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Abstract: This paper presents a new approach for enhancing autonomous vehicle navi-
gation and obstacle avoidance based on the integration of reinforcement learning with
multiple sensors for navigation. The proposed system is designed to enable a reinforcement
learning decision algorithm capable of making real-time decisions in aiding the adaptive
capability of a vehicle. This method was tested on a prototype vehicle with navigation
based on a Ublox Neo 6M GPS and a three-axis magnetometer, while for obstacle detection,
this system uses three ultrasonic sensors. The use of a model-free reinforcement learning
algorithm and use of an effective sensor for obstacle avoidance (instead of LiDAR and
a camera) provides the proposed system advantage in terms of computational require-
ments, adaptability, and overall cost. Our experiments show that the proposed method
improves navigation accuracy substantially and significantly advances the ability to avoid
obstacles. The prototype vehicle adapts very well to the conditions of the testing track.
Further, the data logs from the vehicle were analyzed to check the performance. It is
this cost-effective and adaptable nature of the system that holds some promise toward
a solution in situations where human intervention is not feasible, or even possible, due
to either danger or remoteness. In general, this research showed how the application of
reinforcement learning combined with sensor fusion enhances autonomous navigation and
makes vehicles perform more reliably and intelligently in dynamic environments.

Keywords: obstacle avoidance; reinforcement learning; dynamic environments; autonomous
vehicle navigation

1. Introduction
A collaborative robot (Cobot), is an advanced robotic system designed to interact safely

and efficiently with human workers in shared workspaces, often featuring sensors and AI
for enhanced precision and adaptability [1,2]. Cobots are very useful and are developed to
improve efficiency, safety, and adaptability, which is a great help in cases when the working
environment includes very little human presence or has no presence at all [3]. Associating
with or even characterized by other unexpected obstacles, the operation of these machines
in dynamic and unpredictable environments would be more suitable for future navigation
and adaptive obstacle avoidance systems in Cobots [4].

These obstacle detection and avoidance methods in the case of the robots are more based
on predefined rules or static models, which will work well for restricted environments, but
these cannot adapt to real-world applications where situations keep on changing way too
frequently. Path planning, a fundamental aspect of autonomous navigation for robots and
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vehicles, focuses on finding the shortest and most efficient path from an origin to a destination
while avoiding collisions. The optimal algorithm choice hinges on whether the environment
is static, with unchanging obstacle locations, or dynamic, where obstacles can move or appear
suddenly. Dijkstra’s algorithm (D *), efficient for static environments, guarantees the shortest
path [5]. In contrast, the A star algorithm (A *), while also suited for static environments,
employs heuristics to expedite pathfinding, making it computationally less demanding [6]. For
dynamic environments, the D * algorithm shines due to its ability to swiftly adapt to changes in
the environment, making it ideal for applications like planetary rovers [7]. Rapidly exploring
Random Trees (RRTs) are particularly effective in dynamic settings and systems with non-
holonomic constraints, such as those found in wheeled robots [8–11]. These algorithms explore
possible paths by constructing a tree structure. Beyond these, nature-inspired algorithms
like Genetic Algorithms, Ant Colony Optimization, and Firefly Algorithms offer unique
advantages in handling complex environments [7]. Genetic Algorithms, mimicking biological
evolution, may not always locate the absolute shortest path but deliver effective solutions [12].
Ant Colony Optimization, inspired by ant foraging behavior, utilizes virtual pheromone trails
to pinpoint efficient paths and excels in dynamic and multi-robot systems [13]. Finally, Firefly
Algorithms, simulating firefly flashing, utilize virtual fireflies’ brightness to steer the search
for an optimal path, proving suitable for both static and dynamic situations, particularly in
underwater vehicles. Therefore, selecting the appropriate path-planning algorithm requires
a thorough understanding of the environment’s nature and the specific requirements of the
task. Of course, these conventional methods are of no use if unexpected obstacles arise,
which could result in a collision or inefficient navigation paths. Conventional path-planning
algorithms, like Dijkstra’s [5] and A * rely [6] on static models and predefined rules, which
make them ill-suited for dynamic environments; hence, there is a requirement for more flexible,
smart systems that can adapt quickly based on the environment condition for efficient Cobot
operation and implementation.

