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Abstract: The present study focuses on the synthesis and characterization of amorphous silicon
nitride (Si3N4) reinforced aluminum matrix nanocomposites through the microwave sintering
process. The effect of Si3N4 (0, 1, 2 and 3 wt.%) nanoparticles addition to the microstructure and
mechanical properties of the Al-Si3N4 nanocomposites were investigated. The density of Al-Si3N4

nanocomposites increased with increased Si3N4 content, while porosity decreased. X-ray diffraction
(XRD) analysis reveals the presence of Si3N4 nanoparticles in Al matrix. Microstructural investigation
of the nanocomposites shows the uniform distribution of Si3N4 nanoparticles in the aluminum matrix.
Mechanical properties of the composites were found to increase with an increasing volume fraction of
amorphous Si3N4 reinforcement particles. Al-Si3N4 nanocomposites exhibits higher hardness, yield
strength and enhanced compressive performance than the pure Al matrix. A maximum increase of
approximately 72% and 37% in ultimate compressive strength and 0.2% yield strength are achieved.
Among the synthesized nanocomposites, Al-3wt.% Si3N4 nanocomposites displayed the maximum
hardness (77 ± 2 Hv) and compressive strength (364 ± 2 MPa) with minimum porosity level of 1.1%.

Keywords: aluminum; amorphous silicon nitride; microwave sintering; microstructural;
mechanical properties

1. Introduction

Aluminum metal matrix composites (AMMCs) have been widely used and have vast applications
in automotive and aerospace industries due to their light weight, low density, high strength to weight
ratio and attractive properties [1–3]. The process of choosing the matrix and reinforcement is complex,
and by adding suitable reinforcements to the matrix material, the properties of the composites can
be tailored to meet the specific requirements. The main aim to develop the aluminum metal matrix
composites is to produce materials that are lightweight, high strength, and lower cost when compared
to the aluminum and traditional aluminum alloys.

Aluminum is the most commonly used matrix material in metal matrix composites. Ceramics
that are generally used as the reinforcements in metal matrix composites are SiC, B4C, Si3N4, Al2O3,
Y2O3, and TiC. These reinforcements provide better microstructure and mechanical properties when
combined with the metal matrix materials [4]. When compared to monolithic aluminum, Al-based
metal matrix composites shows the significant improvement in mechanical properties in terms of
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enhanced strength and stiffness, good fatigue and wear resistance, less weight and high-temperature
stability [5–8].

There are different methods available to fabricate the aluminum metal matrix composites, such
as powder metallurgy, forging and stir casting routs [9–11]. Among these, powder metallurgy (PM)
technique, involving blending, compaction and sintering, is one of the common methods used in
the synthesis of metal matrix composites. In the blending process, planetary ball mill was used for
blending the matrix and reinforcements powders in order to get uniform distribution of nanoparticles
in the matrix phase. The sintering process has the ability to develop the microstructural and mechanical
properties of the final synthesized product. There are many heating processes in the sintering method,
such as microwave, vacuum, spark plasma, and the conventional sintering process [12–14]. In the
microwave sintering process, heat is generated within the samples by rapid oscillation of dipoles at
microwave frequencies. Additionally, uniform volumetric heating of the microwave sintering results
in significant improvement in the microstructure and mechanical properties.

So far, few ceramic materials are used as the reinforcing materials like SiC, B4C, Si3N4,
Al2O3, Y2O3, TiC and TiB2, and so on, in metal matrix composites [15–18]. Among these ceramic
reinforcements, amorphous silicon nitride (Si3N4) is selected as the reinforcement used in the present
study owing to its good mechanical, thermal and electrical properties, superior corrosion and good
thermal stability [19–21]. To the best of authors knowledge, there has been no study conducted on the
compressive behavior of the amorphous silicon nitride (Si3N4) reinforced Al-matrix nanocomposites.

The present research work deals with the fabrication and characterization of Al-Si3N4

nanocomposites using microwave sintering technique (MWS) and the effect of varying contents of
amorphous Si3N4 nanoparticles on the microstructure and compressive performance of the synthesized
nanocomposites were investigated in detail.

