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Abstract: Crystallization of strontium fresnoite Sr2TiSi2O8 piezoelectric crystals in Sr–Ti–Si–K–Al–O
parent glasses is investigated with the aim of showing the influence of composition and crystallization
conditions on the microstructure and piezoelectric properties of the resulting glass-ceramic. All the
investigated conditions lead to a surface crystallization mechanism that induces a preferential
orientation of crystal growth in the glasses. Near the surface, all the glass-ceramics obtained exhibit
(002) planes preferentially oriented parallel to their faces. Deeper in the specimens, this preferential
orientation is either kept or tilted to (201) after a depth of about 300 µm. The measurement of
the charge coefficient d33 of the glass-ceramic highlights that surface crystallization induces mirror
symmetry in the polarization. It reaches 11 to 12 pC/N and is not significantly influenced by the
preferential orientation (002) or (201). High temperature XRD shows the stability of the fresnoite
phase in the glass-ceramics up to 1000 ◦C. Mechanical characterization of the glass-ceramics by
impulse excitation technique (IET) highlights that the softening of the residual glass leads to a
progressive decrease of Young’s modulus in the temperature range 600–800 ◦C. Damping associated
to the viscoplastic transition become severe only over 800 ◦C.
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1. Introduction

Most piezoelectric sensors and actuators used today are based on ferroelectric polycrystalline
ceramics. Due to initially randomly distributed polar domains within the ceramic grains, polarization
under a high-strength electric field is required to confer macroscopic piezoelectric properties.
These ceramics exhibit high piezoelectric performances, but their main drawback is the depolarization
occurring over time and with increasing temperature.

For high temperature applications, pyroelectric non-ferroelectric phases can be used.
The non-ferroelectric behavior is the result of the single domain configuration of the crystals.
Consequently, in the case of polycrystalline ceramics, a preferential orientation of the crystallite’s polar
direction needs to be induced during the elaboration process to obtain a macroscopic piezoelectric
material. Highly preferentially oriented microstructures are not easily achievable through conventional
ceramic powder processing, so these phases are usually obtained in single crystals.

In the present paper, the glass-ceramic process is investigated as an alternative route to
produce highly textured polycrystalline non-ferroelectric piezoelectric materials by controlling the
crystallization of a piezoelectric phase within a suitable glass composition. The piezoelectric
phase selected in this work is strontium fresnoite Sr2TiSi2O8. This phase is pyroelectric but
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non-ferroelectric [1–3], belongs to the space group P4bm, and its lattice parameters are a = 8.3218 Å
and c = 5.0292 Å [4]. The dipole moment of the unit cell is oriented along the [00l] direction [5].

The scientific literature highlights that various processing routes have been experimented to
induce a preferentially oriented crystallization of fresnoite crystals in a parent glass [6,7]: (i) application
of a thermal gradient between the two opposite faces of the glass [8], (ii) electrochemical nucleation
of the glass melt [5,9–11], (iii) and ultrasonic treatment [12]. However, these techniques are not
easy to operate and limit the specimens’ geometries [13]. An extensive review by Wisniewski et al.
covered different aspects of the crystallization of fresnoite in glasses [14]. In previous papers, we have
shown that a (002)-oriented surface crystallization can be obtained through laser treatment [15] and
conventional thermal treatment of parent glasses belonging to the Sr–Ti–Si–K–B–O system [16–18].
We also highlighted that the evolution of the preferential orientation in depth is strongly dependent on
the residual glass characteristics, and specifically the amount of K and B. However, mastering the K
and B quantities was difficult due to the formation of volatile KBO2 during the melting process.

To overcome this problem, fresnoite-based glass-ceramics have been prepared from parent glass
compositions belonging to the Sr–Ti–Si–K–Al–O system. The goal of K is to increase the thermal
expansion of the residual glass and then to reduce the dilatometric mismatch. The effect of the Al
amount on the crystallization and on the microstructure is investigated with the aim of obtaining high
preferential orientation of the crystallites polar direction. The piezoelectric properties of the selected
samples are characterized. Eventually, high temperature stability of the fresnoite crystals and of the
glass-ceramics mechanical properties is evaluated.