The technique presented in this paper has its foundations in the principles of artificial
intelligence (AI), specifically in the field of reinforcement learning (RL), a branch of machine
learning within AI. The goal of artificial intelligence (AI) is to build systems that can
learn, adapt, and make decisions on their own in challenging situations [14,15]. This is
demonstrated by the model-free RL algorithm, which allows the Cobot to adapt its decision
for obstacle avoidance when interacting with the surroundings. Unlike conventional ways,
the approach does not rely on the model of the environment. Instead, the Cobot can learn
from experiences and update its behavior online by fine-tuning its strategies in obstacle
avoidance due to new obstacles. Also, by analyzing the decisions that were made by Cobot
past decision data and its sensor data, a rough plot can be generated that maps the path that
was followed by the Cobot and the positions of various obstacles faced by it. A summary
of all the previously discussed features is shown in Figure 1.
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2. Literature Review
One of the recent technologies being integrated into the autonomous vehicle system is

the application of Unmanned Ground Vehicles. It can be seen [16] how GPS fundamentally
guides UGVs from a source location to a target location while making sure that obstacles are
evaded through ultrasonic sensors. The system is already preset with the GPS coordinates
so that the vehicle will adhere to a certain route and adjust whenever it detects an obstacle
all throughout. It has such sensors to present a relatively low-cost alternative to more
expensive and complex sensors, like LiDAR [16]. The practical application of the ultrasonic
sensors involves implementing an additional autonomous navigation system that improves
the reliability and efficiency of UGVs in providing safety and guaranteeing correctness.

Another approach can be to [17,18] consider integrating GPS with magnetometers
for better autonomous navigation. Position data can be obtained from the GPS while the
orientation data can be captured by using the magnetometer. The LabVIEW HMI [17] can
use such systems providing an easy-to-use platform that allows for the monitoring and
control of the navigation process. The GPS and magnetometer coupling is best suited to be
applied in urban or foliage-dense environments when a consistent, precise heading must
be maintained or when GPS signals are weak and obstructed.

Further, research has [19] examined how an autonomous vehicle should cope with the
possibility of losing its GNSS signals either within the environment or within specific zones.
The motivation was to complement navigation with multiple ultrasonic sensors so that the
vehicle would not rely solely on GPS. This provides a solution to estimate the navigation
states of land vehicles in GNSS-denied environments. An Extended Kalman Filter (EKF)
is applied to fuse low-cost ultrasonic sensors with an Inertial Measurement Unit (IMU).
The rear wheels are mounted with ultrasonic sensors that measure the range difference in
determining the angular velocity and forward velocity of the vehicle. The two experimental
tests showed that the information required to navigate considerably improved the position
accuracy during GNSS outages.

Where another implementation [20] explains that it is not possible for typical nav-
igation systems that are dependent on GPS to work indoors or in closed environments;
therefore, some other methods are to be adopted to use the UAV safely. Using magnetic
field mapping as a means of navigation that uses the recording and visualization of changes
in the local magnetic field with high resolution to develop magnetic maps. These maps
act as a reference framework for UAVs to navigate autonomously within complex indoor
spaces. The importance of doing proper calibration of the magnetometer lies in the fact that
nonuniform results were obtained from the magnetometers of different batches of produc-
tion. It is so important, particularly in the generation of correct magnetic field maps. It also
shows the importance of real-time magnetic data visualization with tools such as MATLAB
and Voxel for instant environment estimation and detection of magnetic anomalies. More
emphasis is put into research related to the introduction of permanent magnets into the
magnetic field, which in this case, will be taken as intentional perturbations; the anomalies
act as a beacon that would give the UAVs their position and map in the environment. The
observations conclude that with more exploration, magnetic field mapping will be a reliable
way for indoor navigation in the systems of UAVs and provide precision control even if
GPS is not available. Though our implementation makes use of GPS data, reliance on GPS
could be reduced by using alternate methods [19,20].

On the other hand, various implementations [21] provide an extensive review of vari-
ous techniques for mobile robot navigation, organized into classical and reactive strategies.
Classical techniques [21], such as cell decomposition, roadmap methods, and artificial
potential fields, combined with the use of reactive strategies that apply artificial intelligence
methods, such as Genetic Algorithms and fuzzy logic, for real-time adaptability. There are
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a lot of works available that have compared methods, showing strengths and weaknesses
in different scenarios and accentuating the trend toward hybrid techniques in which tech-
niques are combined for improved performance. Also, based on the detected research gaps,
these works have identified future directions for further enhancement of path-planning
strategies to address the challenges generated by dynamic and complex environments.

