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Abstract: This review explores the novel integration of data-driven approaches, including
artificial intelligence (AI) and machine learning (ML), in advancing building energy retrofits.
This study uniquely emphasizes the emerging role of explainable AI (XAI) in addressing
transparency and interpretability challenges, fostering the broader adoption of data-driven
solutions among stakeholders. A critical contribution of this review is its in-depth analysis
of innovative applications of AI techniques to handle incomplete data, optimize energy per-
formance, and predict retrofit outcomes with enhanced accuracy. Furthermore, the review
identifies previously underexplored areas, such as scaling data-driven methods to diverse
building typologies and incorporating future climate scenarios in retrofit planning. Future
research directions include improving data availability and quality, developing scalable
urban simulation tools, advancing modeling techniques to include life-cycle impacts, and
creating practical decision-support systems that integrate economic and environmental
metrics, paving the way for efficient and sustainable retrofitting solutions.

Keywords: energy retrofits; building energy performance; energy efficiency; artificial
intelligence; machine learning

1. Introduction
Buildings in the European Union (EU) consume nearly 40% of the total energy [1] (in

2020), significantly contributing to energy demand and associated emissions (European
Commission, 2018). Building operations account for 30% of global final energy consump-
tion and 26% of global energy-related emissions (8% being direct emissions in buildings
and 18% indirect emissions from the production of electricity and heat used in buildings).
Direct emissions from the buildings sector decreased in 2022 compared to the year before,
despite extreme temperatures driving up heating-related emissions in certain regions. In
2022, energy use in the building sector increased by around 1% [2]. Given the substantial
impact of the sector, there is considerable potential for cost-effective enhancements in
energy efficiency and reductions in greenhouse gas emissions. To meet the EU’s ambitious
energy and environmental targets for 2030 and 2050, there is a strong focus on improving
the energy performance of buildings through legislative measures like the Energy Per-
formance of Buildings Directive [3]. This directive seeks to accelerate the renovation of
buildings, particularly those with the poorest performance, enhance air quality, promote
the digitization of energy systems, and support the development of infrastructure for sus-
tainable mobility. Despite these efforts, global progress in implementing energy efficiency
measures in existing buildings remains insufficient, falling short of the actions needed to
reach net-zero carbon dioxide emissions by 2050. Regarding existing buildings, making up
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over 97% of the building stock, 75% are considered energy inefficient, heavily dependent
on fossil fuels, and equipped with outdated technologies and appliances [4]. In the EU,
over 220 million building units exist, with 85% constructed before 2001, and it is projected
that 85–95% of these buildings will still be in use by 2050 [5].

Globally, improving the energy performance of buildings is critical to meeting the
United Nations’ Sustainable Development Goals (SDGs) for 2030. The building sector, as the
largest energy consumer worldwide, accounts for 37% of the final energy consumption (UN,
2022) [6]. In 2022, buildings consumed 132 exajoules (EJ) of energy. This sector’s significant
contribution to global warming is evident. From 2010 to 2022, energy consumption in
buildings increased from 119 EJ to 132 EJ, driven by improved energy access in developing
countries and the growing use of energy-intensive devices.

To meet the Paris Agreement’s emission reduction targets [7], the building sector must
adopt more effective retrofit strategies. The International Energy Agency (IEA) projects
that significant declines in global energy demand in buildings can be achieved through
energy efficiency improvements, aiming for a 40% reduction by 2040 [8]. This includes the
deployment of more efficient heating systems, better insulation, and the increased use of
renewable energy sources. The ‘Low Energy Demand’ scenario by Grubler et al. [9] targets
limiting global warming to 1.5 °C by 2050, which requires doubling the current retrofit rate
and adopting advanced thermal end-use technologies.

In this context, data-driven decision support systems are emerging as a pivotal com-
ponent in enhancing building energy retrofits. Leveraging advanced analytics, machine
learning algorithms, and big data, these systems provide accurate predictions, optimize
energy use, and suggest the most cost-effective and impactful retrofit measures. Current
methods for building energy modeling can be categorized into white-box, gray-box, and
black-box models. White-box models, based on building physics principles, require detailed
inputs and are often cumbersome. Gray-box models combine physics-based approaches
with in situ measurements, while black-box models rely entirely on measured data and
use statistical and machine learning techniques. Recent years have seen an increased use
of black-box models for building energy modeling due to their ability to handle complex
system dynamics and update with new data.

This review aims to synthesize current research on data-driven decision support sys-
tems for smart and efficient building energy retrofits, with a particular focus on AI and
machine learning algorithms. By examining the latest advancements and applications
in these technologies, we seek to provide a comprehensive understanding of their role
in meeting both global and regional energy and emission reduction targets, ultimately
contributing to a more sustainable and efficient building stock for the future. The rest
of the paper is organized as follows: Section 2 provides an overview of building energy
retrofitting, discussing its importance and the evolution of retrofitting strategies. Section 3
outlines the methodology of this study, detailing the databases used, keywords and search
terms, the time frame, inclusion and exclusion criteria, and the process of data extraction
and analysis. Section 4 focuses on data-driven approaches to building energy retrofitting,
exploring the types of data utilized and their sources. Section 5 delves into the application
of AI and machine learning algorithms in energy retrofitting, describing the various types
of algorithms employed in this field. Section 6 introduces explainable AI (XAI) and its sig-
nificance in energy retrofitting, particularly in ensuring transparency and interpretability in
AI-driven processes. Section 7 presents a discussion of the key findings and the challenges
encountered in implementing these approaches. Finally, Section 8 concludes the paper
by summarizing the findings, suggesting directions for future research, and offering final
thoughts on the progress and potential of energy retrofitting of buildings.
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1.1. Scope of Data-Driven Building Energy Retrofitting

This review covers data-driven retrofitting strategies across residential, commercial,
and public buildings, each presenting distinct energy demands and retrofit challenges.
In residential buildings, retrofitting typically focuses on cost-effective improvements to
energy efficiency and occupant comfort. For example, Seraj et al. [10] demonstrated the
use of machine learning models to predict energy performance in UK residential buildings,
improving retrofit decision-making by accurately forecasting energy savings. Commercial
buildings require more complex energy management systems, where retrofitting efforts
must balance energy efficiency with operational needs. Seyedzadeh et al. [11] employed
gradient-boosted decision trees to predict non-domestic building energy performance,
enabling deep energy retrofits by identifying optimal energy-saving strategies. Public
buildings, including schools and hospitals, present additional challenges such as regulatory
compliance and sustainability goals. Jradi [12] applied digital twin technology in public
buildings, optimizing retrofitting strategies by integrating real-time operational data, which
improved both decision-making and energy savings. Across these sectors, the primary
goals of retrofitting are to reduce energy consumption, minimize greenhouse gas emissions,
and enhance occupant comfort and productivity.

1.2. Review Novelty

This review stands out by critically examining the application of AI and ML in building
energy retrofits, focusing on emerging areas such as explainable AI (XAI) and its role in
enhancing stakeholder trust and decision-making. Unlike traditional reviews, it delves
into underexplored challenges like addressing incomplete datasets, ensuring scalability
across diverse building types, and integrating future climate considerations into retrofit
planning. By synthesizing findings across a range of sectors—residential, commercial,
and public—this review not only identifies research gaps but also provides a roadmap for
leveraging data-driven innovations to achieve impactful and sustainable retrofit solutions.
This novel perspective bridges the technical and practical aspects of retrofitting, offering a
comprehensive guide for researchers, policymakers, and industry stakeholders.

2. Building Energy Retrofitting: An Overview
Building energy retrofitting focuses on improving energy efficiency and reducing

energy consumption in existing buildings, addressing the significant energy use and
greenhouse gas emissions from the building sector. This is particularly important in
regions like the EU, where over 220 million building units exist, 75% of which are energy
inefficient, with more than 85% expected to still be in use by 2050 [13]. Despite ongoing
renovations, the process is slow, leaving many buildings reliant on outdated technologies
and fossil fuels [14]. Retrofitting these structures presents opportunities for significant
energy efficiency improvements and emission reductions [15].

Aligned with the EU Green Deal, the European Commission’s Renovation Wave
Strategy aims to double renovation rates in the next decade. This initiative targets im-
proving energy performance in 35 million buildings by 2030, potentially creating up to
160,000 jobs [16]. It also addresses energy poverty, with 34 million Europeans unable to
afford adequate heating or cooling, while enhancing health, well-being, and energy security.

The energy retrofit process consists of five phases according to Ma et al. [17] (Figure 1):

1. Project Setup and Pre-Retrofit Survey: Define the project scope, engage stakeholders,
and collect baseline data on building design, HVAC systems, and energy use.

2. Energy Audit and Performance Assessment: Evaluate energy consumption using
tools such as thermal imaging and blower door tests to identify inefficiencies.
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3. Identification of Retrofit Options: Analyze measures using simulations and modeling
to select cost-effective strategies aligned with project objectives.

4. Site Implementation and Commissioning: Install measures like insulation, energy-
efficient systems, and renewable technologies, ensuring proper operation through
testing and adjustments.

5. Validation and Verification: Monitor post-retrofit energy performance and compare it to
pre-retrofit levels to validate savings and identify further optimization opportunities.

Figure 1. Typical energy retrofitting process adapted from Ma et al. [17].

Energy retrofitting can be categorized into three main types:

• Envelope Retrofits: Improve insulation, windows, doors, and roofing to reduce heat
loss and gain. Studies show substantial energy savings, particularly in poorly insulated
buildings as shown by Nutkiewicz and Jain [18].

• System Upgrades: Replace HVAC systems, lighting, and hot water systems with
energy-efficient technologies, including renewable energy sources like solar panels.
These upgrades reduce energy consumption while enhancing occupant comfort as
shown by Ali et al. [19].

• Operational Improvements: Implement smart controls and optimize system opera-
tions to improve efficiency without major physical changes. Examples include intelli-
gent energy management systems and occupant behavior modifications as shown by
Jradi et al. [20].

Energy retrofits offer numerous benefits, including lower energy consumption [21],
reduced greenhouse gas emissions, enhanced indoor comfort, increased property values,
and job creation. For instance, Jradi [12] analyzed the impact of retrofitting on three schools,
highlighting significant energy savings and operational improvements as shown in Table 1.
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Table 1. School information and retrofit measures implemented. Adapted from Jradi [12].

School A School B School C

Indoor Floor Area 11,900 m2 8700 m2 8900 m2

Construction Date 1954 1955 1961
Number of Blocks 16 12 11
Number of Students (2018) 677 536 507
Number of Teachers (2018) 31 27 28
Operation Hours 6:30–19:00 6:30–19:00 6:30–19:00

Retrofit Measures Implemented

• Energy-efficient T5 and
T8 LED lighting through-
out.

• 250 mm mineral wool in-
sulation in 7400 m2 attic
space.

• 95 m2 of exterior walls
insulated with 190 mm
mineral wool.

• Double-glazed windows
and glass doors with U-
value of 1.3 W/m2-K in
7 blocks.

• Skylights upgraded
to U-value of around
1.4 W/m2-K in 8 blocks.

• Replacement of four
hot water circulation
pumps.

• Improved heating
setpoint management
across all blocks.

• Insulation of pipes,
valves, and pumps in
technical rooms.

• Energy-efficient T5 LED
lighting in 10 out of
12 blocks.

• 200 mm mineral wool in-
sulation in 150 m2 attic
space.

• 120 m2 of exterior
walls insulated with
150–200 mm mineral
wool.

• Thermal double-glazed
windows and glass
doors with U-value
around 1.4 W/m2-K in
4 blocks.

• Replacement of three
hot water circulation
pumps.

• Proposed heating set-
point management
framework.

• Motion sensors installed
in some classrooms.

• Insulation of pipes,
valves, and pumps in
technical rooms.

• Energy-efficient T5 and
T8 LED lighting through-
out.

• 150–300 mm bat insula-
tion in 1800 m2 flat roof
area.

• 850 m2 of exterior walls
insulated with 100 mm
mineral wool.

• Double-glazed win-
dows, glass doors, and
some skylights with
U-value of 1.3 W/m2-K
in 6 blocks.

• Replacement of two
hot water circulation
pumps.

• Proposed heating sys-
tem setpoint manage-
ment in some blocks.

• Insulation of pipes,
valves, and pumps in
technical rooms.

The retrofitting measures in the three schools, as discussed by Jradi [12], showed
varied energy savings. Schools A and B achieved significant heating reductions of 15.7%
and 15.4%, respectively, while School C saw lower savings of 9.3%, likely due to differences
in the initial conditions or measures implemented. For electricity consumption, School
B had the highest reduction at 15.0%, followed by School C at 13.2%, and School A with
2.2%, indicating a greater focus on heating improvements in School A. These results
emphasize tailoring retrofitting strategies to each building’s specific needs to maximize
energy efficiency.

Challenges to retrofitting adoption include high upfront costs, regulatory complexities,
and limited scalable tools [22]. Awareness of retrofit benefits remains low, highlighting the
need for education and outreach [23]. Overcoming these barriers requires collaboration
among policymakers, industry stakeholders, and building owners.