2. Materials and Methods

Parent glasses of compositions 2SrO 1TiO2 3.3SiO2 xK2O yAl2O3 (ST1.3S + xK2O + yAl2O3 with
the new nomenclature [14]) are prepared from reagent grade SrCO3 (Alfa Aesar, 99.99%), TiO2 (VWR,
99.99%), SiO2 (Sigrano, 97–99.98%), Al2O3 (Almatis, +99%) and K2CO3 (VWR, +99%). Based on a
previous work [16], x is fixed to 0.2 and y = 0; 0.02; 0.05; 0.10; and 0.15. Wet processing in isopropanol
is used to mix the powders and obtain a good homogeneity. After complete evaporation of the
isopropanol, the dried powder mixture is pressed in pellets. Melting is realized in a Pt/Au 95/5
crucible at 1500 ◦C for 2 hours. The melt is cast in 70 × 70 × 6 mm plates in a steel mold (Figure 1a,b).
To release internal stresses and avoid cracks, these plates are annealed for 2 hours at 650 ◦C (close to
the glass transition temperature Tg) before slow cooling inside the turned off furnace. Each glass plate
is surface polished and cut in 30 × 30 × 6 mm parallelepipeds (Figure 1c).
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The samples are placed on an alumina-silica substrate and crystallized (Figure 1d) through
isothermal treatment at different temperatures, Tc, in the range of 850–950 ◦C according to the
following schedule:
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• 300 ◦C/h from RT to Tc

• Dwell time of tc hours at Tc

• Natural cooling in switched off furnace

After the crystallization treatment, qualitative crystalline phase analyses are carried out by XRD
with a Siemens D5000 θ-2θ diffractometer using a CoKα radiation source. Preferential orientation of
the c-polar axis of fresnoite crystals is characterized by calculating the ratio R(002):

R(002) = I(002)/[I(002) + I(211)] (1)

I(002) and I(211) are the diffraction peak intensities of the (002) and (211) planes respectively.
According to the Sr2TiSi2O8 JCPDS card (no. 39-0228), (211) planes give the strongest peak for
a non-textured fresnoite and (002) diffraction peak has a relative intensity of 22%. Consequently,
preferential orientation of (002) plane parallel to the analyzed surface is evidenced if 0.18 < R(002) < 1.
In order to follow changes in preferential orientation with depth, XRD analyses are performed at
each 100 µm step of a step-by-step grinding (Figure 2). For some samples, pole figures are collected
using the same XRD diffractometer. Note that the significant information depth of the X-rays in the
glass-ceramic is about 10 µm, as calculated by the Absorb program from the Siemens–Bruker Diffrac
AT software.
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Figure 2. XRD and piezoelectric characterization of the specimens.

High temperature stability of the fresnoite crystals in the glass-ceramics is investigated by using a
Bruker D8 DISCOVER θ-θ diffractometer equipped with a high-temperature chamber.

Microstructures are observed by means of a JEOL GSM 6100 SEM.
Glass transition temperatures (Tg) of parent glasses and residual glasses in the final glass-ceramics

are obtained by dilatometry analyses performed with a horizontal dilatometer at a heating rate of
10 ◦C/min (Figure 3). The accuracy of the measurement is about ± 2 ◦C.
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Parent glasses and glass-ceramics densities are calculated by Archimedes method in water, with
specimens of about 10 g and using a 0.001g accurate scale. Each measurement is repeated three times
on three specimens of the same type. The precision of the measurement is about ± 0.01 g/cm3.

The piezoelectric charge coefficient d33 is measured with PIEZOTEST PM 300 after each grinding
step in order to draw the d33 curves versus the remaining thickness.

The evolution of elastic modulus E and internal friction (Q−1) of the glass-ceramic with
temperature is followed by Impulse Excitation Technique (IET) using an IMCE equipment [19].

3. Results

3.1. Crystallization

Glass transition temperature and density of the parent glasses 2SrO 1TiO2 3.3SiO2 0.2K2O yAl2O3

are given in Table 1. There is a weak influence of the alumina content, probably due to the low Al/Si
ratios (Table 1).

Table 1. Density and glass transition temperature of the parent glasses

ST1.3S Al/Si ρpg (Archi.) ± 0.01 g/cm3 Tg ± 2 ◦C

+ 0.2K2O 0.0000 3.41 712
+ 0.2K2O + 0.02Al2O3 0.0061 3.41 716
+ 0.2K2O + 0.05Al2O3 0.0152 3.41 713
+ 0.2K2O + 0.10Al2O3 0.0303 3.40 712
+ 0.2K2O + 0.15Al2O3 0.0455 3.40 720

Crystallization treatments were performed for various dwell times at temperatures of 850 ◦C,
900 ◦C and 950 ◦C. For all temperatures and compositions, crystallization starts from the surfaces and
propagates in depth over time (Figure 4). The speed of the crystallization front is mainly influenced by
temperature (Table 2). However, an increase in alumina content tends to slow it down.
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Figure 4. (a) Image of a polished cross section of specimen ST1.3S + 0.2K2O + 0.1Al2O3 after
crystallization treatment for 2h at 950 ◦C; (b) schematization of the motion of the crystallization
front over time.