A new system [22] that fuses 2D LiDAR data with RGB-D cameras can be used, leading
to vastly superior mobile robot navigation in dynamic environments. Already, Bayesian
estimation for multi-sensor data fusion is applied in this approach to further enhance the
two-dimensional grid maps’ accuracy and enable the discovery of obstacles below the
scanning height of the LiDAR. The dynamic window method integrates a global path of
planning and a local path of planning with an improved algorithm for effective global
path planning and efficient local path planning, respectively. The experimental results
demonstrated that this system could navigate static and dynamic environments, showing
one application of a real robot system.

Moreover, the use of deep learning architectures in path planning for mobile robots has
been explored, showing promising results in enhancing navigation and obstacle avoidance
capabilities [23]. Among various models, the hybrid CNN-LSTM model exhibited superior
performance, indicating the potential of deep learning in improving the efficiency and
adaptability of path planning compared to traditional algorithms.

A hybrid sampling-based RRT * algorithm was introduced to address the limitations
of conventional path-planning methods [24]. By integrating uniform and non-uniform sam-
pling strategies, this algorithm demonstrated improved navigation efficiency in complex
environments. The findings suggest that hybrid approaches can significantly contribute to
autonomous navigation performance.

Another complex way to develop an autonomous navigation system [25] for mobile
robots is by combining DRL with sensor fusion techniques, particularly using LiDAR and
depth camera data. This leverages the heuristic global navigation function to select optimal
points of navigation while employing the Soft Actor–Critic algorithm for local navigation,
which in turn ensures that the robot can pave its way into the unknown environment.
It underlines the system’s capacity to move effectively around obstacles and respond to
dynamic situations with superior performance in experimental trials compared to those
under traditional methods, especially in the aspects of travel time and distance. This
consequently implies that a quantifiable performance increase in mobile robot navigation
within complex environments has been achieved using the approach taken here.

Neuromorphic computing and spiking neural networks (SNNs) have the potential
to greatly enhance robotic navigation and obstacle avoidance algorithms by mimicking
the biological information processing in the human brain. Bartolozzi discusses [26] how
event-driven neuromorphic sensors such as Dynamic Vision Sensors (DVSs) capture rele-
vant changes in a scene, ceasing to be clock-driven and thus reducing irrelevant data to
be processed. It minimizes duplicate information, increases the temporal resolution of
the observation, and allows for neural–semantic–motor integration, which is essential to
traverse unstructured spaces. Martínez [27] in turn highlights the importance of SNNs in
the context of autonomous driving, where their capacity for temporal processing allows
for real-time decision-making with a high degree of energy efficiency, especially when
implemented on neuromorphic hardware. But they admit difficulties in achieving the
performance of traditional neural networks in essential tasks. Aitsam [28] highlights the
utility of SNNs in the context of robotics, as SNNs are capable of reducing latency and
energy consumption through the use of spiking mechanisms to process sensory data ef-
ficiently as well as adapt to environmental changes. Collectively, these studies establish
firm groundwork for coupling ultrasonic sensors, GPS, and magnetometers to neuromor-
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phic systems. Real-time map generation, representation, and semantic learning can all be
achieved through model-free reinforcement learning; coupled with data-driven approaches,
they pave the way to developing adaptive robots capable of continuous learning from
their environments and improving navigation while avoiding unexpected obstacles. This
integration of event-based sensing with brain-inspired computation and learning systems is
a promising approach toward developing autonomous robotic systems capable of efficient
operation in complicated, dynamic environments.

The paper [29] discusses integrating ethical reasoning into reinforcement learning (RL)
agents using a modular normative supervisor. This supervisor employs defeasible deontic
logic to ensure that the agent complies with ethical norms while maintaining optimal
learned behavior. The approach dynamically checks for compliance, handles conflicting
norms, and selects ‘lesser evil’ actions when no fully compliant option exists. Applications
of this approach in Cobots could include avoiding high-risk zones based on GPS or sensor
data, limiting speed, or halting movement if predetermined objects, such as pedestrians,
are detected.

Lastly, the development of a hybrid algorithm integrating classical and heuristic
methods for mobile robot path planning has shown enhanced capabilities in dynamic
environments [30]. This approach addresses the challenges of real-time navigation in
the presence of both static and dynamic obstacles, resulting in superior adaptability and
efficiency in navigating complex scenarios.