Energy retrofitting offers immense potential to reduce energy use and emissions.
Addressing financial, regulatory, and technical challenges, alongside leveraging AI and
data-driven approaches, can unlock significant environmental and economic benefits.

3. Methodology
To ensure a comprehensive review of the current research on data-driven decision

support systems for building energy retrofits, we conducted a systematic literature search
using Google Scholar and Scopus. The search strategy was designed to capture a broad
range of studies related to the application of data analytics, machine learning, and AI in en-
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ergy retrofitting of buildings. To ensure a comprehensive literature review, citation chasing
was employed as a methodological strategy. This involved systematically examining the
references cited in selected papers to identify additional relevant studies and sources.

3.1. Databases Used

• Google Scholar: The primary database for this review, chosen for its extensive and
interdisciplinary coverage of academic research.

• Scopus: Selected for its comprehensive database of peer-reviewed literature across
various disciplines.

3.2. Keywords and Search Terms

The following keywords and search terms were used to identify relevant studies:

• “Data-driven energy retrofit”;
• “AI in building energy retrofit”;
• “Machine learning for building energy retrofit”;
• “Data-driven building retrofit”.

3.3. Time Frame

The literature search focused on studies published in the last 10 years (2014–2024) to
ensure that the review reflects the most recent advancements and current state of the field.

3.4. Inclusion and Exclusion Criteria

• Inclusion Criteria:

– Studies that specifically focus on data-driven approaches to building energy
retrofits;

– Research involving AI and machine learning in building energy efficiency;
– Papers discussing smart building technologies and their applications in energy

retrofits;
– Studies providing empirical results, case studies, or comprehensive reviews;
– Additional studies deemed relevant after an initial analysis of the retrieved

literature.

• Exclusion Criteria:

– Studies not focused on building energy retrofits;
– Studies with outdated technologies or methodologies;
– Research not providing sufficient methodological details;
– Review papers.

3.5. Data Extraction and Analysis

To systematically analyze the selected studies, the following data extraction and
analysis steps were undertaken:

• Data Extraction:

– Title, authors, and publication year;
– Abstract summery;
– Methodological approach (e.g., type of data-driven model and AI technique

used);
– Research objectives and questions;
– Research gap;
– Dataset used;
– AI and machine learning methods used;
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– Key findings and results.

• Data Analysis:
Several analytical approaches were employed to examine the data types, data sources,
and machine learning techniques used for building energy retrofits. Thematic anal-
ysis was used to categorize studies based on different data types (e.g., sensor data,
utility bills, and energy audit reports) and data sources (e.g., real-time monitoring
systems, historical records, and building management systems). To enhance the
depth of the analysis, Elicit [24], an AI-powered research assistant, was utilized to
streamline the identification and extraction of key insights from relevant studies. Ad-
ditionally, machine learning techniques were assessed, including supervised learning,
unsupervised learning, and explainable artificial intelligence, to understand their
applications in areas such as energy consumption prediction, optimization, and fault
detection. Comparative analysis was conducted to evaluate how various data types
and sources are utilized with these machine learning techniques, highlighting their
effectiveness, limitations, and applicability across different retrofit scenarios. The
integration of Elicit facilitated a more efficient and comprehensive examination of the
diverse methodologies and technologies in the field.

By employing this structured methodology, we obtained 52 papers, and we aim to
provide a comprehensive and detailed review of the current state of research on data-driven
energy retrofits, highlighting the role of AI and machine learning in advancing building
energy efficiency.

4. Data-Driven Approaches to Building Energy Retrofitting
Data-driven building energy retrofit refers to the utilization of data analytics, ma-

chine learning, and advanced computational methods to guide, optimize, and implement
energy efficiency measures in existing buildings. These approaches leverage extensive
datasets and sophisticated algorithms to pinpoint effective retrofit strategies, forecast en-
ergy savings, and continuously monitor and enhance building performance. The scope of
data-driven retrofitting includes residential, commercial, and public buildings, aiming to
cut energy consumption, reduce greenhouse gas emissions, and improve occupant comfort
and productivity.

4.1. Data Types

In the realm of building energy retrofits, data-driven approaches are pivotal for devel-
oping effective strategies and optimizing energy performance. Various types of data play
crucial roles in informing these approaches, including energy consumption data, building
characteristics, weather data, and operational data.

Energy Consumption Data: Energy consumption data collected from various sensors
and meters provide critical insights into consumption patterns and inefficiencies. Sensors
placed throughout a building can capture granular data on parameters such as temperature,
humidity, and occupancy, which further informs energy usage patterns. For example, in
Wiethe et al. [25], the authors used the real-world dataset of 25,000 single and two-family
buildings from Germany, with 74 variables related to building characteristics, heating
systems, and annual metered thermal energy consumption to employ an agent-based
building stock model for the German residential sector to explore the relationship between
prediction accuracy and retrofit rates.

Building Characteristics: These include the construction materials, insulation levels,
HVAC systems, window types, and occupancy patterns, which are crucial for accurate
energy modeling and simulation. Detailed building characteristics can help tailor retrofit
measures to specific building types; for example, Nutkiewicz et al. [26] used hourly elec-
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tricity consumption data for 29 buildings in downtown Sacramento, California, for the
years 2016–2018, along with publicly available data on the building geometry, building
characteristics, and weather data for the same area and time period, to develop a greedy
optimization algorithm that can identify the minimum number of buildings that need to be
retrofitted to achieve maximum energy savings across an urban area. Moreover, Nutkiewicz
and Jain [18] utilized a dataset that includes building geometries created from GIS data, and
non-geometric building properties based on the U.S. Department of Energy (DOE)’s Com-
mercial Reference Buildings to introduce an integrated simulation and data-driven method
(Data-driven Urban Energy Simulation or DUE-S) to model large-scale retrofit policies.

Weather Data: Local climate data include temperature, humidity, solar radiation, and
wind speed, which impact building energy performance and are necessary for precise
simulations and predictions. Weather data are also integral to understanding how external
conditions affect energy use and can enhance the accuracy of energy models. In the work
of Moraliyage et al. [27], the authors used the UNICON dataset, which is drawn from the
La Trobe Energy AI/Analytics Platform (LEAP) and contains energy consumption and
weather data for more than 100 buildings across multiple campuses of La Trobe University
from 2018 to 2020 to develop and evaluate a robust and explainable AI-based framework
for the measurement and verification (M&V) of energy conservation measures (ECMs)
in buildings.

Operational Data: Building operations information, such as lighting schedules, equip-
ment usage, and maintenance activities, helps to understand and optimize energy use.
Operational data provide context for energy consumption patterns, highlighting potential
areas for improvement. Looking at the work of Jradi et al. [20], the authors developed
a digital twin solution, presented in Figure 2 that utilizes building operational data and
sensor data; this solution will provide decision-making support for energy retrofits through
testing and simulation.

Figure 2. DanRETwin solution illustration with the main technology components and connections.
Reprinted from Ref. [20].



Appl. Syst. Innov. 2025, 8, 5 9 of 40

Combining these diverse data types allows for a comprehensive analysis and opti-
mization of energy use in buildings. By integrating energy consumption data, building
characteristics, weather conditions, and operational insights, stakeholders can develop
more effective retrofit strategies, leading to significant improvements in building energy
efficiency and performance. Future research should continue to explore innovative ways
to integrate and leverage these data sources to further enhance the retrofit outcomes
and sustainability.

4.2. Data Sources

Effective data collection is crucial for assessing the performance of energy retrofit
interventions in buildings; several methods are employed to gather the necessary data for
energy retrofits.

Building Management Systems (BMSs): BMS integrates various building systems and
sensors, collecting and managing data related to energy use, indoor environmental quality,
and system performance. BMSs are central hubs for data collection, integrating various sen-
sors and systems within a building. The author in Hong et al. [28] used a dataset consisting
of real-time monitored data from the Energy Management System (EMS) and Building
Automation System (BAS) of the CalSTRS building to gather comprehensive performance
data. This dataset includes energy use recorded at hourly intervals and HVAC operating
conditions as well as environmental data captured at 15 min or 1 min intervals. The study
demonstrated that such high-resolution data are crucial for identifying inefficiencies in
energy use and optimizing building performance. For instance, detailed monitoring of the
HVAC system revealed opportunities for operational improvements, such as better control
strategies and adjustments to equipment settings, which directly informed retrofit decisions.
Moreover, the use of real-time data helped overcome common data collection challenges,
such as reliance on periodic or aggregated data that may obscure short-term inefficiencies.
By leveraging detailed and continuous data, the study provided more accurate insights
into building performance, allowing for targeted retrofitting measures. In the work of
Piira et al. [29], the authors used the automatic collection of real-time building energy con-
sumption data gathered from the building management systems to develop an advanced
retrofitting decision support tool that support step-by-step thinking for retrofitting design
and hopefully enable a larger utilization rate for deep building retrofits.

In the industry, solutions like Schneider Electric’s EcoStruxure™ Building Operation
further illustrate how BMS platforms integrate various building systems, providing critical
data that support energy efficiency initiatives and informed decision-making for retrofits.

Sensors and IoT Devices: Sensors are widely used in energy retrofits in buildings
because of their ability to provide granular data on specific parameters crucial for opti-
mizing energy use. Temperature sensors measure ambient temperatures across different
zones, which is essential for evaluating the performance of heating and cooling systems
and ensuring that temperature control is effectively managed after retrofits. Occupancy
sensors detect the presence of individuals in a space and adjust lighting and HVAC sys-
tems accordingly, thereby enhancing energy efficiency by reducing energy consumption in
unoccupied areas. In addition, power meters measure electrical consumption at various
points within the building, providing detailed information on the energy usage of specific
systems or equipment. This information is invaluable for identifying inefficiencies and
opportunities for improvement, enabling more targeted and effective retrofit strategies,
according to Nutkiewicz and Jain. [26], Seyedzadeh et al. [11].

In the industry, companies like ReMoni offer advanced sensor solutions that provide
the real-time monitoring of energy usage and equipment performance, further demon-
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strating the critical role of sensors in optimizing building energy efficiency during and
after retrofits.

Energy Audits: Energy audits are systematic evaluations of a building’s energy use.
They involve a combination of visual inspections, data collection, and analysis to identify
areas for improvement. Audits typically assess the performance of the building envelope,
system efficiencies, and operational practices. The comprehensive nature of energy audits
makes them a valuable tool for establishing baseline energy performance and developing
targeted retrofit strategies. They are often used in conjunction with other data collection
methods to provide a detailed understanding of energy use and potential savings; see the
work of Geraldi et al. [30], Marasco et al. [31].

Energy Modeling: Building energy modeling involves the use of simulation software
to predict energy consumption and savings associated with retrofit measures. Models
can simulate a range of scenarios based on different retrofit strategies, allowing for the
evaluation of potential impacts on energy performance before implementation. Energy
modeling is crucial for planning and optimizing retrofit interventions, as it provides
predictive insights into how changes will affect overall energy use. This approach supports
decision-making by forecasting the potential benefits and costs of various retrofit options;
see the work of He et al. [32].

Digital Twins: Digital Twins are virtual replicas of physical buildings that use real-time
data to simulate and analyze building performance. They integrate data from sensors, BMS,
and other sources to create a dynamic model that mirrors the real-world conditions of the
building. Digital twins enable the comprehensive monitoring and simulation of building
systems, allowing for predictive analysis and optimization of energy use. They offer a
powerful tool for assessing retrofit impacts, testing scenarios, and refining strategies by
providing detailed insights into how changes will affect building performance; see the
work of Jradi et al. [20].

The combination of different data sources allows for a thorough evaluation of energy
performance and the effectiveness of retrofit measures. In particular, the integration of data-
driven approaches in building energy retrofitting is increasingly supported by a growing
body of research that utilizes diverse datasets and objectives to enhance energy efficiency.
The detailed analysis of these selected studies, extracted through a rigorous database
search, reveals the breadth of data sources and methods applied across different contexts,
highlighting the versatility and potential of data-driven methodologies in retrofitting
processes. To provide a clearer picture of how these studies align with various objectives
and datasets, we summarize the reviewed studies in Table 2. This table offers an overview
of the study titles, their objectives, and the datasets used, showcasing the diversity and
scope of research in this area.

Table 2. Overview of reviewed studies in data-driven approaches to building energy retrofitting.

Study Objective Dataset

[10]
Create a data-driven AI model to predict
building energy performance for different

retrofit scenarios

EPC dataset for residential buildings in
the UK.

[11]
Develop a model for predicting Building

Emission Rate (BER) to estimate
non-domestic building energy efficiency

records of non-domestic buildings in the
UK, sourced from the arbnco Consult

platform.

[18] Urban-scale energy modeling with
hybrid approaches.

Electricity consumption, weather,
building geometry.
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Table 2. Cont.

Study Objective Dataset

[19] Optimize urban-scale energy retrofits
with cost-effective recommendations.

EPC data, building census data, retrofit
cost data.

[20] Digital twin for non-residential retrofits. Building operational data, sensor data.

[21] Address incomplete retrofit data with
fusion methods. EPC data, PCA-imputed variables.