2. Materials and Methods

Pure Al (99.5% purity, ~10 µm, Alfa Aesar, Tewksbury, MA, USA) and amorphous Si3N4

nanoparticles (98.5+% purity, ~15–30 nm, Alfa Aesar, USA) were used as raw materials for the synthesis
of Al-Si3N4 nanocomposites. Aluminum powder was mixed with 0, 1, 2 and 3wt.% of amorphous
Si3N4 nanoparticles. The blending of two mixtures was carried out at room temperature in a planetary
ball mill (PM 200) for 2 hours with the 200 rpm. No balls were used during the blending of powders.
The blended powder was compacted into cylindrical pellets by applying uniaxial pressure of 50 MPa
with holding time of 1 min. The compacted cylindrical pellets were sintered in a microwave sintering
furnace at 550 ◦C with a heating rate of 10 ◦C/min for 30 min. The compacted pellets were placed at
the center of the cavity and sintering was performed inside the multimode cavity [22]. The schematic
of the experimental procedure is presented in Figure 1.
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Figure 1. Schematic diagram of Si3N4 nanoparticle-reinforced Al nanocomposites.

The density of the microwave sintered samples was calculated by using the Archimedes’ principle.
The X-ray diffraction (XRD, PANalytical X’pert pro) analysis was performed to identify the phases
present in Al-Si3N4 nanocomposites and to identify the presence of any impurities in the developed
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composites. The XRD analysis was performed in the 2θ range of 30–90◦ with a scanning rate
of 1.5◦/min. The morphology of the sintered composites was observed using scanning electron
microscopy (SEM, JeolNeoscope JSM6000, Peabody, MA, USA) equipped with energy dispersive X-ray
spectroscopy (EDX).

The microhardness of the Al-Si3N4 nanocomposites was determined by using Vickers
Microhardness tester (MKV-h21) with an applied load of 25 gf and a dwell time of 10 s, for each
sample with an average of 5 successive indentations.

Compression analysis of the nanocomposites was performed at room temperature by using the
universal testing machine (UTM-Lloyd), under an engineering strain rate of 10−4/s. The respective
data of each sample was obtained by an average of three successive values of test results. Yield strength
(YS), ultimate compressive strength (UCS) and failure strain (FS) values of the nanocomposites were
calculated by the obtained stress-strain curves. Fractographic analysis was performed to study the
fractured surfaces of the Al-Si3N4 nanocomposites by using the field emission scanning electron
microscope (Hitachi FESEM-S4300, Tokyo, Japan).

3. Experimental Analysis

3.1. Density and Porosity of Al-Si3N4 Nanocomposites

Figure 2 shows the variation of density and porosity of the microwave sintered Al-Si3N4

nanocomposites with varying Si3N4 content. It can be observed from Figure 2 that the density
of the composites increased with the increasing amorphous Si3N4 content, due to the higher density of
Si3N4 phase [23]. The higher density of the sintered nanocomposites influences the microstructural
and mechanical properties of the synthesized Al composite materials. The porosity of the composites
has shown a decreasing trend with the increasing amount of amorphous Si3N4 content. The nature
of the reinforcement content and volumetric heating phenomenon is one of the main reasons for the
low porosity.
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Figure 2. Variation of experimental density (a), and porosity (b) with Si3N4 content.

3.2. XRD Analysis of Al-Si3N4 Nanocomposites

Figure 3 shows the XRD patterns of the microwave sintered Al-Si3N4 nanocomposites. Figure 3b
shows the enlarged pattern of the Al-3wt.% Si3N4 nanocomposite. The XRD patterns clearly indicate
that the presence of Al and amorphous Si3N4 in Al-Si3N4 nanocomposites and also shows that no other
phases and impurities are present in Al composites [24,25]. Due to the presence of a small percentage
of the reinforcement content, the reinforcement phase appears smaller in intensity as compared to the
peaks of the Al matrix phase. The intensity of the amorphous Si3N4 diffraction peak increased with
the increasing amount of reinforcement content.
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(c) Al-2wt.%Si3N4 (d) Al-3wt.% Si3N4 nanocomposites and (e) Energy dispersive X-ray spectroscopy
(EDX) spectrum analysis of Al-2% Si3N4 nanocomposites.
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The white color particles represent the amorphous silicon nitride and a gray phase represents
the aluminum matrix. The EDS analysis was employed to identify the elemental distribution in the
Al matrix. Figure 4e shows the EDX spectrum of Al-2wt.% Si3N4 nanocomposite was composed of
mainly Al, Si and N elements. The homogeneous distribution and an excess amount of amorphous
silicon nitride in aluminum matrix influence on the microstructure and mechanical properties of the
Al- Si3N4 nanocomposites.