Table 2. Speed of the crystallization front.

ST1.3S
Crystallization Speed (mm/h) Crystallization Speed (µ/s)

850 ◦C 900 ◦C 950 ◦C 850 ◦C 900 ◦C 950 ◦C

+ 0.2K2O 0.06 0.36 2.6 0.017 0.010 0.72
+ 0.2K2O + 0.02Al2O3 0.05 0.33 2.1 0.014 0.092 0.58
+ 0.2K2O + 0.05Al2O3 0.06 0.30 1.4 0.017 0.083 0.39
+ 0.2K2O + 0.10Al2O3 0.04 0.23 1.3 0.011 0.064 0.36
+ 0.2K2O + 0.15Al2O3 0.04 0.19 1.2 0.011 0.053 0.33

For all compositions, glass-ceramics fully crystallized from the surfaces to the center were
prepared by applying dwell times of 50 h, 15 h and 3 h for temperatures of 850 ◦C, 900 ◦C and
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950 ◦C respectively. XRD analyses performed on powder specimens of the obtained glass-ceramics
evidence the presence of Sr-fresnoite as the only crystalline phase (Figure 5).
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SEM cross sections of glass-ceramics ST1.3S + 0.2K2O + 0.02Al2O3 and ST1.3S + 0.2K2O + 0.1Al2O3

both crystallized at 850 ◦C and 950 ◦C are shown in Figure 6. Fresnoite crystals, which contain the
heavier elements (Sr, Ti), can be associated to the bright phase whereas the residual glass appears dark.
A rise in temperature leads to a coarser microstructure. On the contrary, an increasing alumina content
refines the microstructure.
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Mass and volume fraction of the residual glass have been evaluated. Assuming all the Sr and Ti
atoms are in the fresnoite crystals, the residual glass composition is 1.3SiO2 0.2K2O yAl2O3. In that
case, the weight fraction of this residual glass, mrg, increases from 19.2 wt% to 21.6 wt% with the
increasing amount of Al2O3 (Table 3).

Calculation of the volume fractions requires the knowledge of the residual glasses densities.
Theoretical values are calculated using A. Fluegel’s model, with a claimed precision of ±2 g/cm3 [20].
To validate theses theoretical values, a glass composed of 1.3SiO2 0.2K2O 0.1Al2O3, corresponding to
the residual glass of glass-ceramics ST1.3S + 0.2K2O + 0.1Al2O3, has been synthesized. The density
of this glass, experimentally measured by Archimedes’ method, is 2.34 ± 0.01 g/cm3, which is in
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agreement with the theoretical value (2.35 ± 0.02 g/cm3). Using the calculated data, volume fractions
of all residual glasses vrg range between 28.4 ± 0.3 and 31.1 ± 0.3 vol% depending on the amount of
alumina. Finally, glass-ceramics densities, ρgc, experimentally measured by Archimedes method, are
compared to theoretical densities, ρth, calculated by the relation:

ρth = vrg·ρrg + (1 − vrg)·ρfresnoite (2)

Theoretical and experimental densities are in very good agreement (Table 3).

Table 3. Properties of residual glasses and glass-ceramics.

Residual Glass
1.3SiO2-0.2K2O-yAl2O3

Glass-Ceramic

ST1.3S Al/Si mrg
wt%

ρrg (Fluegel)
±0.02 g/cm3

ρrg (Archi.)
±0.01 g/cm3

vrg
±0.3 vol%

Tg
±2 ◦C

ρth
±0.02 g/cm3

ρgc (Archi.)
±0.01 g/cm3

+ 0.2K2O 0 19.2 2.33 - 28.4 605 3.44 3.43
+ 0.2K2O + 0.02Al2O3 0.0154 19.6 2.33 - 28.8 610 3.43 3.43
+ 0.2K2O + 0.05Al2O3 0.0385 20.0 2.34 - 29.4 624 3.43 3.42
+ 0.2K2O + 0.10Al2O3 0.0769 20.8 2.35 2.34 30.3 640 3.42 3.40
+ 0.2K2O + 0.15Al2O3 0.1154 21.6 2.37 - 31.1 652 3.41 3.39

Eventually, the glass transition temperature of the residual glasses was measured by dilatometry
on the glass-ceramics (Table 3). Values of Tg are lower than those of the corresponding parent glasses
due to the higher K2O/SiO2 ratio, and they clearly increase with the alumina content which acts as a
glass former.