[23]
Develop a model to evaluate the impact
of retrofit technologies on stakeholder

expectations.

Survey data from owners and energy
auditors.

[25] Agent-based modeling for retrofit rate
and CO2 impact analysis.

Building geometry, census sources,
retrofit scenarios.

[26] Enhance deep learning for large-scale
retrofit impacts.

Electricity consumption data, building
geometry, weather data.

[27] Explainable AI for energy conservation
measures.

UNICON dataset (multi-campus energy
data).

[28] Evaluate energy savings potential in
retrofitting high-performance buildings. EMS and BAS monitored data.

[29]
Assist users in designing and selecting

building retrofitting actions by leveraging
real-time data

Real-time energy consumption data.

[30] Propose energy benchmarking using
ANN models.

Energy audit data, electricity bills,
surveys.

[31] Assess ECM opportunities with machine
learning models.

Energy audit data from NYC Local
Law 87.

[32] Normative simulations for
climate-specific retrofits. Simulation data from EPC tools.

[33] Efictive retrofitting decision support for
EU decarbonization goals.

Building energy performance, geometry,
installed technologies.

[34]
Develop and evaluate a data-driven

approach for city-wide building
retrofitting,

Heat energy consumption, EPC data,
climate data, standardized building

details.

[35]
development of the LuminLab

AI-powered building retrofit platform,
which help users in the retrofit process.

Energy Performance Certificates (EPC)

[36]
Implement and evaluate XAI to assess

their prediction accuracy and
explainability.

Total energy consumption, monitoring
data.

[37]

Develop an ANN model to directly
classify building EPC labels and use

explainable AI thereby increasing trust in
the model.

The CENED database, buildings’ energy
consumption information

[38]
Apply machine learning and XAI to
classify building retrofits, validate

findings.

EPC data, socio-demographic data,
property prices.

[39] Optimize retrofitting with GA and ANN
models. Simulation-generated retrofit scenarios.

[40] Develop an intelligent decision support
system for home energy retrofits. Energy reports, online housing data.

[41] Optimize energy retrofit levels for
building portfolios.

Case study portfolio data from
25 buildings.
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Table 2. Cont.

Study Objective Dataset

[42] Improve energy efficiency in this
building stock.

Swedish database of Energy Performance
Certificates (EPCs).

[43]
Develop a surrogate retrofit model that
balances accuracy and computational

cost.

Data on residential buildings from GIS
and census sources.

[44]
Develop a multi-source data fusion deep
learning framework to predict building

energy efficiency ratings.

Energy Performance Certificate (EPC)
data, the UK Buildings dataset and
Google Street View (GSV) images

[45] Improved retrofit ranking with machine
learning pipelines.

Building characteristics data (Lombardy
region).

[46] Predict energy savings using ensemble
learning.

De-risking Energy Efficiency Platform
(DEEP) database.

[47] Predict urban-scale energy performance
with ensemble models.

EPCs, census data, weather, construction
data.

[48]
Develop a data-driven framework to

assess and optimize residential building
retrofits.

Simulation data (HOT2000, HTAP).

[49]

Develop a fast multi-objective
optimization method for building

retrofits that accounts for future climate
conditions

Metered energy use data.

[50] Identify key building variables for
clustering and retrofitting. Energy audit reports for office buildings.

[51] Comprehensive retrofitting framework
for tropical climates. Energy simulation data.

[52]
Develop different building archetypes for

addressing various urban energy
challenges

EPC data, heat energy use, climate data.

[53] Predict building energy consumption
using CatBoost.

Seattle Energy Benchmarking Program
data.

[54] Multi-objective optimization for
industrial retrofits.

Simulation data, thermal characteristics,
schedules.

[55] Develop database for SME building
retrofits. EnergyPlus simulation database (DEEP).

[56] Calibrated simulations for retrofitting
strategies. Energy audit and operational data.

[57] Multi-model fusion for energy prediction. Chicago building energy Performance
data.

[58]
Develop a generalized methodology for

multi-scale GIS-based mapping of
building energy performance.

Energy Performance Certificate (EPC)
dataset, the Irish Census dataset, the

GeoDirectory database, the Irish retrofit
housing scheme dataset.

[59] Determine the optimal investment
strategy for energy efficiency retrofits.

Data on 27 NGO buildings in Delaware,
USA, including energy savings, emissions

reductions, and investment costs.

[60]
Develop methodologies to assess

building energy use and create retrofit
models

Hourly wireless sensor network (WSN)
data.

[61]
Develop a method to assess the energy

performance under future climate
conditions.

EnergyPlus building energy simulation
data.
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Table 2. Cont.

Study Objective Dataset

[62]
Create a data-driven methodology to

verify energy efficiency savings in
commercial buildings.

EnergyPlus simulations, monitoring data.

[63] Assess retrofitting impacts in residential
buildings.

Energy consumption, indoor
temperature, occupant surveys.

[64] Conduct a holistic cost–optimal retrofit
analysis

Measured values of various temperature
sensors and energy consumption.

[65] Predict energy savings from retrofitting
decisions. GSA building portfolio data.

[66] Life-cycle optimization for retrofit
planning.

Energy consumption, thermal property,
life-cycle data.

[67]
Enable market actors to assess, forecast,

and quantify energy efficiency
opportunities and performance risks

The DOE Buildings Performance
Database (BPD).

[68] Provide energy advising using systematic
frameworks. Survey data, building stock data.

Table A1 presents a more detailed overview of the reviewed studies in data-driven
approaches to building energy retrofitting.

Overview of the key insights from Table 2:

• Diverse Objectives: The studies aim to address a wide range of goals, from optimizing
retrofit decisions on a large urban scale to developing decision support systems and
AI models for enhancing building energy efficiency. Some research focuses on spe-
cific aspects, such as life-cycle optimization, real-time data utilization, or integrating
explainable AI to improve model transparency and trust.

• Varied Datasets: The datasets utilized across these studies are equally varied as seen in
Figure 3, reflecting the different scales and contexts of the research. Commonly used
datasets include Energy Performance Certificates (EPCs) from various countries (e.g.,
Ireland, Sweden, and the UK), building energy consumption data, and simulation-
generated datasets. Several studies also incorporate weather data, socio-demographic
information, and other contextual data such as building geometry or historical data.

• Geographical Diversity: The research spans multiple geographic regions, including
Europe (Ireland, Sweden, Germany, Italy, and the UK), North America (California and
New York), and China, among others. This highlights the global relevance of energy
retrofitting research and the need to tailor approaches to specific regional conditions.

• Integration of Advanced Technologies: A significant number of studies focus on
the integration of advanced technologies like AI, machine learning, and digital
twins into the retrofitting process. These technologies are employed to enhance
predictive accuracy, optimize retrofit solutions, and enable more informed decision-
making processes.

• Policy Implications: Some studies aim to support policy-making by providing data-
driven tools and indices, such as the Energy Retrofit Index (ERi) or frameworks for
policy impact analysis. This suggests an increasing emphasis on aligning research
outcomes with practical applications in energy policy and building regulations.
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Figure 3. Categorization of datasets used in reviewed studies.

Overall, the reviewed studies collectively advance the field of building energy
retrofitting by employing data-driven methods to optimize retrofitting strategies, enhance
energy efficiency, and support policy and decision-making processes. The research under-
scores the importance of integrating diverse data sources, employing cutting-edge tech-
nologies, and considering regional contexts to achieve sustainable retrofitting outcomes.

While data-driven approaches have shown significant promise in advancing building
energy retrofits, several limitations remain evident in the reviewed studies. Many works
lack a consideration of the urban-scale retrofitting challenges, such as integrating inter-
building energy dynamics and broader urban context effects. For example, while Pasichnyi
et al. [34] explore city-scale retrofit strategies using district heating data, their methodology
could be expanded to include multi-building interactions and energy-sharing opportunities.
Additionally, the long-term impacts, such as life-cycle energy and carbon assessments,
remain underexplored. Ali et al. [47] present a promising urban-scale model using ensemble
learning techniques, yet the approach would benefit from life-cycle analysis integration to
enhance decision-making.

The scalability of models across diverse building types and regions is another key
challenge. Nutkiewicz et al. [26] demonstrate the adaptability of deep learning models for
large-scale retrofits but highlight the need for more comprehensive datasets to ensure model
generalizability. Furthermore, data quality and gaps in building information compromise
the predictive accuracy of machine learning models. Jradi et al. [20] leverage digital twins
to address these challenges, offering real-time operational insights, but more studies are
needed to integrate this approach at scale. These examples underscore the importance
of future research in developing adaptable, data-rich, and life-cycle-oriented models that
can address these limitations. Incorporating explainable AI techniques and real-time data
sources could further enhance the robustness and applicability of retrofit strategies,

5. AI and Machine Learning Algorithms in Energy Retrofitting
It is very well demonstrated that energy retrofitting plays a crucial role in improving

the energy efficiency of existing buildings, which is essential for reducing overall energy
consumption and minimizing greenhouse gas emissions. Traditionally, retrofitting ap-
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proaches have relied on empirical guidelines and generalized methods, which may not
always consider the unique attributes of each building or provide optimal results. The
advent of artificial intelligence (AI) and machine learning (ML) represents a transformative
shift in this field. AI encompasses the development of systems that perform tasks requiring
human-like intelligence, such as problem-solving, decision-making, and learning. Within
AI, machine learning (ML) is a subset that focuses on creating algorithms capable of learn-
ing from data and making predictions or decisions without explicit programming for each
specific task. ML algorithms can be categorized into supervised learning, which involves
training models on labeled data to predict outcomes; unsupervised learning, which iden-
tifies patterns in unlabeled data; reinforcement learning, which learns optimal strategies
through interactions and feedback; and deep learning, which uses complex neural networks
to model intricate data patterns. By leveraging these advanced technologies, AI and ML
enable more precise, data-driven approaches to energy retrofitting. They offer significant
advantages over traditional methods, such as enhanced accuracy in predictions, real-time
monitoring, and dynamic adjustments, ultimately leading to more effective and efficient
energy upgrades in buildings.

Types of Artificial Intelligence and Machine Learning Algorithms in Building Retrofitting

The rapid evolution of AI and ML technologies has introduced a diverse range of
algorithms, each uniquely suited to different aspects of energy retrofitting. The application
of these algorithms in the built environment enables more precise energy consumption
modeling, the accurate prediction of retrofit outcomes, and the effective optimization
of energy conservation measures. Understanding the variety and capabilities of these
algorithms is essential for leveraging their full potential in energy retrofitting.

Each type of AI and ML algorithm presents distinct advantages and trade-offs, making
them more or less suitable for specific retrofitting tasks. The choice of algorithm depends on
various factors, including the nature of the data, the complexity of the retrofitting problem,
and the specific objectives of the project. The subsequent sections delve into the most
widely used AI and ML algorithms in energy retrofitting, emphasizing their distinctive
contributions and specific applications within this domain.

Supervised Learning:Algorithms such as Linear Regression, Decision Trees, and Sup-
port Vector Machines (SVMs) are frequently employed to predict energy consumption
and evaluate the impact of retrofitting measures. These models require labeled datasets
to learn the relationships between input features and output predictions. The authors in
Nutkiewicz et al. [26] use LSTM to understand the relationship between simulated and
metered energy consumption and improve prediction accuracy. LSTMs bring significant
advantages to energy retrofitting projects, especially in scenarios involving time-series data
and complex, dynamic systems. Their ability to learn from past data and predict future
trends makes them a powerful tool for optimizing energy efficiency in buildings, ensuring
that retrofitting efforts are both effective and sustainable in the long term. Ali et al. [47]
develop machine learning models to predicts building energy performance on a large
scale using an ensemble or segregation method, and then they compare the performance
of ten supervised learning techniques for each of the methods (the algorithms include
XGBoost (XGB), LightGBM (LGBM), Gradient Boosting (GB), Histogrambased Gradient
Boosting (HGB), Random Forest (RF), Neural Network (NN), Decision Tree (DT), Linear
Regression (LR), K-Nearest Neighbors (KNN) and Support Vector Machine (SVM)), and
the results indicate that incorporating segregation in the analysis improves the perfor-
mance of most models, particularly XGB, LGBM, and HGB. These findings highlight the
importance of considering segregation in the machine learning process to obtain more
accurate predictions.
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Unsupervised Learning: Clustering algorithms like K-means and hierarchical clus-
tering are utilized to segment buildings or components based on energy consumption
patterns, which can identify retrofit opportunities. These methods do not require labeled
data, making them useful for exploratory analysis. Looking at Feng et al. [21], the authors
propose an innovative approach from the perspective of being data driven to support
retrofitting selection under incomplete information through performance modeling and
data imputation based on the already available BPDs’ big data. In their approach, Isolation
Forest (IF) is chosen for the data-cleaning process of building performance datasets (BPDs)
because it is an effective unsupervised learning technique for anomaly detection. As an
unsupervised method, IF does not require labeled data to identify outliers. Instead, it works
by isolating data points that differ significantly from the rest. This is particularly valuable in
BPDs, where detecting and removing anomalies is crucial to ensure the reliability of the data
and the accuracy of performance modeling. By using IF, the process can effectively filter out
invalid, duplicated, or anomalous entries, leading to cleaner, more dependable data for anal-
ysis. They also utilize hybrid models like the BRBNN–FCM integrated method (this model
integrates Belief Rule-Based Neural Networks (BRBNNs) with Fuzzy C-Means (FCM)
clustering, combining both supervised and unsupervised machine learning techniques) to
model the building’s retrofitting performances based on the available building properties.
It models the retrofitting performance by establishing the relationship of retrofitting and
performances’ prediction intervals, without being supported by generally missing data.
Ali et al. [19] develop a generic methodology to optimize urban-scale energy retrofit de-
cisions for residential buildings using data-driven approaches. They implement the LOF
(Local Outlier Factor) algorithm for outlier detection to processes large datasets more
efficiently than the distance-based and density-based outlier detection techniques.