Cobot navigation system implementations reviewed above show methods that help
the robot vehicle to navigate using cost-effective sensors like GPS, ultrasonic sensors, and
magnetometers, while others use advanced sensors, like LiDAR, etc., along with intelligent
algorithms. Our focus is to use cost-effective sensors along with an intelligent algorithm
to get an effective performance out of the system to perform desired navigation and
obstacle avoidance.

3. Methodology
The proposed methodology system combines a model-free RL algorithm with real-

time sensor data to give the Cobot flexibility in navigation and the ability to avoid obstacles
effectively. The system allows the Cobot to make on-the-fly decisions about its path by
utilizing the Ublox Neo 6M GPS, which is combined with a tri-axis magnetometer for
navigation and ultrasonic sensors to fine-tune its path as needed. Thus, this approach
helps to navigate effectively, ensuring that the Cobot can safely move to its destination in a
complex or unknown environment.

This study presents the development and implementation of a cost-effective prototype
robotic system, providing a practical solution for various autonomous navigation tasks.
Apart from the use of Cobot, this method can also have applications in deploying vehicle
robots into remote or potentially dangerous environments where human presence is not
practical. An overview of the RL Cobot system is shown in Figure 2.

Cobot is fed with the destination GPS coordinates alone to the test vehicle, which then
uses the readings from the GPS and tri-axis magnetometer sensors to adjust its heading
angle and move forward. Additionally, three ultrasonic sensors are used to detect obstacles
and ensure the vehicle follows a drivable path. When an obstacle is detected, the vehicle
system employs a model-free reinforcement learning algorithm to navigate around it.
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3.1. The Haversine Formula

The Haversine formula is used to get the distance between two positions on a sphere
using their coordinates. It is especially valuable in navigation and mapping applications for
determining the shortest path between two locations on Earth [31,32]. Using this formula,
a vehicle can determine whether it has reached its destination. Mathematical equations are
shown below:

x = sin2
(

∆ϕ

2

)
+ cos(ϕ1)cos(ϕ2)sin2

(
∆λ

2

)
(1)

y = 2·a·tan2
(√

x,
√

1 − x
)

(2)

d = R·c (3)

where ϕ1, ϕ2 are the latitudes of current location and destination in radians. λ1, λ2 are
the longitudes of current location and destination in radians. ∆ϕ = ϕ1 − ϕ2 is the latitude
difference. ∆λ = λ1 − λ2 is the longitude difference. R is the radius of Earth. c is the angular
distance between the points. d is the distance between the two points.

3.2. The Initial Bearing Formula

The Initial Bearing Formula, also known as the Forward Azimuth Formula, calculates
the direction or bearing from one geographical point to another on the Earth’s surface. It
uses the latitudes and longitudes of the two points to determine the angle relative to true
north [33]. This bearing is crucial in navigation and mapping for determining the shortest
path or direction to follow over the Earth’s curved surface. The result is typically expressed
in degrees, ranging from 0 to 360.

Mathematically: (ϕ1, λ1): latitude and longitude of the starting point. (ϕ2, λ2): latitude
and longitude of the destination point.

θ = atan2(sin(∆λ) × cos(ϕ2) × cos(ϕ1) × sin(ϕ2) − sin(ϕ1) × cos(ϕ2) × cos(∆λ)) (4)

where θ is the initial bearing angle.

3.3. The Bearing Angle Formula for Magnetometer

To calculate the bearing angle from LIS2MDL data, use the formula below:

θ = atan2(Y, X) (5)

where X and Y are the magnetic field strength values obtained after calibration of sensor in
the X and Y directions, respectively. This formula provides the angle relative to magnetic
north. Convert the result from radians to degrees and adjust for magnetic declination if
needed. Finally, normalize the angle to the 0–360-degree range. This bearing angle helps
determine direction relative to the Earth’s magnetic field for navigation and orientation.
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3.4. Navigation Algorithm

Figure 3 shows the algorithm for navigation that was used in this study in our test
vehicle. The algorithm begins by obtaining the vehicle’s current GPS coordinates and the
desired destination coordinates. The GPS module supplies the vehicle’s current location,
and the microcontroller processes this information to calculate both the required bearing
angle, which indicates the direction to the destination and the distance between the current
position and the destination.
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Next, the vehicle’s current heading angle is measured by the magnetometer. The
microcontroller then determines the heading error by comparing this current heading with
the calculated bearing angle.