3.4. Microhardness of Al-Si3N4 Nanocomposites

Hardness is a useful mechanical property that provides valuable insight into the overall
mechanical behaviour of composites. Generally, several factors would affect the microhardness
of the composites such as particle size, amount of reinforcement and method of preparation. The effect
of Si3N4 nanoparticles in Al composites is shown in Figure 5 and Table 1.
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Figure 5. Microhardness of Al-Si3N4 nanocomposites versus Si3N4 content.

It can be clearly seen that the microhardness of the Al-Si3N4 nanocomposites gradually increased
with the increase in amorphous Si3N4 content [26]. The Al-3wt.% Si3N4 composite has the highest
hardness value (77 ± 4) when compared with that of pure Al. This higher value of the hardness of the
nanocomposites can be associated with the presence of hard amorphous silicon nitride nanoparticles in
the aluminum matrix and the dispersion hardening effect [27,28]. The microhardness of the microwave
sintered samples in this study was found to be higher than the vacuum sintering samples [29].

The presence of hard amorphous Si3N4 nanoparticles improves the hardness of the composites
materials as explained by the rule of mixtures [30].

Hc = HmVm + HrVr

where Hc represents the hardness of the composite, Hm and Vm represents the hardness and
volume fraction of the matrix and Hr and Vr represents the hardness and volume fraction of the
reinforcements, respectively.

3.5. Compressive Analysis of Al-Si3N4 Nanocomposites

Figure 6a presents the engineering stress-strain curves of the microwave sintered Al-Si3N4

nanocomposites and their corresponding mechanical data presented in Figure 6b and Table 1.
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Figure 6. (a) The compression stress-strain curves and (b) mechanical data of Al-Si3N4 nanocomposites.

It can be seen that the yield strength (YS) and ultimate compressive strength (UCS) significantly
increase with the addition of amorphous Si3N4 content. The value of yield strength (YS) obtained
for Al-3wt.% Si3N4 composite was 127 ± 4 MPa, with an ultimate compressive strength (UCS) of
364 ± 2 MPa at a uniform failure strain of 7.4%. The increase in yield strength and compressive
strength of the nanocomposites can be attributed to the strengthening mechanisms because of the
effective load transfer between the matrix and reinforcement particles, dispersion hardening effect and
uniform distribution of reinforcement particles in the matrix [31,32].

Table 1. Microhardness, yield strength and ultimate compressive strength of Al-Si3N4 nanocomposites.

Composition Microhardness (Hv) CYS (MPa) UCS (MPa) Failure Strain (%)

Pure Al 38 ± 3 70 ± 4 305 ± 3 >7
Al-1wt.% Si3N4 43 ± 5 86 ± 5 325 ± 5 >7
Al-2wt.% Si3N4 58 ± 3 104 ± 3 349 ± 4 >7
Al-3wt.% Si3N4 77 ± 2 127 ± 4 364 ± 2 >7

Al-3wt.% Si3N4 [29] 57 ± 2 198 ± 21 292 ± 18 –
Al-9wt.% Si3N4 [33] 59.5 – – –

Al alloy-3wt.% Si3N4 [34] 82 — — –

There are several strengthening mechanisms and theories to enhance the mechanical properties
of the composite materials. In the present study, the main strengthening mechanism is dispersion
hardening. Dispersion hardening, also known as Orowan strengthening, is caused by the dispersed
second phase. The Orowan strengthening mechanism is given by the Orowan-Ashby equation [35].

σOrowan =
0.13Gb

λ
ln

d
2b

(1)

where G is the shear modulus of Al, b is the Burgers vector of Al, d is the average diameter of
nanoparticles, and λ is the interparticulate distance between the reinforcement particles, which is
given by the following equation [36].

λ = d

[(
1

2 f

)1/3
− 1

]
(2)

where, f is the volume fraction of the reinforcement particles.
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3.6. Fractography of Al-Si3N4 Nanocomposites

The fracture morphology analysis of the microwave sintered pure Al and Al-Si3N4

nanocomposites tested under compression loading is shown in Figure 7. A typical shear mode
fracture can be observed in the nanocomposites and the fracture surfaces show the cracks at 45o to the
compression loading axis. The compressive deformations obtained in Al composites are indifferent.
This is due to the work hardening behavior. The plastic deformations of the composites are restricted
by the presence of a dispersion of the second phase in the matrix [37].
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in the aluminum matrix. Hardness, Yield strength and compressive strengths of the nanocomposites
increased with an increasing silicon nitride content, hence, Al-3wt.%Si3N4 nanocomposite exhibited
enhanced hardness (77 ± 2 Hv), yield strength (27 ± 4 MPa) and UCS (364 ± 2 MPa).
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