Reinforcement Learning: This approach involves learning optimal retrofit strategies
through simulation, where the model interacts with an environment and learns from the
outcomes of different actions. Reinforcement learning is particularly useful for dynamic
and complex systems, where traditional optimization methods may fall short. While
reinforcement learning (RL) is a powerful approach for optimizing complex systems, its
application in energy retrofitting is currently limited in the literature. However, RL has
found significant use in optimizing building operations and systems to enhance energy
efficiency. For example, RL algorithms are effectively employed in controlling heating,
ventilation, and air conditioning (HVAC) systems to ensure that energy usage is minimized
while maintaining comfort levels [69]. These systems learn optimal strategies by interacting
with the building environment, receiving feedback in the form of energy consumption
data, and adjusting their actions accordingly. Although RL is not yet widely adopted
for retrofitting decisions, its potential for dynamic and real-time optimization makes it a
promising tool for future applications in this area.

Optimization Algorithms: Optimization algorithms play a critical role in the energy
retrofitting process, especially when it comes to selecting the most cost-effective and
energy-efficient retrofitting measures. These algorithms are designed to explore a vast
space of potential solutions, balancing multiple objectives such as cost, energy savings, and
environmental impact. The use of optimization techniques ensures that retrofit strategies are
not only effective in reducing energy consumption but also feasible within the constraints
of budget, time, and operational requirements. The authors of Seyedzadeh et al. [11]
present an energy performance prediction model using machine learning to assist in
multi-objective optimization of retrofit planning and they use the SMAC (Sequential Model-
Based Algorithm Configuration) algorithm, an advanced evolutionary algorithm that
provides a reliable tool for building analysts to explore the large solution space of retrofit
options. Zhang et al. [48] present a data-driven framework that integrates machine learning,
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multi-objective optimization, and multi-criteria decision-making techniques to streamline
this process. A Pareto optimization algorithm is employed to identify the most effective
retrofit strategies for the selected building. By integrating this optimization approach with
a well-trained Artificial Neural Network (ANN) model within a Python environment,
the process efficiently handles multiple objectives, such as energy efficiency, emissions
reduction, and cost. The ANN model predicts the building’s energy performance before
and after retrofits, and these predictions are then used as input for the optimization. The
Pareto algorithm systematically evaluates the trade-offs among various retrofit strategies,
ultimately identifying optimal solutions that balance the competing objectives, ensuring
the most efficient and cost-effective outcomes are selected.

Table 3 below presents a detailed overview of the key studies reviewed, categorized by
the type of machine learning algorithm utilized. This categorization illustrates the breadth
of applications within the energy retrofitting process, highlighting the diverse approaches
taken to optimize energy efficiency, predict consumption, and support decision-making.
By examining the specific algorithms employed and their impacts, this summary provides
insights into the current state of research in AI-driven energy retrofitting.

Table 3. Overview of key studies on AI and machine learning applications in energy retrofitting.

Study ML Algorithm Type Specific Algorithm and Application

[10] Supervised Learning

• Random Forest (RF) for energy prediction.
• Extreme Gradient Boosting (XGBoost) for energy prediction.
• Extra Trees (ET) for energy prediction.
• Ensemble learning methods for energy prediction.
• Artificial neural network with a multilayer perceptron (MLP) for energy

prediction.

[11] Supervised Learning,
Optimization Algorithm.

• Optimized Gradient Boosted Regression Tree (GBRT) using the SMAC
algorithm to predict Building Emission Rate (BER).

[18] Supervised Learning, Deep
Learning.

• Recurrent Neural Network (RNN) to capture the sources of uncertainty
that arise in building energy simulation.

[19]
Unsupervised Learning,

Supervised Learning,
Optimization Algorithm

• Local Outlier Factor (LOF) algorithm for outlier detection.
• Greedy Optimization algorithm to determine optimal features.
• Deep Learning to compute and predict the energy rating.
• Rule Induction to compute and predict the energy rating.
• Neural Network to compute and predict the energy rating.
• Naive Bayes to compute and predict the energy rating.
• Decision Trees to compute and predict the energy rating.
• Random Forest to compute and predict the energy rating.
• Gradient Boosted Trees to compute and predict the energy rating.
• Learning Vector Quantization (LVQ) to compute and predict the energy

rating.
• K-Nearest Neighbors (KNN) to compute and predict the energy rating.
• Deep Learning to compute and predict the energy rating.

[21] Unsupervised Learning,
Supervised Learning

• Isolation Forest (IF) for Data Cleansing.
• Bidirectional Recurrent Bayesian Neural Network with Fuzzy C-means

Clustering (BRBNN-FCM) for performance modeling.
• Principal Component Analysis with Trimmed Score Regression (PCA-TSR)

for data imputation.

[25] Supervised Learning. • Extreme Gradient Boosting (XGBoost) to estimate building energy perfor-
mance (BEP) before and after retrofits.
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Table 3. Cont.

Study ML Algorithm Type Specific Algorithm and Application

[26] Supervised Learning • Long Short-Term Memory network (LSTM) for energy prediction.

[30] Supervised Learning. • Artificial Neural Network (ANN) for bottom–up energy benchmarking.

[31] Supervised Learning. • User-facing falling rule list (FRL) to predict ECM eligibility based on build-
ing characteristics.

[35] Supervised Learning, Deep
Learning.

• Multi-layer perceptron (MLP) using random feature corruption (SCARF)
for building energy classification.

[42] Supervised Learning.

• Logistic Regression (LR) to predict building-specific suitability for specific
energy conservation measures.

• Support Vector Machine (SVM) to predict building-specific suitability for
specific energy conservation measures.

[43] Supervised Learning.
• Artificial Neural Network (ANN) to evaluate necessary building retrofit

measures, balancing accuracy and computational cost.

[44] Supervised Learning.

• Multi-branch deep learning model using two branches one with Dense
Convolutional Network (DenseNet) and the other uses Artificial Neural
Network (ANN) the two branches work to predict building energy effi-
ciency rating from image or descriptive features

[46] Supervised Learning.

• Random Forest (RF) to predict energy savings from retrofitting.
• Extreme Gradient Boosting (XGBoost) to predict energy savings from

retrofitting.
• Light Gradient Boosting Machine(LGBM) to predict energy savings from

retrofitting.
• Ensemble learning methods using the three previous models to further

improve the accuracy of the final predictions.

[47] Supervised Learning

• Extreme Gradient Boosting (XGBoost) for energy prediction.
• Light Gradient Boosting Machine (LGBM) for energy prediction.
• Gradient Boosting (GB) for energy prediction.
• Histogram-based Gradient Boosting (HGB) for energy prediction.
• Random Forest (RF) for energy prediction.
• Neural Network (NN) for energy prediction.
• Decision Tree (DT) for energy prediction.
• Linear Regression (LR) for energy prediction.
• K-Nearest Neighbors (KNN) for energy prediction.
• Support Vector Machine (SVM) for energy prediction.

[48] Supervised Learning,
Optimization Algorithm

• Artificial Neural Network (ANN) as a surrogate model to predict the energy
performance of a wide range of retrofit packages.

• Genetic Algorithm (GA) to optimize the structure and hyperparameters of
the ANN model.

• Pareto optimization approach coupling the well-trained ANN model with a
Pareto optimization approach developed in the Python coding environment
to find the Pareto optimal retrofit solution.

[66] Optimization Algorithm • Particle Swarm Optimization (PSO) for determining the optimal retrofitting
plan.

Table 3 underscores the diverse application of machine learning (ML) techniques in
enhancing building energy efficiency and optimizing retrofit decisions. Predominantly,
studies employ supervised learning methods, such as Random Forest (RF), XGBoost (XGB),
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and Artificial Neural Networks (ANNs), which are effective in handling complex datasets
and predicting energy performance. The integration of deep learning approaches, including
multi-layer perceptron (MLP) and recurrent neural networks (RNNs), further improves
prediction accuracy and simulation capabilities. Optimization algorithms, notably genetic
algorithms (GAs) and multi-objective genetic algorithms (MOGAs), are used in conjunc-
tion with ANNs to refine retrofit solutions, while ensemble methods enhance prediction
accuracy by combining multiple models. The application of these techniques spans from
predicting energy savings and retrofit opportunities to improving energy databases and
decision support systems, utilizing real-world data for practical relevance. Collectively,
these methods reflect a comprehensive and promising strategy for optimizing energy man-
agement and supporting sustainable building practices. The integration of different ML
algorithms from the reviewed studies in the building energy retrofitting process can be
seen in Figure 4.

Figure 4. Example of different ML algorithms integration in retrofitting process.
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Despite the growing adoption of AI and machine learning techniques in building
energy retrofitting, significant challenges remain. Seyedzadeh et al. [11] demonstrate the
potential of supervised learning algorithms, such as random forests and gradient boosting,
for predicting energy performance, yet these models are often constrained by the quality
and quantity of the available training data. Thrampoulidis et al. [43] employ surrogate
models based on artificial neural networks (ANNs) to optimize retrofit strategies, but
their approach lacks robustness when applied to diverse building types and regions, lim-
iting scalability. Marasco and Kontokosta [31] apply machine learning to identify retrofit
opportunities using large-scale building audit data; however, their methods highlight
the challenges of integrating heterogeneous datasets and accounting for real-world un-
certainties. Furthermore, explainability remains a key limitation, as most studies focus
on predictive accuracy without providing insights into the underlying decision-making
processes, which is critical for stakeholder trust. These shortcomings underscore the need
for future research to develop more generalizable, interpretable, and data-efficient models
that can adapt to diverse retrofit scenarios and support informed decision-making.

6. Explainable AI for Energy Retrofitting
Explainable AI (XAI) is an emerging field within artificial intelligence that focuses

on making the decision-making processes of AI systems more transparent and under-
standable to humans. In the context of building energy retrofitting, XAI is crucial for
ensuring that stakeholders, including building owners, engineers, and policymakers, can
trust and effectively use AI-driven insights to make informed decisions Figure 5 shows
Explainaple AI in th retrofit decision process. By providing clear explanations of how AI
models arrive at their conclusions, XAI helps bridge the gap between complex algorithms
and practical application, enhancing both the adoption and impact of AI technologies in
energy retrofitting.

Figure 5. Explainable AI in retrofit decision-making.

The importance of explainable AI (XAI) in building energy retrofitting lies in its
ability to foster trust and transparency by clarifying how AI models make decisions,
thus enabling stakeholders to understand and rely on AI-driven recommendations. XAI
enhances decision-making by providing detailed insights into how various factors influence
energy performance, allowing for more tailored and effective retrofit measures. It also
supports regulatory compliance by ensuring that AI decisions are transparent and meet
legal and funding requirements. Furthermore, XAI facilitates error diagnosis and model
improvement by enabling engineers to identify and correct issues, refine algorithms, and
improve overall model accuracy and robustness.

In this review, we found five studies from the total reviewed studies that leverage
explainable AI (XAI) to enhance various aspects of building energy retrofitting. Each
study employs different XAI methods and models, showcasing the broad applications and
benefits of XAI in this domain.

In the work of Leuthe et al. [36], the authors explore a range of XAI techniques,
including Partial Dependency Plots (PDPs), Accumulated Local Effects (AMEs), Local
Interpretable Model-Agnostic Explanations (LIMEs), and Shapley Additive Explanations
(SHAPs), applied to Linear Regression, Decision Trees, and QLattice models for predicting
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energy consumption in residential buildings. This investigation underscores the inherent
trade-off between prediction accuracy and explainability, revealing how the choice of XAI
method can mitigate this trade-off and improve decision-making processes for building
retrofits. They also conduct an online survey to evaluate the explainability of the models
and model–XAI–method combinations from the perspective of non-ML and non-energy
experts (i.e., property owners).

In contrast, Tsoka et al. [37] focus on the classification of building energy performance
certificates (EPC) using an Artificial Neural Network (ANN), enhanced by LIME and
SHAP. This research demonstrates the utility of XAI in simplifying complex ANN models
by clarifying feature contributions, thus fostering greater trust and understanding of the
model’s classifications. The emphasis here is on improving transparency and trust in the
predictive capabilities of ANN models.