The vehicle’s movement is guided by the heading error and the distance to the desti-
nation. If the heading error falls within a specified tolerance of ±5 degrees and the distance
to the destination is less than 10 m, the vehicle will stop. If the heading error is outside the
tolerance, the vehicle’s motor actuators adjust its direction by turning left or right to correct
the heading. If the heading is correct but the distance to the destination exceeds 10 m, the
vehicle moves forward.
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3.5. Obstacle Avoidance Algorithm

For obstacle avoidance, the suggested approach makes use of a model-free reinforce-
ment learning (RL) algorithm. This approach is recommended over other machine-learning
(ML) algorithms because it may learn optimal behavior directly from interactions with
the environment, making it ideal for dynamic, real-time decision-making tasks. Unlike
other algorithms, RL does not require large, labeled datasets and can adapt to changing
conditions over time [34]. This flexibility makes RL particularly suited for applications
like robotics, gaming, and autonomous vehicles, where traditional machine-learning ap-
proaches may struggle. Model-free RL continuously adjusts its approach based on real-time
feedback. Also, for microcontrollers with less programming memory, this model-free RL
algorithm can be used due to low memory requirements as compared to other supervised
ML algorithms [35,36].

In this reinforcement learning-based algorithm, the test vehicle navigates its environ-
ment by integrating sensor inputs and learning from interactions. The process begins with
the front ultrasonic sensor measuring the distance to the nearest obstacle. If an obstacle
is detected within a specified range (40 cm or 60 cm), the test vehicle must avoid it. The
test vehicle then chooses a direction to turn—left or right—based on a 50/50 probability.
Post-turn, the test vehicle continues forward. The algorithm tracks the success rate of each
direction: If turning in a given direction successfully avoids the obstacle, the success rate
for that direction increases; if it results in another obstacle, the success rate decreases. To
balance exploration and exploitation, a random element is introduced. A random number
between 1 and 100 determines the test vehicle’s behavior: If the number is between 1 and 10,
the test vehicle performs a random turn to explore new paths; if the number is between 11
and 100, it exploits the direction with the higher success rate. Meanwhile, the left and right
ultrasonic sensors help maintain the vehicle on its path by avoiding side crashes through
vehicle tilting rather than detecting hard obstacles. One potential source of the problem
that can arise from this algorithm (also known as reward hacking issue in reinforcement
learning) is when difference between the success rate values becomes too large, causing the
turn decision with the higher value to dominate. To avoid this, a maximum value can be
predefined for success rate [37]. Once a success rate reaches this maximum value, it can be
reset to the initial value.

This approach exemplifies how reinforcement learning can be effectively applied to
small robot vehicles such as the test vehicle used in this study, balancing the need for
exploration of new strategies and exploitation of successful ones to optimize performance
in real time. The flow diagram is shown in Figure 4.



Appl. Syst. Innov. 2025, 8, 9 9 of 20
Appl. Syst. Innov. 2025, 8, x FOR PEER REVIEW 9 of 20 
 

 

 

Figure 4. Obstacle avoidance algorithm flow diagram. 

4. System Architecture 
The system architecture is shown in the following Figure 5. It contains several key 

components, including sensors, a microcontroller, a power supply, communication mod-
ules, and movement control units. 

Figure 4. Obstacle avoidance algorithm flow diagram.

4. System Architecture
The system architecture is shown in the following Figure 5. It contains several key

components, including sensors, a microcontroller, a power supply, communication modules,
and movement control units.
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Figure 5. System architecture diagram.

4.1. Sensors
4.1.1. Ublox NEO-6M GPS Module

This module is a high-performance, compact GPS receiver designed to provide accu-
rate position data. It operates by receiving signals from multiple GPS satellites orbiting
the Earth. The module uses its antenna to capture these signals, which include each satel-
lite’s location and time information. It then processes the signals to calculate the distance
between the satellites and the receiver. Using this distance information along with the
known satellite positions, the NEO-6M triangulates the receiver’s position on the Earth’s
surface. The module outputs the calculated position and time data via serial communica-
tion (UART), which can be utilized by connected devices, such as a robot car, for navigation
and tracking purposes. Tables 1 and 2 shows the default configuration of this module and
the default configuration of the NEO-6M GPS module respectively.

Furthermore, a computer application, u-center, is available, allowing connection to
the GPS module via a TTL to USB connector. This application enables the configuration
of various parameters of the module to meet specific requirements. Figure 6 shows the
interface of the u-center application connected to the GPS module.
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Table 1. Technical specifications of the Ublox NEO-6M GPS module.

