, and EER;.

In order to validate the calculations performed, together with the implementation of
the functionality in MATLAB, additional validation was performed using the Mathcad
Prime 7.0.0.0 software. Equations (7), (8), and (17)—(23) were introduced into the Mathcad
software. The geometric parameters /1, I, and I3 were introduced, together with the
generalized coordinates gy, 2, and g3, with values of zero for generalized coordinates, to
calculate the parking position. The calculation of the A, Ay, A3, and P3; matrices of the
robot was performed. Finally, the kinematic couple matrices MR, MaR1, M3R; were
calculated together with the final effector position matrix EER;, which are presented in
Figure 13. The mathematical validation through the Mathcad software is presented in
Figure 15.
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Figure 14. The plot of the robot R;RyR.
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Figure 15. Mathematical validation through Mathcad software.

The authors also propose a demonstration of the representation of the displacement,
velocity, and acceleration graphs; for this, a repeating signal, as shown in Figure 16, will be
used. It will be attached to the kinematic coupling R, and a repetitive movement will be
implemented for the generalized coordinate g3 of the robot. This will be linked to [Q3R1]
from the robotic questions in Figure 12.
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Magnitude (m)

Repeating Sequence Signal
T

Repeating Sequence

| | | | |

3 4 5 8 7
Time (secs)

Figure 16. Repeating signal attached to Q3, simulation graph.

Considering the repetitive signal 0 [m]-2 [m], which is attached to g3, shown in
Figure 16, a displacement on the Z-axis will be observed. Moreover, an associated oscillation
on the Z-axis of the end-effector with a displacement of 2 [m] is visible.

In Figure 17, the displacement on the X-, Y- and Z-axes of the end-effector is repre-

sented, along with the variation statistics on the Z-axis.

Displa?emem B 5 Trace Selection X
E m |D|splacemenl z [—]
X 69.995 ‘ d
E so0o- 7 ¥ Signal Statistics ax
g 69.985 Value Time (secs)
g 69.98 Max 2.000e+01 0.000e+00
869 o751 1 1 1 1 1 1 1 i . Min 1.860e+01 2.000
Peak to Peak 1.396e+00
i | I | | | I Mean 1.936e+01
o5k I I . Median 1.930e+01
RMS 1.936e+01

Displacement Y (m)
f =

yywwyw

1 Il 1 Il Il Il Il

- T T

E » [

N

1o

g 19

0 18.5E : : 1 L : : 1 1 4
1 3 4 5 6 7 8 9 10

Time (secs)

Figure 17. Displacement graph on the X-, Y-, and Z-axes of the end-effector.

In Figure 18, the velocity is represented on the X-, Y-, and Z-axes of the end-effector,

along with the variation statistics on the Z-axis.
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Figure 18. Velocity graph on the X-, Y-, and Z-axes of the end-effector.

In Figure 19, the acceleration is represented on the X-, Y-, and Z-axes of the end-effector,
along with the variation statistics on the Z-axis.
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Figure 19. Acceleration graph on the X-, Y-, and Z-axes of the end-effector.

In summary, the ease of completing the input values in the application and its user-
oriented implementation can be observed. The robot schematization will be created in
order to provide an overview of the desired robot and the geometric parameters needed to
complete the guidance questionnaire. In a small amount of time, it is possible to obtain the
results of the matrix calculations for the serial robot. After performing the parking position
calculation, a repetitive motion equation is introduced to demonstrate the calculation
of the displacements, velocity, and accelerations of the end-effector. The displacement
graphs on X, Y, and Z, together with the velocity and accelerations on the same axes for
the end-effector will be accessed instantly for analysis, as shown in Figures 15-17. In these
analysis windows, the statistics of each signal can be followed. The blocks can be opened
and analyzed for each kinematic coupling in particular. Returning to the questionnaire, by
modifying the geometric parameters, the equations of motion, the type of movement of the
couplings, or even their number, the user has the possibility to reconfigure the robot and
analyze different optimal scenarios for the projects in which it will be used. By using this
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function, the user will no longer need to use multiple software packages for the calculation
and analysis of serial robots.

4. Conclusions

Considering the above, using the MATLAB programming environment, the authors of
this paper propose the development of a functionality model block developed in MATLAB
Simulink, oriented towards the end-user/client, using the model-based development
method. This function can be used and incorporated into a real module to streamline
and simplify serial robot calculations and optimize the use of resources and time. In
order to realize a complex project, the possibility of generating one or more robots whose
morphology and implementation are modular can be realized through this function.

In this paper, the aim was to create a function using the MATLAB Simulink software
in which the user would have the possibility to configure serial robots containing fifth-
class kinematic couplings, rotation, and translation in their structures. The mathematical
equations of rotation and translation were modeled on all three axes, X, Y, and Z. A modular
movement block and a modular operational block were created for serial robots, which can
be accessed with the help of guiding questions. Calculation and representation blocks for
the displacement, velocity, and acceleration were created for the final effector and for all
individual kinematic couplings.

Using this function, users will no longer need to use additional software or other
libraries to calculate robotic matrices, with all of the information being inserted inside
the function block. By introducing the inputs, namely the generalized coordinates, the
geometric parameters, and the number of kinematic couples and their types, the function
can calculate the direct kinematics of the serial robot and create displacement, velocity, and
acceleration graphs for the end-effector and for each kinematic couple.

Future Opportunities

As future aspirations, for the generating function for serial robots, a user-oriented
interface will be developed. The application will have a user-oriented interface, which will
guide the user step by step to introduce the necessary information in the block, in order to
achieve the goal of serial robot generation. After obtaining a configuration that complies
with the basic requirements of the applied project, a working space will be configured. Both
the robot and the working environment will be configured according to the needs of each.

In the next stage, after the generation of the robot is completed, users will have working
programs for the functionalities of the robots, graphs to use for the trajectory calculations,
and the possibility to generate and simulate them inside a graphic interface. By using this
function, a result will be achieved rapidly in terms of the time invested. Users have the
advantage of being able to focus on the project, rather than on the administrative aspects
regarding the connectivity of the tools and knowledge of the libraries. They will be able
to benefit from an application that can easily guide them towards the realization of their
projects. Additionally, they will have the possibility to implement the entire workspace in a
single environment with high-precision calibration. Design errors will be easily identifiable,
with one of the aims being to avoid them starting from the initial steps of the project.
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