Wenninger et al. [38] integrate supervised learning with XAI by applying Extreme
Gradient Boosting (XGBoost) and SHAP to analyze retrofitting practices within the UK’s
residential sector. This study illustrates how XAI can validate and interpret predictive mod-
els, providing valuable insights for policy development and improving retrofit strategies.
It highlights the role of XAI in transforming qualitative insights into quantitative analyses
and policy recommendations.

Looking at Moraliyage et al. [27], the authors present a comprehensive AI framework
for the measurement and verification (M&V) of energy conservation measures (ECMs), us-
ing XGBoost and SHAP for predictive modeling and explanation. This research emphasizes
the development of robust and transparent methods for evaluating energy savings, with
practical applications in real-world settings. The focus is on creating a systematic approach
for assessing the impact of energy conservation efforts and supporting sustainability goals.

On the other hand, Sun et al. [44] advance the field by proposing a deep learning-based
multi-source data fusion framework to estimate building energy efficiency. By incorpo-
rating Energy Performance Certificate (EPC) data and Google Street View (GSV) images,
and utilizing SHAP for feature interpretation, this research demonstrates significant im-
provements in model accuracy and offers insights into urban energy efficiency. The study’s
methodology includes a deep convolutional neural network that integrates both image and
descriptive features, showcasing the potential of XAI to enhance city-level energy efficiency
understanding. Collectively, these studies reveal the broad applicability and benefits of
XAI in building energy retrofitting. They illustrate how XAI techniques can enhance model
transparency, improve prediction accuracy, and facilitate better decision-making across
various applications. The integration of XAI into machine learning frameworks not only
bridges the gap between complex models and practical insights but also supports the
development of more effective and informed retrofit strategies.

While explainable AI (XAI) holds significant potential in building energy retrofitting,
key limitations remain. Tsoka et al. [37] highlight scalability issues when applying XAI
techniques to diverse datasets and building stocks. Gabrielli et al. [41] note the trade-
off between model accuracy and interpretability, particularly in heterogeneous building
contexts. Moraliyage et al. [27] reveal challenges in adapting XAI frameworks to varying
operational and climatic conditions. Additionally, most existing XAI implementations focus
on post hoc explanations rather than embedding interpretability into the model design,
limiting their effectiveness in real-time decision-making. These gaps underscore the need
for further research to enhance the adaptability, scalability, and integration of XAI into
dynamic retrofit processes.
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7. Discussion and Challenges
7.1. Discussion

The evolution of data-driven decision support systems for energy retrofitting has seen
significant advancements, particularly through the integration of artificial intelligence (AI)
and machine learning (ML) techniques. These innovations have enabled more accurate
energy performance predictions, streamlined retrofit processes, and addressed several
longstanding challenges, such as incomplete data, scalability, and generalizability. However,
despite these strides, notable research gaps still require further exploration.

A primary challenge in energy retrofitting is managing incomplete or inconsistent
data. In many cases, as shown in the work by Wiethe et al. [25], the absence of granular
data—such as real-time occupant behavior and operational anomalies—hampers the preci-
sion of energy-saving estimates and post-retrofit performance evaluations. Feng et al. [21]
use isolation forests for data cleansing and advanced ML techniques like Bayesian Ridge
Building Networks (BRBNNs) and Principal Component Analysis (PCA) to impute miss-
ing data, highlighting how hybrid models can overcome gaps in datasets. Similarly, Ali
et al. [47] employ ensemble learning models, such as XGBoost and LightGBM, which
combine multiple model predictions to deliver reliable forecasts, even when faced with
incomplete datasets. This reflects an increasing trend toward developing sophisticated
algorithms to handle the incomplete or inconsistent data that pervades retrofitting projects.

Beyond handling incomplete data, ML models have also helped address issues of
data integration. As highlighted by studies such as that of Sarmas et al. [46], which uses
ensemble learning to predict energy savings, ML algorithms can process heterogeneous
data sources—such as sensor data, energy performance certificates, and weather informa-
tion—combining them into cohesive inputs for retrofit planning.

One of the most significant innovations in the field is the use of artificial neural net-
works (ANNs) and time-series models to optimize retrofit strategies. Zhang et al. [48]
develop a surrogate ANN model that integrates real-time sensor data and historical energy
consumption records to predict retrofit outcomes, demonstrating how data-driven tech-
niques can provide cost-effective solutions even when high-resolution data are unavailable.
Time-series forecasting techniques, such as weighted support vector regression (SVR) used
by Zhang et al. [69], allow for short- and medium-term energy consumption predictions,
effectively addressing the challenge of incomplete or inconsistent time-series data. These
advancements make real-time monitoring and optimization a reality, allowing for more
responsive and dynamic retrofit strategies.

Explainable AI (XAI) has emerged as another innovation that addresses the trans-
parency issues associated with traditional black-box ML models. Moraliyage et al. [27]
use XAI techniques to make AI-driven decisions in energy retrofitting more transparent,
allowing stakeholders to understand the reasoning behind the predictions. This is crucial
in energy retrofitting, where building owners, policymakers, and investors need to trust
the system’s recommendations. XAI provides an essential bridge between sophisticated
ML algorithms and their practical adoption by making the decision-making process clear
and interpretable.

Despite these advancements, scalability remains a persistent challenge in large-scale
retrofit efforts. While models developed by Nutkiewicz et al. [26] demonstrate how data-
driven urban energy simulations (DUE-S) can predict energy savings across multiple
buildings, they also highlight the difficulties of scaling these solutions to broader urban
environments. Pasichnyi et al. [52] emphasize the need for archetype-based models tailored
to specific building stocks and regional conditions, noting that more generalized ML models
often lack the precision needed for localized retrofitting efforts. Thus, while ML models



Appl. Syst. Innov. 2025, 8, 5 23 of 40

can offer scalable solutions, they must be adaptable to specific building and environmental
contexts to fully realize their potential.

Optimization algorithms are also proving essential in retrofitting projects. For instance,
Zhang et al. [48] use multi-objective optimization techniques to reduce retrofit costs while
maintaining energy efficiency. These algorithms balance competing objectives, such as cost
and energy performance, providing stakeholders with optimized solutions that meet both
financial and environmental goals.

Moreover, Piira et al. [29] develop a decision support system that integrates real-
time building operational data, improving retrofit strategy responsiveness and energy
savings. These tools allow stakeholders to adapt retrofit measures dynamically, ensuring
that real-time building performance informs retrofitting decisions, which increases overall
effectiveness.

Another critical area in energy retrofitting is the consideration of life-cycle cost anal-
ysis and environmental impact. Luo and Oyedele [66] develop a life-cycle optimization
framework that not only predicts energy savings but also accounts for the economic and
environmental benefits of retrofits over time. This shift toward life-cycle thinking is cru-
cial in aligning retrofitting efforts with broader sustainability goals, ensuring that energy
efficiency improvements also contribute to long-term environmental and economic gains.

7.2. Challenges and Research Gaps

The analysis of the selected papers on data-driven energy retrofitting has revealed
several critical research gaps that need to be addressed to advance the field. These gaps span
a wide range of topics, from data quality and modeling challenges to practical application
barriers, and they underscore the complexity of implementing effective energy retrofitting
strategies on a large scale.

Data Availability and Quality: A significant challenge identified in the literature is
the lack of comprehensive and accurate data in existing building stock databases. Many
databases suffer from outdated information, poor data quality, and insufficient physical
descriptions of buildings. Moreover, there is a notable absence of detailed information on
the existing and potential retrofit measures. This lack of data limits the ability to perform
accurate energy performance assessments and hinders the development of reliable models
for predicting retrofit outcomes.

Urban-Scale Retrofitting and Contextual Considerations: The literature reveals a gap
in studies focusing on urban-scale retrofitting, particularly for residential buildings. Most
existing research is limited to commercial buildings or specific climates, resulting in a lack of
generalized solutions applicable across different urban contexts. Furthermore, simulation-
based models often struggle to account for the complex inter-building energy dynamics
and the broader urban environment, leading to challenges in accurately predicting the
performance of large-scale retrofits.

Modeling and Simulation Challenges: There is a clear need for more adaptable and
robust models that can better simulate the effects of energy retrofits. Existing models often
face difficulties in capturing the interaction between multiple retrofitting measures, and
the optimization objectives are frequently limited to the operating energy or life-cycle cost,
rather than a more comprehensive evaluation that includes life-cycle energy and carbon
impacts. Additionally, current models tend to separate the tasks of predicting energy
consumption and assessing the influence of urban context, which limits their effectiveness.

Practical Application and Decision-Making: The transition from theoretical models
to practical applications remains a significant hurdle. There is a lack of decision support
tools that can effectively incorporate decision-makers’ preferences and account for the
uncertainties inherent in retrofit projects, such as savings estimation and cost fluctuations.
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Moreover, the existing tools often rely on pre-simulated data or fixed assumptions, which
may not be adaptable to the dynamic nature of building retrofitting projects.

Addressing Uncertainties and Enhancing Predictive Accuracy: Many studies have
highlighted the uncertainties in building energy performance evaluations, particularly
when using data-driven models. The accuracy of these models is often compromised by
the limited availability of high-quality data, missing data, and noise in the datasets.

Expanding the Scope of Retrofit Research: Finally, the scope of current retrofit research
is often limited to specific aspects of energy efficiency, neglecting important factors such
as the economic feasibility of retrofits, the impact of retrofits on carbon emissions, and the
integration of renewable energy systems. There is also a need for more studies that explore
the application of data-driven methods in predicting retrofit outcomes at a larger urban
scale, beyond individual buildings. Expanding the scope of retrofit research to include
these factors will be crucial in developing more comprehensive and effective energy retrofit
strategies. To better understand the current challenges and opportunities in data-driven
energy retrofit, Table A2 summarizes the research gaps identified across various studies.
Each entry includes a reference to the study and the specific research gap(s) it highlights.
This compilation provides a clear overview of the areas where further research is needed,
helping to guide future efforts in improving data-driven approaches to energy retrofitting.

7.3. Critical Requirements for Advanced Building Energy Retrofit Modeling and Evaluation

In the rapidly evolving field of building energy retrofits, there is an urgent need
for more advanced, adaptable, and flexible data-driven approaches. These approaches,
powered by machine learning (ML) and artificial intelligence (AI), promise to revolutionize
how we predict and implement energy-saving measures. By focusing on creating models
that are easily replicable, require specific data inputs, minimize development time, undergo
rigorous verification, and maintain high predictive accuracy, we can significantly enhance
the efficiency and effectiveness of retrofit projects.

Based on the review conducted in this study, below is a set of critical requirements for
advanced building energy retrofit modeling and evaluation.

1. Adaptability and Flexibility The models should be adaptable to a wide range of build-
ing types, from residential to commercial and industrial buildings. They should also
accommodate different energy systems, including heating, ventilation, air condition-
ing (HVAC), lighting, and renewable energy systems. Given the variability in building
usage patterns and external conditions (e.g., changing weather patterns due to climate
change), the models must dynamically adapt to data inputs.

2. Optimized Data Requirements A well-designed data-driven model should clearly
specify the essential data required, such as energy usage patterns, building envelope
characteristics, occupancy schedules, weather data, and energy system performance
metrics. This helps streamline data collection, focusing on the most impactful vari-
ables. In cases where complete data are not available, models can employ data
enrichment techniques, such as synthetic data generation, interpolation, or the use of
similar case studies to fill gaps. This ensures the model remains functional even with
incomplete datasets. Furthermore, integration with the Internet of Things (IoT) and
smart sensor networks can greatly enhance data collection, providing data on various
building parameters such as temperature, humidity, occupancy, and energy consump-
tion. These data can improve model accuracy and enable more precise predictions of
energy savings.

3. Efficient and Scalable Development Leveraging automated machine learning tools
can significantly reduce the time and expertise required to develop models. These
tools can automatically select the most appropriate algorithms, tune hyperparameters,
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and even pre-process data, making model development faster and more accessible.
Moreover, utilizing pre-trained models or transfer learning techniques can further
expedite development. By applying knowledge from models trained on similar
buildings or retrofit scenarios, one can reduce the need for extensive retraining, saving
time and resources.

4. Rigorous Verification and Validation Models must undergo extensive testing across a
range of scenarios and building types to ensure their reliability and accuracy. This
could involve back-testing on historical data, cross-validation with different datasets,
and pilot projects in real-world settings. In this regard, incorporating uncertainty
quantification in the model’s predictions can provide a range of potential outcomes,
helping stakeholders understand the risk and variability associated with different
retrofit measures. This is particularly important in scenarios where data are sparse or
highly variable.

5. Enhanced Predictive Accuracy and Insights High predictive accuracy is critical, and
models should be capable of making granular predictions, not just at the building level
but also at the level of individual systems (e.g., HVAC and lighting). This enables more
targeted interventions and maximizes the impact of retrofit measures. The models
should support scenario analysis, allowing stakeholders to explore different retrofit
options and their impacts. This includes optimizing combinations of retrofit measures
for maximum energy savings and cost effectiveness, using advanced techniques such
as multi-objective optimization or genetic algorithms.