Feature Specification

Antenna 25 × 25 × 4 mm (ceramic, active)
Power Supply 3–5 V

Baud Rate 9600 bps (default)
Position Update Rate 5 Hz

Cold Start Time 38 s
Hot Start Time 1 s

Baud Rate Range 4800 to 115,200 bps
Tracking Sensitivity −161 dB
Satellite Channels 22 satellites, 50 channels

Current Consumption 45 mA
SBAS Support WAAS, EGNOS, MSAS, GAGAN

Table 2. Used configuration of the Ublox NEO-6M GPS module.

Parameter Default Description

Baud Rate 9600 bps Speed of communication.
Protocol NMEA GPS data output protocol.

Update Rate 1 Hz GPS position update
frequency.

Accuracy 2.5 m (approx.) Typical positional accuracy in
open sky conditions.

Coordinate System WGS-84 Default coordinate system
used for position data.
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4.1.2. LIS2MDL 3-Axis Magnetometer

The LIS2MDL is a high-performance three-axis magnetometer designed for precise
magnetic field measurements, making it ideal for applications such as navigation sys-
tems and electronic compasses. It operates by detecting the Earth’s magnetic field along
three orthogonal axes (X, Y, and Z) using magneto resistive elements. The detailed specifi-
cations are shown in Table 3. These elements measure the magnetic field’s strength and
convert the analog signals into digital data. Calibration of this sensor is a must to obtain
correct readings. The steps below are performed to calibrate the sensor used in this study:
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1. Move the sensor to capture the full range of magnetic field values.
2. Identify the minimum and maximum magnetic field readings for each axis.
3. Calculate the offsets and scale factors based on the min/max values.
4. Adjust raw data by subtracting offsets and dividing by scale factors.

Table 3. Technical specifications of the LIS2MDL 3-axis magnetometer.

Feature Specification

Magnetic Field Range ±50 gauss
Data Output 16-bit

Interfaces SPI, I2C
Supply Voltage 1.71 V to 3.6 V

Temperature Range −40 ◦C to +85 ◦C
Power Modes Selectable

Measurement Mode Single
Interrupt Generator Programmable

Self-test Embedded
Temperature Sensor Embedded

As this sensor is used to calculate the current heading angle (range: 0 to 360 degrees)
of the vehicle, only X and Y values will be used.

4.1.3. Ultrasonic Sensor

HC-SR04 ultrasonic sensor emits a pulse, which travels through the air and bounces
back after hitting an object. By measuring the time it takes for the echo to return, the sensor
calculates the distance to the object using the speed of sound, having a maximum range
of 4 to 5 m. However, more advanced versions have a higher range than this. A total of
three sensors are used and mounted on the left, right, and front of the test vehicle [16]. The
detailed specifications are shown in Table 4.

Table 4. Technical specifications of the HC-SR04 ultrasonic sensor.

Feature Specification

Operating Voltage 5 V DC
Working Current 15 mA

Frequency 40 Hz
Measurement Range 2 cm to 400 cm

Accuracy ±3 mm
Measuring Angle <15◦

Trigger Input 10 µs TTL pulse
Echo Output TTL level signal
Dimensions 45 × 20 × 15 mm

4.2. Power Supply

The system’s power supply is designed to provide the necessary voltage to different
components. It uses an LM2596 DC–DC Buck Converter to step down the input voltage
and provides an output for the motor driver and a stable 5 V regulated output for sensors.
The detailed specifications are shown in Table 5.
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Table 5. Technical specifications of the LM2596 DC–DC Buck Converter.

Feature Specification

Input Voltage Range 4.0 V to 40 V
Output Voltage 1.2 V to 37 V (adjustable)
Output Current 3 A (max)

Switching Frequency 150 kHz
Conversion Efficiency 92% (highest)

Load Regulation ±0.5%
Voltage Regulation ±0.5%

Output Ripple 30 mA (max)
Dynamic Response Speed 5% in 200 µs

Thermal Shutdown Protection Yes
Current Limit Protection Yes
Standby Mode Current 80 µA (typical)

4.3. Microcontroller: Arduino Mega 2560

The Arduino Mega 2560 is the processing unit for this system and its configuration
is shown in Table 6. It manages the input and output signals from various sensors and
controls the vehicle’s actuators based on sensor data. The Arduino Mega is selected for its
ample number of input/output pins and large code memory size.