3.2. Preferential Orientation

XRD patterns have been collected on the surface after a 0.3-mm grinding for all glass-ceramics.
From these patterns, preferential orientation of (00l) planes is highlighted by the calculation of the
R(002) coefficient (Table 4). All parent glass compositions and crystallization temperatures lead to
specimens showing a strong (00l) orientation at their surfaces (R(002) close to 1). Only a few specimens
keep this orientation in depth. This is the case for compositions ST1.3S + 0.2K2O + 0.1Al2O3 and
ST1.3S + 0.2K2O + 0.15Al2O3 crystallized either at 850 ◦C or 900 ◦C. This phenomenon is also observed
in References [21] and [22].

Table 4. Orientation factor R(002) at specimens’ surface and after a 0.3-mm grinding.

850 ◦C 900 ◦C 950 ◦C

ST1.3S Surf −0.3 mm Surf −0.3 mm Surf −0.3 mm

+ 0.2K2O 0.97 0.05 1 0.02 0.99 0
+ 0.2K2O + 0.02 Al2O3 0.98 0.1 1 0.01 0.98 0.01
+ 0.2K2O + 0.05 Al2O3 1 0.1 0.99 0.02 1 0.05
+ 0.2K2O + 0.10 Al2O3 1 1 0.99 0.96 0.99 0.3
+ 0.2K2O + 0.15 Al2O3 1 1 0.97 1 1 0.24

Next to these results, several specimens of ST1.3S + 0.2K2O + 0.1Al2O3 glass-ceramics, crystallized
at 900 ◦C, were analyzed by XRD at each step of a step-by-step grinding from the surface to the center.
This composition is chosen for further analyses because it shows the best orientation factor and a
sufficient crystallization speed. These analyses highlight two different cases:

• Case A (Figure 7a), the samples show a very strong (002) peak over the whole thickness.
• Case B (Figure 7b), the (002) peak intensity decreases in favor of (201) peaks.
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For case B, pole figures of (002) and (201) planes were collected after each grinding step. They show
a progressive tilt of the (002) planes over the first 300 µm (Figure 8). After 300 µm, (201) planes seem to
become parallel to the surfaces and no more changes are observed deeper in the samples. Patschger et al.
also observed this tilt in glass-ceramics obtained from parent glass composition ST0.75S [23]. However,
careful analysis of orientation changes must be further realized by EBSD.
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3.3. Piezoelectric Properties

The piezoelectric coefficient d33 was measured on the previous ST1.3S + 0.2K2O + 0.1Al2O3

specimens after each step of grinding. Both cases of orientation lead to the same variation of d33 versus
remaining thickness (Figure 9). Before grinding, samples exhibit a d33 close to zero. The value of d33

increases progressively during the grinding until it reaches a plateau at ±12 pC/N when half of the
initial thickness is removed (more or less 3 mm). This result can be explained by assuming that the
symmetry of the crystallization induces a mirror symmetry in the orientation of the dipolar moments
(Figure 10) [24]. In order to confirm this, piezoelectric charge coefficient d33 has been measured for
both halves of a sample cut following its middle plane. The two half-samples exhibit near the same
d33 in absolute value but with the opposite sign.
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3.4. Stability at High Temperatures of ST1.3S + 0.2K2O + 0.1Al2O3 Glass-Ceramic

As mentioned in the introduction, the interest of using non-ferroelectric piezoelectric materials
is mainly due to their stability at high temperatures. In order to evaluate the potential of the
ST1.3S + 0.2K2O + 0.1Al2O3 glass-ceramics for high temperature applications, their mechanical and
structural stabilities have been investigated by HT-XRD and IET.