6. Economic and Environmental Impact Assessment Beyond energy savings, the adopted
approach should incorporate comprehensive return on investment (ROI) analysis,
considering factors such as upfront costs, maintenance expenses, utility rebates, and
potential increases in property value. This helps stakeholders make informed deci-
sions about which retrofit measures offer the best financial return. Additionally, the
environmental impact of retrofit measures should be evaluated, including reductions
in greenhouse gas emissions, improvements in indoor air quality, and contributions
to broader sustainability goals.

8. Conclusions
8.1. Summary of Findings

The integration of machine learning and AI into energy retrofitting processes has
made some progress in addressing challenges such as incomplete data, scalability, and
generalizability. Techniques such as ensemble learning, artificial neural networks, and
explainable AI have improved the accuracy and transparency of energy performance
predictions, allowing for more effective and reliable retrofit strategies. Innovations in data
imputation, such as those employed by Feng et al. [21], and real-time optimization as
demonstrated by Zhang et al. [70], have helped ensure that retrofitting decisions can still
be made with confidence, even in the face of inconsistent or incomplete data.

Despite these advancements, the challenge of scaling these solutions to urban or re-
gional levels persists. As emphasized by Pasichnyi et al. [52] and Nutkiewicz et al. [26],
more refined archetype-based models and localized data inputs are necessary to ensure that
ML-driven retrofit strategies are adaptable to different building types and geographic
contexts. Moreover, as the field moves toward more dynamic, real-time retrofit pro-
cesses, the role of life-cycle assessments, as discussed by Luo and Oyedele [66], will
become increasingly important in ensuring that retrofitting efforts align with long-term
sustainability goals.
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In summary, while machine learning and AI have greatly enhanced the capabili-
ties of energy retrofitting, future research and development must focus on making these
technologies more scalable, adaptable, and transparent.

8.2. Future Research Directions

Considering the identified gaps analyzed in Sections 4–6 and 7.2, it seems appropriate
to suggest the following directions for further research:

1. Improving Data Quality and Access: The lack of comprehensive, high-quality data
on existing building stock remains a fundamental barrier to effective retrofitting.
Future work should focus on creating centralized, standardized databases that in-
clude detailed building characteristics, historical performance data, and implemented
retrofit measures. This includes leveraging advanced data collection methods such
as IoT devices and sensor networks to provide real-time, granular data on building
performance. Additionally, improving data sharing frameworks and protocols will
ensure interoperability and accessibility, enabling the seamless integration of data
from diverse sources.

2. Developing Scalable Urban Retrofitting Solutions: Urban-scale retrofitting strategies
must move beyond single-building models to account for the complexities of entire
districts and cities. Research should focus on developing simulation tools that inte-
grate inter-building energy dynamics and the effects of urban environments, such
as shading, heat islands, and shared resources. These tools must be scalable and
adaptable to varying building typologies and climate zones, enabling the formu-
lation of retrofit strategies that maximize energy savings while minimizing costs
and disruptions.

3. Advancing Modeling and Simulation Techniques: The limitations of current models,
including their inability to capture interactions between multiple retrofit measures,
must be addressed. Future research should focus on creating integrated simulation
frameworks that combine energy, environmental, and economic metrics. Incorpo-
rating life-cycle analyses into these models will provide a more comprehensive un-
derstanding of the long-term impacts of retrofitting measures, including operational
energy savings, carbon emissions, and cost effectiveness. Real-time adaptable models,
such as digital twins, should be further explored to enable continuous optimization
and monitoring of retrofit strategies.

4. Enhancing Practical Decision-Making Tools: To bridge the gap between theoretical
models and practical implementation, there is a need for decision-support tools that
are intuitive, adaptive, and transparent. These tools should integrate real-time data
inputs, incorporate stakeholder preferences, and account for uncertainties such as cost
fluctuations and performance variability. explainable AI (XAI) methods should be
embedded within these tools to ensure that decision-making processes are transparent
and understandable to non-expert stakeholders, fostering trust and encouraging
broader adoption of data-driven approaches.

5. Addressing Uncertainties and Boosting Predictive Accuracy: Uncertainties in data
and model predictions hinder the reliability of retrofit strategies. Hybrid modeling
approaches that combine machine learning with physics-based simulations offer a
promising solution. These approaches can leverage ensemble methods to synthesize
predictions from multiple models, improving accuracy and robustness. Future work
should also focus on quantifying and communicating uncertainties to stakehold-
ers, enabling more informed decision-making and reducing the perceived risks of
retrofitting projects.
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6. Expanding Research to Include Economic and Environmental Metrics: Retrofitting
research must expand its scope to address economic feasibility, carbon reduction,
and the integration of renewable energy systems. Future studies should evaluate
the financial impacts of retrofit measures over their life-cycle, including operational
savings and long-term value enhancements. Additionally, integrating renewable
energy technologies such as solar panels, heat pumps, and energy storage systems
into retrofitting strategies will support broader sustainability goals and align with
climate change mitigation efforts. Policymakers and researchers should also explore
the role of incentives and regulatory frameworks in promoting holistic retrofitting
solutions.

By systematically addressing these directions, future research can overcome the current
limitations and pave the way for scalable, efficient, and sustainable data-driven energy
retrofitting practices.
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Appendix A

Table A1. Overview of reviewed studies in data-driven approaches to building energy retrofitting.

Study Objective Dataset

[10]

Create a data-driven AI model to predict building energy
performance for different retrofit scenarios, using four

machine learning models (XGBoost, random forest, Extra
Trees, and ANN-MLP) and develop an interface for

analyzing retrofit impacts.

Energy Performance Certificate dataset for
residential buildings in the UK

[11]

Develop a model for predicting Building Emission Rate
(BER) to estimate non-domestic building energy efficiency

in the UK, provide a rapid tool for the multi-objective
optimization of retrofits, use a comprehensive dataset of

existing buildings, and perform sensitivity analysis to
identify the impact of each input parameter on building

performance.

The dataset used in the study included
4900 records of non-domestic buildings in the UK,

sourced from the arbnco Consult platform. To
expand the dataset for machine learning training,
an additional 80,000 samples were generated by

mutating the original 4900 records.

[18]

Evaluate the feasibility of a Data-driven Urban Energy
Simulation (DUE-S) model for rapid large-scale retrofit
assessments and demonstrate the benefits of integrating

data-driven and physics-based approaches for urban
energy modeling.

The dataset used in the study encompasses three
years (2015–2017) of 15-minute interval electricity

consumption data for 52 buildings, historical
hourly weather data from NOAA for the same

period, building geometries derived from GIS data,
and non-geometric building properties based on

the DOE’s Commercial Reference Buildings.
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Table A1. Cont.

Study Objective Dataset

[19]

Develop a data-driven methodology to optimize
urban-scale energy retrofits for residential buildings by

identifying key variables influencing energy performance
and providing cost-effective retrofit recommendations.

The Energy Performance Certificate (EPC) dataset
for Irish residential buildings, published by the
Sustainable Energy Authority of Ireland (SEAI),

the building census dataset from the Central
Statistics Office (CSO) of Ireland, and the retrofit

cost dataset with financial details of retrofit
projects, also from SEAI.

[20]

Design, develop, and demonstrate the “DanRETwin”
digital twin solution to optimize decision-making, enable
retro-commissioning, and enhance performance in energy

retrofits for non-residential buildings.

a digital twin solution that will utilize building
operational data and sensor data.

[21]

Propose a data-driven approach for building retrofitting
decisions under incomplete information, using

BRBNN-FCM to model relationships between building
properties, retrofitting measures, and performance, and

PCA-TSR to impute missing data.

The Energy Performance Certificate (EPC) dataset
from Sweden.

[23]

Develop a model to evaluate the impact of retrofit
technologies on stakeholder expectations, prioritize these

technologies to aid decision-making, and integrate the
findings with the existing EPC recommendation report.

The study involved two surveys: the first surveyed
Romanian owners and tenants to understand their
retrofitting requirements, and the second surveyed
experts (Accredited Energy Auditors) to explore

the relationship between retrofit technologies and
stakeholder requirements.

[25]

Determine how building energy performance prediction
accuracy affects retrofit rates and resulting CO2 emissions

in the residential building sector and to design an
agent-based building stock model to derive this

relationship.

The real-world dataset of 25,000 single and
two-family buildings from Germany, with

74 variables related to building characteristics,
heating systems, and annual metered thermal

energy consumption.

[26]

Enhance the DUE-S model by improving its deep learning
architecture for time-series data and expanding its ability

to estimate large-scale retrofit impacts across different
spatiotemporal scales in a city.

Hourly electricity consumption data for
29 buildings in downtown Sacramento, California,

from 2016 to 2018, accompanied by publicly
available data on building geometry,

characteristics, and local weather for the same
period.

[27]

Develop a robust and explainable AI-based framework for
measuring and verifying energy conservation measures
(ECMs) in buildings and to evaluate it in a real-world

multi-campus education institution with diverse
buildings and sensor technologies.

The dataset used in the study is the UNICON
dataset, sourced from the La Trobe Energy

AI/Analytics Platform (LEAP). It includes energy
consumption and weather data for over 100

buildings across multiple La Trobe University
campuses, covering the period from 2018 to 2020.

[28]

Evaluate energy savings potential in retrofitting
high-performance buildings, identify necessary

performance data, analyze suitable analytics for retrofit
measures, and address challenges in data-driven

approaches for HPBs.

The study utilized real-time monitored data from
the Energy Management System (EMS) and

Building Automation System (BAS) of the CalSTRS
building, including hourly energy use data and
HVAC operating conditions and environmental

data at 15-minute or 1-minute intervals.

[29]

Assist users in designing and selecting building
retrofitting actions by leveraging real-time operation data

and occupant behavior profiles to propose alternative
scenarios, improving existing commercial routines based

on predicted energy performance.

Automatic collection of real-time building energy
consumption data gathered from the building

management systems.

[30]
Propose a reducing-uncertainty framework to obtain a

bottom-up energy benchmarking model using Artificial
Neural Networks (ANN).

The dataset used in the study is a test-bed dataset
from school buildings in Brazil, which was

previously presented and analyzed in the authors’
previous work. The dataset is composed of data
from design analysis, energy audits, electricity

bills, and surveys
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Study Objective Dataset

[31]

Use energy audit data from New York City’s Local Law 87
to develop a machine learning model for predicting ECM

eligibility, create a user-friendly FRL classifier for
assessing ECM opportunities, and provide an actionable
tool for building stakeholders to identify potential ECMs.

The first year of reported data from New York
City’s Local Law 87 (LL87), which requires energy

audits of large buildings.

[32]

Present a data-driven retrofitting approach for high-rise
residential buildings in China using normative

calculation-based simulation, and identify suitable
retrofitting measures for various climate zones across the

country.

The study employs an Energy Performance
Calculator (EPC) developed by the Georgia
Institute of Technology. This reduced-order

simulation tool uses normative calculation logic
and functions as a dynamic simulation program,

requiring fewer input parameters than traditional
simulations while providing robust, easily

reproducible results. Its open framework allows
users to modify and select simulation parameters,

unlike standard normative models.

[33]
Develop a low-cost, data-driven decision support system

to help policymakers select effective energy retrofit
strategies that align with the EU’s decarbonization goals.

The study utilizes the CENED 1.2 database, which
includes data on building energy performance,

geometry, and installed technologies for residential
buildings in Lombardy, Italy.

[34]

Develop and evaluate a data-driven approach for
city-wide building retrofitting, introducing a novel energy

modeling framework. Assess changes in total energy
demand and supply impacts from large-scale retrofitting,
providing city authorities and housing institutions with

tailored strategies based on specific criteria.

The study employs various datasets, including
heat energy use for 15,068 district heating points in
Stockholm (AB Stockholm Exergi, 2012), EPC data

for 30,472 buildings, standardized building use
and envelope details from the Sveby project, and

climate data from the Swedish Meteorological and
Hydrological Institute (SMHI).

[35]

Describe the development of the LuminLab AI-powered
building retrofit platform, which utilizes an intelligent
chatbot agent to integrate stakeholder knowledge and

help users understand cost trade-offs in the retrofit
process.

Energy Performance Certificates (EPC) dataset
from the Sustainable Energy Authority of Ireland

(SEAI)

[36]

Implement and evaluate seven XAI models, assess their
prediction accuracy and explainability, and analyze the

trade-off between these factors to derive implications for
the residential building sector.

The dataset comprises 25,000 single- and
two-family residential buildings in Germany,
collected between 2007 and 2014, featuring

74 variables focused on building characteristics.
After processing, the final dataset for analysis

includes 20,421 buildings, with 22 input variables
and a target variable representing the total energy

consumption per square meter per year.

[37]

Develop an ANN model to directly classify building EPC
labels and use explainable AI techniques to elucidate the
ANN model’s classifications, thereby increasing trust in

the model.

The CENED database, which contains numerous
buildings’ energy information in the Italian

Lombardy region.

[38]
Apply machine learning and XAI to classify building

retrofits, validate findings, and derive policy implications
for the UK’s residential building stock.

EPC data, house price data from HM Land
Registry, and socio-demographic data (age groups,

employment rate, gross disposable household
income, education level) at the regional level.