Table 6. Technical specifications of the Arduino Mega 2560.

Feature Specification

Microcontroller ATmega2560
Operating Voltage 5 V

Input Voltage (recommended) 7–12 V
Digital I/O Pins 54 (of which 15 provide PWM output)

Analog Input Pins 16
DC Current per I/O Pin 20 mA

Flash Memory 256 KB (8 KB used by bootloader)
SRAM 8 KB

EEPROM 4 KB
Clock Speed 16 MHz

Communication Interfaces UART, SPI, I2C, USB

4.4. Bluetooth Module: HC-05

The system includes a communication interface i.e., Bluetooth, allowing for remote
control and monitoring through a PC or smartphone and its technical specification is
provided in the Table 7. The Tx (transmit) and Rx (receive) lines facilitate data exchange
between the microcontroller, the Bluetooth module, and the control system. Sensor data
can also be exported as logs for further analysis.

Table 7. Technical specifications of the HC-05 Bluetooth module.

Feature Specification

Bluetooth Protocol Bluetooth V2.0 + EDR
Frequency 2.4 GHz ISM Band

Operating Voltage 3.3 V (regulated)
Input Voltage 3.6 V to 6 V

Communication Range Up to 10 m
Data Rate Asynchronous: 2.1 Mbps (max)/160 kbps

Communication Method UART (Default Baud Rate: 9600 bps)
Master/Slave Configurable
Default PIN 1234 or 0000

Power Consumption 30 mA (average)
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4.5. Motor Driver and Movement Control

The vehicle’s movement is managed by a TB6612FNG motor driver, which receives
control signals from the microcontroller. The motor driver controls the four DC motors
(front right, front left, rear right, and rear left) responsible for the vehicle’s movement.
This setup enables control over the vehicle’s direction, speed, and stopping mechanisms,
ensuring smooth navigation and effective obstacle avoidance. Technical specifications are
shown in Table 8.

Table 8. Technical specification of the TB6612FNG motor driver.

Feature Description

Description The TB6612FNG is a dual DC motor driver IC by Toshiba

Control Capability Independently controls two DC motors or one bipolar
stepper motor

Control Modes CW (clockwise), CCW (counterclockwise), short-brake,
and stop

Voltage Range 4.5 V to 13.5 V
Current Output 1 A continuous, 3 A peak per channel

4.6. Cost Comparison of Components Used

The below Tables 9 and 10 shows a cost of the components, and the cost of components
used in alternate solution for comparison of the components used for navigation and
obstacle avoidance problems.

Table 9. Cost of components used in this study.

Feature Description Cost (INR)

GPS module Ublox Neo 6M 198
Magnetometer LIS2MDL 3-axis 257

Obstacle detection HC-SR04 55
Microcontroller ATmega2560 2000–4000

Table 10. Cost of components used in alternate solutions.

Feature Description Cost (INR)

GPS module High-precision GPS module 2335–20,000
Magnetometer High-grade digital compass 1000 and above

Obstacle detection LiDAR sensor 5000–10,499
Microcontroller Many options are available 8000 and above

5. Experimental Results
To test the navigation and obstacle avoidance capabilities of the test vehicle, a hallway

was selected with obstacles arranged in such a way that most are on the right side, while
some are positioned at the center and left. Figure 7 below shows the map view of the
experiment test path.

The purpose of this arrangement is to evaluate the performance of the vehicle’s
navigation and obstacle avoidance systems, specifically how well the vehicle adapts to
varying path conditions.

A logging system was installed in the vehicle to record data related to decision-making
during navigation, including the vehicle’s heading angle and how it adapts to its path.
These data were transmitted to a computer via Bluetooth for analysis, and visualization
and was used to assess the vehicle’s performance.
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Figure 7. Test track satellite view.

Using the sequence of decisions made by the vehicle while driving autonomously
from the start point to the endpoint, a plot has been created that visually represents the
path followed and the decisions made along the way. The x and y axes do not have any
specific units; the plot is intended to give a general sense of the vehicle’s trajectory and
the sequence of decisions taken. This plot facilitates basic path mapping. Figure 8 below
illustrates this plot.
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Figure 8. Path mapping from test vehicle’s decisions.