HT-XRD patterns have been collected every 100 ◦C from room temperature up to 1000 ◦C
(Figure 11). They show the stability of fresnoite in the glass-ceramic over this temperature range.
A heating treatment realized at 1200◦C resulted in a partial thermal decomposition and then a flowing
of the sample due to the increase of the silica amount.
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Figure 11. High temperature XRD patterns collected on glass-ceramic ST1.3S + 0.2K2O + 0.1Al2O3

oriented (201) from RT to 1000 ◦C by 100 ◦C steps. Observed peaks correspond to (201) and (402) planes.
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The softening of the 30 vol% of residual glass above its glass transition temperature Tg, may
affect the use of the glass-ceramics at high temperature. IET measurements highlight the beginning of
the decrease in Young’s modulus E around 600–650 ◦C (Figure 12). This agrees with the value of Tg

obtained by dilatometry (Table 3). The decrease in Young’s modulus remains slow in the temperature
range of 600–800 ◦C. Above 800 ◦C it declines severely and simultaneously the damping coefficient
strongly increases, which is due to the strong softening of the residual glass.
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4. Discussion

All the parent glass compositions investigated show a surface crystallization mechanism, starting
from oriented nucleation [22] and leading to a crystallization front propagating in depth over time.
No volume crystallization is observed. By comparison to the work of Wisniewski et al. [25] on ST0.75S
parent glasses crystallized at 970 ◦C (Tg + 210 ◦C), the velocity of the crystallization front is of the same
order (around 0.5 µm/h) when crystallization is performed at 950 ◦C (Tg + 240 ◦C), but significantly
slower for lower temperatures.

Wisniewski showed that the degree of crystallization of the microstructure evolves over time so
that zones first crystallize near the surface appear opaque (longer crystallization time) and zones later
crystallized are translucent. In the present work also, the images taken with an optical microscope
on ST1.3S + 0.2K2O + 0.1Al2O3 samples crystallized for 2h, 4h and 6h hours at 900 ◦C show a more
translucent zone roughly corresponding to the last 400 µm crystallized (Figure 13). Considering that
for ST1.3S + 0.2K2O + 0.1Al2O3 composition crystallized at a temperature of 900 ◦C, the velocity
of the crystallization front is 0.23 mm/h (Table 3), it can then be concluded that the stability of the
crystallization is achieved after around 1.7 hours. Consequently, when applying a long crystallization
time (e.g. 15h at 900 ◦C), the glass-ceramic is homogeneously crystallized from the surface to the center
(Figure 14).

The microstructures obtained are quite different to those in the work of Wisniewski. SEM pictures
of Figure 6 show that the residual glass is fully interconnected with itself in the three directions of space
and embedded within the fresnoite crystals. This difference is probably due to the volume fraction of
glass that is around 30 vol% in our case and only 6.8 vol% in the work of Wisniewski.

SEM-EDX analysis of Sr and Si through the crystallization front highlights a transition layer of
residual glass between the crystals and the parent glass (Figure 15). Propagation of the crystallization
front in depth requires diffusion of Sr and Ti atoms through the residual glass layer which acts as
a barrier.
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We have seen that for a given composition, a rise in temperature increases the speed of the
crystallization front (Table 2). This can be explained by the more rapid diffusion of the elements through
the residual glass. In the same way, alumina acts as a glass former in the residual glass by increasing
its glass transition temperature (Table 1), and thus, its viscosity at a given temperature. Consequently,
the crystallization front slows down as the alumina content increases (Table 2). Crystallization
temperature also influences the microstructure. This can be discussed with respect to the difference
∆T between the crystallization temperature Tc and the glass transition temperature Tg. Nucleation is
promoted at a lower ∆T: This increases the density of nucleation spots at the surface and limits the
crystal growth.

Numerous literature papers show that fresnoite-based glass-ceramics exhibit (002) planes
preferential orientation at the surface and a systematic tilt to (201) planes in the bulk [23,25]. This is
often explained by a natural selection due to the faster growing speed of (201) planes compared to (002)
planes. Our experimental results show that (002) planes can remain preferentially oriented in the bulk
of 6-mm-thick samples although tests of reproducibility have shown that preferential orientation may
change for identical conditions. However, polarization direction resulting in (002) or (201) orientation
is perpendicular to the specimen’s surface (Figure 16) and the charge coefficient d33 does not seem to
be significantly influenced by the orientation. This result is opposed to the theoretical d33 values as a
function of the tilt angle calculated by Davis et al. [26].
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Finally, high temperature XRD analyses and mechanical characterization suggest that the
piezoelectric glass-ceramic might remain functional up to 600–800 ◦C. The drastic fall of the mechanical
properties above 800 ◦C may impair its use as a piezoelectric material. Future work will attempt to
verify this through high-temperature measurements of piezoelectric performances.
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