[39]

Develop a multi-objective optimization model using GA
and ANN to assess technology choices in building

retrofits, simultaneously optimizing energy consumption,
retrofit cost, and discomfort hours.

The authors generated a database of simulation
cases for the purposes of the study.
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[40]

Identify the key components of an intelligent decision
support system (IDSS) for home energy retrofits, develop

rules to incorporate expert knowledge into the system,
create the IDSS for retrofit decision-making, and
demonstrate its application with a pilot system.

The dataset used in the study comprised two main
sources: 20 reports from the Alternative Energy
Engineering Technologies Program at Lansing

Community College, covering a span of 5 years,
and housing information gathered from

internet-based sources like Michigan Housing
Locator, Zillow, Realtor.com, and Trulia, which

were used to complement the energy assessment
data from the reports.

[41]

Identify optimal energy retrofit levels that maximize
benefits for building portfolios, develop a decision

support model for choosing effective efficiency actions,
and explore a system to help asset holders evaluate robust

actions for enhancing portfolios and optimizing cash
flows.

A case study portfolio of 25 buildings from the
University of Ferrara.

[42]

Investigate how expert observations from Google Street
View and transparent machine learning can enhance EPC
data for Swedish multifamily buildings from 1945 to 1975,
and refine methods for more accurate national estimations

and strategies to improve energy efficiency in this
building stock.

The dataset used in this study is the Swedish
database of Energy Performance Certificates

(EPCs), specifically a snapshot from July 1, 2015
that contains around 130,000 EPCs, of which 50,000

are from the period 1945–1975.

[43]

Develop a surrogate retrofit model that balances accuracy
and computational cost, using inputs accessible to
decision makers. The model should predict retrofit

solutions for residential buildings in Zurich, be easy to
apply with reduced complexity, and be scalable for

wide-area retrofit analyses.

The dataset used in this study contains data on
residential buildings in Zurich, Switzerland,

gathered from GIS and census sources. It includes
both continuous and categorical building features.

From this comprehensive dataset, a subset of
buildings meeting specific criteria was selected for

the study.

[44]

Develop a multi-source data fusion deep learning
framework to predict building energy efficiency ratings
using building morphology attributes and street-level
imagery. Aim for a comprehensive understanding of

building energy efficiency and identify influential factors
through explainable AI techniques.

The study used three datasets: Energy
Performance Certificate (EPC) data for 168,410

domestic buildings in Glasgow from October 2012
to March 2021, the UK Buildings dataset providing

2D building footprints across Great Britain, and
Google Street View (GSV) images for 157,222

properties in Glasgow, obtained via the GSV API.

[45]

Contrast the limitations of the Energy Performance index
(EPi) for ranking retrofitable buildings, present a machine

learning pipeline for extracting key nonlinear features,
and introduce the Energy Retrofit index (ERi) to guide
financial aid allocation for regional building retrofits.

The dataset used in the study was extracted from
the Lombardy Region database in Italy and

included five building characteristics relevant to
energy retrofitting: the U-value of walls, windows,
roof, and basement, as well as the global efficiency

of the heating system.

[46]

Provide a machine learning-based framework for
predicting energy savings from efficiency renovations,

using advanced ensemble algorithms rather than
traditional simulations or physical models, and focus on
estimating energy savings rather than financial indicators.

The dataset used in the study is the De-risking
Energy Efficiency Platform (DEEP) database,
which includes a sample of 4183 anonymized

energy efficiency investment projects from nine
countries: Belgium, Bulgaria, Denmark, France,
Germany, Latvia, Sweden, the United Kingdom,

and the United States.

[47]

Integrate parametric simulations, ensemble-based
machine learning, and segregation methods to predict
urban-scale building energy performance with limited

resources, and validate the approach by assessing
Ireland’s residential building stock.

The dataset used in the study includes building
stock data, weather information, census data,

reports on energy policies, and construction data.
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[48]

Develop a data-driven framework combining machine
learning, optimization, and decision-making to assess and
optimize residential building retrofits. Validate with data
from a British Columbia residential building to show its

effectiveness in guiding retrofit decisions.

The dataset used in the study consists of 10,368
retrofit scenarios for a medium single-family

detached house with a shallow basement,
produced using building energy modeling tools

HOT2000 and HTAP, and includes the natural gas
and electricity consumption values for each retrofit

scenario.

[49]

Develop a fast multi-objective optimization method for
building retrofits that accounts for future climate

conditions and apply it to a case study of the Towne
Building at the University of Pennsylvania. The method
will be integrated into a decision-making framework to

guide the selection of optimal retrofit options based on the
optimization results.

The model is calibrated with its actual energy
performance in 2015 by metered hourly and

monthly energy use data, which are stored and
maintained by Penn Facilities and Real Estate

Services (FRES).

[50]

Identify key building variables that influence energy
consumption in air-conditioned office buildings and
determine the optimal set of variables for clustering
buildings to gain insights into their energy-saving

potential.

The dataset used in this study consists of energy
audit reports for 56 office buildings in Singapore,

including both pre-retrofit and post-retrofit
information on the buildings’ energy consumption,
chiller plant efficiency, and other characteristics.

[51]

Propose a comprehensive framework for institutional
building retrofits in tropical climates, exemplified through
a case study of a real institutional building in Singapore.

This includes a detailed energy model calibration,
selection of retrofit options, local cost data processing,

cost–benefit analysis, and final decision-making. The case
study also discusses implications for cost-effective retrofit

strategies.

The dataset used in this study was the information
and data related to the School of Design and

Environment 2 (SDE 2) building at the National
University of Singapore (NUS), which the authors

used to develop and calibrate an energy
simulation model.

[52]

Demonstrate how rich datasets can be leveraged to
develop different building archetypes for addressing

various urban energy challenges, while identifying the
potential for energy savings through building retrofitting
in Case 1. Additionally, explore the use of electric heating
and its potential to reduce electricity demand in Case 2.

The main datasets used in this study are Energy
Performance Certificates (EPC) data, measured

heat energy use data from district heating
metering points, climate data, and reference data

on standardized building use and envelope
characteristics.

[53]

Apply the CatBoost model to predict building energy
consumption (Site EUIWN) using 12 key features,

contributing to knowledge and providing insights to
improve energy efficiency for building owners and

designers.

The dataset used in this study is the building
energy performance data collected in 2015 and

2016 by Seattle’s Energy Benchmarking Program
(SMC 22.920).

[54]

Optimize the energy retrofit of an office area in an existing
industrial building in South Italy by developing a
comprehensive methodology that includes model

development, calibration, and multi-objective
optimization. Apply this approach to a real building,

providing guidelines for energy-efficient, cost-effective
retrofits in the Mediterranean region while considering

occupant thermal satisfaction.

Key factors include the location and weather data
file, thermo-physical characteristics of both opaque
and transparent envelope elements, building space

usage, and yearly schedules for building use,
occupancy, and energy system operation.

[55]

Develop a database of energy efficiency performance
(DEEP) from 10 million EnergyPlus simulations to

facilitate quick and reliable retrofit analysis for small and
medium-sized commercial buildings. Integrate DEEP into

a web-based retrofit toolkit (CBES) to offer preliminary
retrofit analysis and recommendations for building

owners and stakeholders.

This study utilizes the Database of Energy
Efficiency Performance (DEEP), which includes

over 10 million EnergyPlus simulations of
prototype small and medium-sized office and

retail buildings in California. The dataset
encompasses various vintages and climate zones,
along with a diverse set of energy conservation

measures (ECMs).
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[56]

Evaluate various building retrofit strategies using a
calibrated simulation approach by replicating the

base-case energy performance of an existing building with
a simulation tool. Propose energy conservation measures
focused on the building envelope and analyze the impact

of three different retrofit strategies (RS1, RS2, RS3) on
energy efficiency and indoor environmental quality.

Orientation, location, comfort ranges, occupancy,
and installed technology are obtained through

building audits.

[57]

Develop an adaptive multi-model fusion approach to
predict building energy consumption, effectively

managing samples in the fuzzy zones between clusters.
Create a screening algorithm to enhance the fusion

process and provide advanced guidance for analyzing
and controlling building energy performance.

The dataset used in this study is the Chicago
building energy benchmarking dataset from 2017,

which includes information on the energy
performance and characteristics of buildings in

Chicago. It features data on location, energy use,
and building type.

[58]

Develop a generalized methodology for multi-scale
GIS-based mapping of building energy performance using

a bottom-up, data-driven approach to address data
availability, consistency, and privacy challenges. Identify

optimal features to enhance prediction accuracy and
apply spatial aggregation to map energy performance at

the neighborhood, district, city, and county levels.

This study utilizes several datasets, including the
Irish Energy Performance Certificate (EPC) dataset,
which details over 695,000 residential buildings in

Ireland; the Irish Census dataset, providing
information on approximately 1.98 million

residential buildings; the GeoDirectory database,
which includes geocoded addresses for over

2 million residential buildings; and the Irish retrofit
housing scheme dataset, which contains data on

265,182 retrofitted residential buildings in Ireland.

[59]

Determine the optimal investment strategy for energy
efficiency retrofits in multiple NGO buildings while

navigating capital constraints from SEU and the
government. The aim is to maximize both economic goals,

such as net present value and payback period, and
environmental goals, including energy savings and

emission reductions.

The dataset used in this study comprises data on
27 NGO buildings in Delaware, USA, detailing the

available energy efficiency retrofit measures for
each building along with relevant information

such as energy savings, emissions reductions, and
investment costs.

[60]

Develop methodologies to accurately assess building
energy use and create retrofit models within a holistic

framework that integrates machine learning with
investment and operational costs. Utilize raw time-series
data from a wireless sensor network (WSN) for systematic
feature selection and model development, and perform a

cost–optimal analysis to evaluate the effectiveness of
various retrofit strategies.

The dataset used in this study comprises hourly
measurements collected from a wireless sensor

network (WSN) installed in a single-family house
in Switzerland. It includes various building

variables such as indoor temperature, humidity,
heat flux, CO2 concentration, and window

opening times over a two-month period during the
winter of 2018–2019.

[61]

Develop a computationally efficient method to assess the
energy performance of various energy conservation
measure (ECM) combinations under future climate

conditions, evaluating their impacts on life-cycle net
present value (NPV) and reducing the computational

resources needed for building energy simulations.

EnergyPlus building energy simulation software to
model the energy performance of various retrofit

options under current and future climate
conditions.

[62]

Create a data-driven methodology to verify energy
efficiency savings in commercial buildings using typical
usage profiles for baseline modeling, analyzing pre- and
post-efficiency data, and providing accurate results with
limited training data, including insights on load profiles

and weather dependencies.

The study uses two datasets: synthetic data
generated via EnergyPlus simulations for three
building typologies (office, primary care center,

and hospital) across three geographical locations
and six energy efficiency measures, resulting in 54
unique scenarios, and monitoring data from two

offices and a cultural building in Barcelona, Spain.
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[63].

Summarize, monitor, and assess a real case of energy
retrofitting the building envelope (external opaque walls

and roof) of an existing energy-inefficient affordable
residential building. Collect quantitative data by

monitoring four apartments to compare energy savings
before and after retrofitting, alongside qualitative data on

occupant behavior to evaluate thermal comfort. Draw
conclusions from both the quantitative and qualitative

data.

This study uses three data types: 1) energy
consumption data (thermal energy and electricity)
from sensors in four apartments before and after

the retrofit; 2) indoor temperature data from
sensors in three rooms (living room, bedroom 1,

and bedroom 2) of these apartments; and 3)
occupant survey data on daily living behaviors

and heating/cooling usage patterns.

[64]

Conduct a holistic cost–optimal retrofit analysis for a
Swiss single-family house by identifying and collecting
popular retrofit measures along with their investment

costs. Combine these measures into various retrofit
strategies and assess their cost effectiveness and

environmental impact. Finally, determine and discuss the
cost–optimal retrofit strategy.

Measured values of room temperature, occupancy,
and electricity demand were obtained during

winter 2016/2017 using a wireless sensor network
in the reference building. The heat demand for

domestic hot water (DHW) is calculated according
to the SIA 380/1 standard and is assumed to

remain constant for each retrofit strategy.

[65]
Evaluate past retrofit savings, predict potential savings

from future retrofits, and optimize retrofit decisions based
on these predictions.

The dataset used in this study is from the U.S.
General Services Administration (GSA) portfolio

and includes building energy data and retrofit
records for a subset of 552 buildings. Of these, 270

buildings have recorded retrofits, while 282
buildings have no recorded retrofits.

[66]

Propose a data-driven life-cycle optimization approach for
building retrofitting, assessing the economic, energy, and
environmental performance of options to determine the

optimal plan that maximizes cost savings, energy
reduction, and carbon reduction.

The dataset used in the study includes a historical
energy consumption profile, building thermal

property information, historical weather data, and
real-world life-cycle inventory data.

[67]

Enable market actors to assess, forecast, and quantify
energy efficiency opportunities and performance risks

using empirical building data, provide probabilistic risk
analysis, and reduce transaction costs for predicting

savings across a portfolio.