According to the obstacle avoidance algorithm, the vehicle moves backward when the
front sensor detects an obstacle. The black points in Figure 8 indicate backward movement
and the presence of obstacles. There are a total of seven clusters of such points on the graph.
Nearby black points suggest the vehicle is dealing with the same obstacle, representing a
single obstacle. Comparing this path with the test track shown in Figure 7, it closely aligns
with the decisions made during the test.

Using the data logged from the magnetometer, visualization of the current heading
angle of the vehicle can be performed. Figure 9 represents the magnetometer data in polar
plot form.
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Figure 9. Polar plot of heading angle data(red: high density; blue: data points).

A bar graph representation of the same data is shown below in the same sequence as
per vehicle’s movement.

In both plots, the red color indicates the desired heading to reach the endpoint, while
the blue color represents the current heading of the vehicle. Figure 10 shows spikes in the
current heading values, which represent either the presence of obstacles and the vehicle’s
attempts to navigate around them or potential external magnetic disturbances affecting the
sensor. A total of seven spike clusters can be observed, which also correspond to the path
mapped in Figure 8 using navigation instruction data.
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Figure 10. Bar graph of heading angle data (red: desired values; blue: data points).

Furthermore, Figure 10 demonstrates that the vehicle closely follows the desired
heading angle, indicated by the dark red horizontal line, even after overcoming obstacles.

Figure 11 shows the test vehicle. Test vehicle employs reinforcement learning to
make left- or right-turning decisions for obstacle avoidance. The decision-making weight,
reflecting the success rate of obstacle avoidance, is continually updated. Figure 12 shows
the plot of these weights and the success rate as the vehicle progresses from the start point
to the endpoint.
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Figure 12. Change in decision weights.

The weightage for left-turn decisions increases as the vehicle progresses toward the
destination, while the right-turn weightage also rises but lags the left. This pattern is
expected because the test track has most of its obstacles on the right side. Thus, the
algorithm is adapting well to the test track conditions. The vehicle balances exploration
and exploitation, using knowledge 60% of the time and exploring new options 40% of the
time, maintaining a balance to avoid biasing any single turning decision.

6. Future Scope
The future potential of this system lies in expanding its application to more complex

environments, integrating advanced sensors, and adapting it for use in larger fleets of
autonomous vehicles or drones [15,38]. Key areas of focus will include improving energy
efficiency, reducing computational demands, and enhancing real-time decision-making
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capabilities. By incorporating reinforcement learning alongside sensor fusion, the system
can achieve better navigation accuracy and adaptability in dynamic, real-world conditions.

However, adapting this technology for drones presents unique challenges. Drones
have limited payload and battery life, which can limit the types of sensors they can carry.
GPS reliability for aerial navigation is also often compromised, especially in areas with
poor signal reception. The need for 3D obstacle avoidance adds another layer of complexity
to the system’s design. Ultrasonic sensors, for instance, may not offer the necessary range
for fast-moving drones, and the high demands of real-time processing could strain onboard
systems. Nevertheless, with thoughtful required adjustments and modifications in the
system algorithm, this method can be successfully adapted for drone applications.

Looking ahead, the system can benefit from more sophisticated sensor fusion tech-
niques and the integration of advanced sensors such as LiDAR and cameras to further
enhance the capabilities of test bots. A failsafe mechanism could also be implemented,
ensuring that in the event of a sensor failure, data from alternative sensors such as a
magnetometer [18] or ultrasonic sensors [17] could provide reliable navigation.

7. Conclusions
This research explores the integration of reinforcement learning (RL) and sensor fusion

to enhance autonomous vehicle navigation and obstacle avoidance. By combining multiple
sensors, the system leverages their unique capabilities to improve navigation precision and
reliability. The approach integrates GPS for positioning, a magnetometer for directional
guidance, and ultrasonic sensors for obstacle detection.

The experimental setup demonstrated the vehicle’s ability to dynamically adapt to
its environment through a lightweight flexible learning algorithm. By processing data
from GPS, a three-axis magnetometer, and ultrasonic sensors, the test vehicle successfully
navigated to its destination while effectively avoiding obstacles in its path. Furthermore, the
vehicle’s decision-making and sensor data can be processed further to obtain a normalized
map of the Cobot’s path.

This solution is particularly promising for environments where human operations are
challenging or dangerous. The collaborative robot (Cobot) used in this study offers signif-
icant advantages, including adaptability, cost-effectiveness, and minimal computational
requirements. The research highlights the potential of RL and sensor fusion in developing
intelligent, autonomous navigation systems.
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