The DOE’s Buildings Performance Database (BPD),
which contains over 750,000 existing commercial
and residential buildings compiled from over 25

different source datasets

[68]

Provide energy advising services to building owners in
the Västerbotten region of Sweden by developing a

systematic, data-driven framework and a user-friendly
web platform. Integrate quantitative analysis to

emphasize relevant factors and supply preliminary
information for stakeholders.

The study employs two primary datasets: a
questionnaire dataset based on the Theory of
Planned Behavior (TPB) and a dataset from

Boverket covering 550,000 buildings. It focuses on
12,624 one- and two-family houses in the

Västerbotten region, categorized by city, year of
construction, number of households, and total

floor area.

[70]

Develop a hybrid model combining weighted support
vector regression (SVR) and differential evolution (DE)

optimization to forecast both short-term (half-hourly) and
medium-term (daily) energy consumption. Apply and
evaluate the model using half-hourly and daily energy

consumption data from an institutional building in
Singapore.

The study utilizes two datasets: a daily energy
consumption dataset for an institutional building
in Singapore from 2013, comprising 261 total data
points (209 for training and 52 for testing), and a
half-hourly energy consumption dataset for the
same building covering a 10-day period in June
2012, consisting of 480 total data points (384 for

training and 96 for testing).
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[10] • Integrating additional factors like control systems and occupant behavior into the predictive models to
improve the comprehensiveness and precision of energy consumption forecasts.

[11]

• The size and complexity of non-domestic buildings make it challenging to identify optimal retrofit packages.
• The vast retrofit solution space and high time complexity of energy simulations inhibit the application of

artificial intelligence in the retrofit strategy design process.
• Achieving comprehensive retrofit planning considering all available technologies and energy policies is not

practically possible without a fast and stable energy performance emulator.

[18]

• Simulation-based methods are limited in their ability to quickly evaluate the effects of various design or
retrofit scenarios.

• Data-driven methods lack an underlying physics-based engine, limiting their applicability and interpretabil-
ity for assessing design or retrofit scenarios.

• Urban building energy models (UBEMs) have limited ability to estimate the impacts a retrofit made in one
building could have on the energy use of surrounding ones.

• Developing and calibrating an accurate UBEM requires a considerable amount of time and computational
resources.

• Data-driven methods require training data to understand how different energy conservation measures
(ECMs) will impact future building energy use.

[19]

• Lack of physical descriptions for buildings in existing building stock databases.
• Dated information in existing building stock databases.
• Lack of data quality in existing building stock databases.
• Lack of information on existing and suggested retrofit measures in existing building stock databases.
• Limited studies on urban-scale retrofitting for residential buildings, with most focusing on commercial

buildings.
• Existing studies on urban-scale retrofitting are limited to specific climates or pre-defined scenarios, and a

more generalized solution is needed.

[20]

• Lack of systematic design and assessment tools for building energy retrofits in Denmark, especially for
non-residential buildings.

• Existing tools rely on pre-simulated data, energy certificates, or fixed assumptions, and cannot scale up and
expedite the rate of retrofit applications while maintaining accuracy.

• Lack of emphasis on commissioning existing buildings after retrofitting, leading to undetected faults and
malfunctioning systems.

[21]

• Older buildings often lack complete information for building performance simulation (BPS) methods, such
as missing U-values of building components due to incomplete documentation or deterioration over time.

• Buildings can also have case-specific incomplete information due to different documentation systems.
• Previous studies have tried to address incomplete information by using probability distributions based

on macro-level data, but this is challenging because it is difficult to determine an objective probability
distribution, and different buildings can have different missing information.

• Applying the same probability distribution to all buildings is unreliable, as the actual missing values are
heavily influenced by building-specific characteristics.

[23]

• Lack of information on retrofit technologies and their benefits, which triggers stakeholder opposition to
retrofit actions.

• Need to develop a model that evaluates the impact of different retrofit technologies on stakeholder expecta-
tions for retrofit actions.

• Need to improve the quality of the Energy Performance Certificate by reflecting stakeholder opinions
combined with sustainable concepts to achieve significant energy savings.

[25] • The relationship between building energy performance (BEP) prediction accuracy and retrofit rates, as well
as the resulting CO2 emission reduction potential, is not yet determined in the literature.
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[26]

• Simulation-based models struggle to account for inter-building energy dynamics and urban context effect.
• Lack of accurate characterization of how large-scale retrofits may perform in an urban area, leading to

unintended consequences.
• Purely data-driven approaches to predicting energy consumption and estimating the influence of urban

context have been considered separate tasks, requiring more integration.

[27]

• The short time interval for ECM monitoring could contain biased consumption data relating to an event of
significance or an outlier, and this needs to be factored in as the time interval is incrementally expanded.

• The prediction horizon and prediction uncertainty should be incorporated into the model development as
further parameters to be fine-tuned.

[28]

• It is difficult to identify specific energy savings potential and retrofit measures for high-performance buildings
that already use energy efficient technologies and design strategies.

• Previous studies have lacked comprehensive and detailed monitored data, and have focused on limited
aspects of building energy performance or building systems.

[29]

• The CPU time required for the BEBM constructor is long, which may discourage users from using this option.
• The optimal simulation length for the BEBM constructor is not known and would require further research.
• More advanced stopping criteria for the genetic algorithm used in the BEBM constructor could potentially

reduce the execution time, but this would require further research.

[30]

• The knowledge gap between current archetype development methods and obtaining data from the building
stock to compose the archetypes.

• The uncertainties in archetypes that jeopardize the wide application of benchmarking and limit regional
applications like UBEM simulations.

[31]

• Improving the quality of data-driven ECM recommendation models by incorporating new audit data and
developing models for more specific ECMs or building types.

• Improving the data collection process by restricting numerical fields to numbers, converting open text fields
to categorical fields, and defining categories based on ASHRAE standards, energy consultant input, and
observed data.

• Expanding audit requirements to include tenant spaces, which represent a significant portion of energy use
in multi-tenanted buildings.

• Expanding the coverage of the Greener, Greater Buildings Plan to include smaller buildings, increasing the
sample size for analysis and model performance.

[32] • Developing deterministic decision models for selecting cost-effective sustainable building retrofit measures
for high-rise residential buildings in different climatic zones.

[33]

• Estimating the actual energy savings achieved after implementing various retrofit strategies.
• Using more suitable statistical distributions to describe the primal energy demand in clusters, rather than a

Gaussian distribution.
• Assigning the target primal energy demand to assets in the target cluster, particularly when there are many

records, to avoid underestimating the total savings.

[34]

• Improving techniques for handling missing data in the data pre-processing stage.
• Shifting from nomenclature-based to data-driven building segmentation to improve the relevance of

archetype buildings.
• Automating the building energy simulation stage and improving model resolution by accounting for

individual building geometry.
• Incorporating more advanced urban climate modeling to improve the overall accuracy of the model.
• Adopting a more holistic life-cycle perspective on the building retrofitting process, including the embodied

energy and emissions of the renovation process itself.
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[35]

• Lack of research on contextualizing the use of AI for building retrofits and understanding how AI-driven
decision support systems can improve energy efficiency and stakeholder engagement.

• Limitations in energy performance prediction models due to missing data and noise in the EPC dataset used
for training.

[36]

• Previous work has focused on the perspectives of ML experts and energy experts, but there is a need to
investigate XAI from the perspective of decision-makers (e.g., property owners).

• Most research articles neglect evaluating XAI methods with potential users, or only emulate user evaluation,
leading to inaccurate human-centered insights.

[37]

• Existing literature uses neural networks for regression analysis of annual building energy usage to estimate
EPC labels, while this study develops ANN models to directly classify EPC labels.

• ANN models are black-box models, so their internal processes and reasons for classifications are unknown,
leading to reluctance and distrust in their application. This study uses explainable AI techniques to address
this constraint.

[38]

• Lack of large-scale quantitative studies on factors influencing actual building retrofits, rather than just energy
efficiency.

• Lack of research exploiting the opportunities of digitization and data availability.
• Lack of applications and investigations using explainable AI (XAI) techniques in energy research.

[39] • Incorporating the decision maker’s preferences into the decision-making process.
• Assessing the uncertainty in factors such as savings estimation, weather forecast, and retrofit action costs.

[40] • Understanding the information barriers to the adoption of home energy retrofits (HERs).
• Developing a system that can assist with overcoming these information barriers.

[41]

• Lack of a complete scientific literature on energy efficiency in wide building stocks.
• Lack of a specific approach for property asset portfolios, as opposed to single buildings or urban areas.
• Lack of an integrated approach that handles energy assessment, economic feasibility, decision-making, and

uncertainty simulation for multiple interventions across a portfolio.
• Existing methodologies are limited and heterogeneous, so new portfolio-level techniques are needed.
• Need to include multi-criteria strategies to address competing economic, environmental, cultural, and social

objectives.
• Need to introduce decision support systems and optimization rules.

[42]

• Studies using Google Street View and machine learning to predict building-specific suitability for specific
energy conservation measures remain a rather unexplored area of research.

• There is limited knowledge on the benefits of expert influence in the generation of machine learning models
outside the sphere of deep learning.

[43]

• Improving the performance of the surrogate model by exploring different model architectures, such as
deeper neural networks, residual connections, and neural architecture search techniques.

• Exploring other machine learning algorithms, such as random forests, to improve the model interpretability.
• Checking the confidence of the model predictions and rejecting predictions for outlier buildings.
• Extending the surrogate model to be applicable for wide-area retrofit analysis, such as at the neighborhood

or city level, by accounting for regional variability and using transfer learning techniques.

[44]

• The uncertainty in the EPC dataset, which can lead to a gap between the estimated and actual energy
performance. This can be improved in future work as European countries develop standards for EPC data
quality assurance.

• The limited availability of detailed building attributes outside of the EPC dataset, which constrains the
broader application of the framework. The authors suggest exploring ways to balance data availability and
prediction accuracy to extend the framework to buildings without EPC data.
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[45]

• The economic aspect of building energy retrofit was not included in the proposed ERi measure, as it is highly
dependent on individual owners’ perceptions.

• The economic aspect of building energy retrofit was not included in the proposed ERi measure, as it is highly
dependent on individual owners’ perceptions.

• The framework could be extended to include the economic aspect by merging the ERi with probability theory
to create retrofit scenarios.

• The framework could be further validated using EPC databases from other regions/countries that use
different methodologies for ranking building energy performance.

• The framework could be extended to handle high-dimensional data and reconfigure the energy retrofit labels
to cover cooling, lighting, and domestic hot water energy consumption, in addition to heating.

[46]

• Combining physical modeling and data-driven modeling techniques to develop more accurate and compre-
hensive methods for estimating energy savings.

• Organizing a structured process to collect and verify data on EE measures, creating a larger and more diverse
database.

• Linking forecast error with the potential uncertainty of EE investments to support decision-making.
• Developing a predictions-as-a-service, web-based tool to support stakeholders in EE financing.

[47]

• More studies are needed on using data-driven models to predict energy consumption at a larger urban scale,
beyond just individual buildings.

• There is a lack of high-quality data in sufficient quantities to effectively train prediction models at an urban
scale.

• Previous research has been limited by considering only a small set of parameters in predicting building
energy consumption.

• Fewer recent studies have incorporated crucial factors like U-values, HVAC systems, and renewable energy
systems into their machine learning models.

[48]

• Previous studies have not considered the carbon emission and cost impacts when making retrofit decisions
for Canadian residential buildings.

• There is a need for prediction models for retrofit scenarios of existing residential buildings in Canada, as
over 50% of Canadian residential buildings are over 30 years old and need energy retrofits to reduce carbon
emissions.

[49]

• Challenges in evaluating the objective function during optimization across multiple factors such as energy
performance, thermal comfort, and investment.

• Difficulty in generalizing results from archetypical buildings to individual cases.
• Insufficient decision-making support for users in both deterministic and non-dominated optimization

methods.
• Need for life-cycle cost analysis that considers future climate uncertainties.

[62]

• Existing methodologies do not use the typical consumption patterns detected in the analyzed facilities as a
predictor variable in the energy baseline model.

• Existing methodologies only use data that precedes the energy efficiency measure (EEM) implementation
to train the energy baseline model, which causes the loss of valuable information about how energy
consumption fluctuates due to outdoor climate variables in the post-EEM period.

[65]

• The current literature on using data-driven methods to predict retrofit savings is limited, with the field being
dominated by simulation-based methods.

• This study extends the existing research on data-driven methods for predicting retrofit effects to the commer-
cial building sector, with a focus on weather and climate factors rather than occupant characteristics.

[66]

• Inaccurate building performance evaluation results from using degree-day or simulation software, rather
than actual building data.

• Limited consideration of the combined effects of multiple retrofitting measures, with a focus on individual
measures.

• Optimization objectives focused on operating energy or life-cycle cost, rather than life-cycle energy and
carbon.



Appl. Syst. Innov. 2025, 8, 5 38 of 40

Table A2. Cont.

Study Reported Research Gap

[67]

• The need for more detailed and comprehensive building data in the BPD, including more information on
building assets and characteristics.

• The need for longitudinal building performance data, tracking changes over time, in order to analyze the
impacts of capital and operational changes while controlling for other factors.
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