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Abstract: Bi4V1.8Ti0.2O11 (BITIVOX) ceramic pellets, prepared with powders obtained by a sol gel
technique, were sintered either conventionally at 800 ◦C/8 h or by applying an AC electric voltage,
limiting the electric current through the pellets. Electric voltages were applied isothermally at 700 ◦C
and 800 ◦C during 5 min in the green pellet positioned in the sample holder of a dilatometer for
monitoring thickness variation. The BITIVOX pellets shrank 13.6% after applying 200 V cm−1 at
800 ◦C and 10.4% heating to 800 ◦C for 8 h. Thermal analysis and X-ray diffraction of the powders
were performed to evaluate the crystallization temperature and the structural phase, respectively.
The electrical behavior of the sintered BITIVOX pellets was analyzed by the impedance spectroscopy
technique, showing that the sample flash sintered at 800 ◦C/5 min had lower bulk resistivity than the
sample conventionally sintered at 800 ◦C/8 h. The surfaces of the sintered pellets were observed in a
scanning electron microscope showing similar grain sizes and pore content in all sintered samples.
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1. Introduction

Oxide ion ceramic solid electrolytes find uses in many commercial devices, e.g., solid oxide fuel
cells (SOFCs), oxygen sensors, and oxygen electrochemical pumps [1–6]. The most important ceramic
solid electrolyte is the cubic fully stabilized zirconia ZrO2: 8 mol% Y2O3 (8YSZ), which is a component
of SOFCs with 0.01 S cm−1 electrical conductivity at 800 ◦C to ensure high power densities [7]. Since 1982
solid electrolytes with oxide ion conductivity higher than that of 8YSZ have been proposed: CeO2:20
mol% Gd2O3 (GDC, gadolinia-doped ceria) in 1982 [8], Bi4V2-xMexO11 (BIMEVOX) in 1990 [9], CeO2:20
mol% Sm2O3 (SDC, samaria-doped ceria) in 1992 [10], La0.9Sr0.1Ga0.8Mg0.2O3-δ (LSGM, strontium- and
magnesium-doped lanthanum gallate) in 1996 [11], and La2Mo2O9 (LAMOX, lanthanum molybdenum
oxide) in 2000 [12]. A solid electrolyte with ionic conductivity higher than that of 8YSZ would allow
for designing SOFCs operating at lower temperatures, thus reducing misfit problems between solid
electrolyte and other components in those devices, like anode and cathode.

BIMEVOX solid electrolytes are obtained by partially replacing V5+ with pentavalent or aliovalent
ions in the Bi4V2O11 compound. Several BIMEVOX compounds have been synthesized with single
or double replacements with several different metallic ions, Li+, Cu2+, Co2+, Ni2+, Zn2+, Fe3+, Al3+,
Ti4+, Zr4+, Ge4+, Sn4+, Pb4+, Nb5+ [13–32]. The structural phases of Bi4V2O11 are monoclinic (named
alpha), orthorhombic from 445 ◦C (beta) and tetragonal from 567 ◦C (gamma), the gamma phase
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with the highest oxygen ion conductivity [23,32]. The tetragonal gamma phase may be partially or
fully stabilized at room temperature by aliovalent replacements for V5+. Therefore, bismuth oxide
and doped bismuth oxide systems exhibit a complex set of crystallographic structures and electrical
properties, which depend upon temperature, atmosphere, dopant type, and concentration. The best
bismuth-based ionic conductor is the Bi4V1.8Ti0.2O10.9 compound.

Flash sintering (FS) is an electric field-assisted pressureless sintering technique accomplished in
short times, from seconds to minutes, in comparison with the time required in conventional sintering
(hours). That technique has been widely applied to sinter several electroceramics at temperatures
lower than those used in conventional sintering, producing consolidated bodies without considerable
grain growth [33–38]. Sintering to near full density with that technique may be achieved by applying
moderate electric fields (tens of Volts) with limiting currents (mA to few A range) to green ceramic
pellets isothermally at temperatures below the conventional temperature for sintering, saving time and
energy consumption.

The synthesis by the complex polymerization chemical method of BITIVOX powders and the
conformation by electric field-assisted (flash) pressureless sintering at temperatures similar to and
lower than those previously conventionally used for sintering (700 ◦C and 800 ◦C) are here reported
for the first time. Microstructural analysis and impedance spectroscopy measurements show the
possibilities of electric field-assisted pressureless sintering BITIVOX ceramic ionic conductors with
improved electrical behavior.

2. Materials and Methods

Polycrystalline Bi4V1.8Ti0.2O11 powders were synthesized by the complex polymerization method
with bismuth trioxide (Bi2O3, Riedel-de-Haen), vanadium pentoxide (V2O5, Alfa Aesar 99.2%),
titanium (IV) isopropoxide [Ti(OCH(CH3)2)4, Sigma Aldrich 99.999%], citric acid (C6H8O7, CAAL)
and ethane-1,2-diol (C2H4(OH)2, ethylene glycol, Vetec, Sigma-Aldrich, St. Louis, MI, USA) according
to the Schema shown below. To prepare a solution with titanium, stoichiometric amounts of Bi2O3

were dissolved in nitric acid (HNO3, Vetec, Sigma-Aldrich, St. Louis, MI, USA), V2O5 in citric acid,
and [Ti(OCH(CH3)2)4] was dropwise dissolved in citric acid. The TiO2 content was evaluated by
gravimetric analysis. The citric acid/metal molar ratio was kept at 4:1. The solution was mixed and
stirred at ~100 ◦C until it turned homogeneous; ammonium hydroxide (NH4OH, Synth) was used
to adjust the pH to 7. Afterwards, ethylene glycol was added to promote the citrate polymerization,
fixing at 60:40 the mass ratio of the citric acid/ethylene glycol. The solution was then kept under
magnetic stirring for several hours up to obtaining a gel. The gel was analyzed by simultaneous
thermogravimetric (TG) and differential thermal analysis (DTA) from room temperature to 1000 ◦C at
10 ◦C min−1 rate under flowing synthetic air in a simultaneous thermal analyzer (Netzsch STA 409E,
Selb, Germany).

The powder, after calcination at 750 ◦C for removing organics, was pressed uniaxially (50 MPa)
into ϕ 5.0 × 2.5 mm pellets and isostatically (200 MPa).

X-ray diffraction analyses were carried out in the synthesized ceramic powders and in ground
powders of sintered BITIVOX pellets in a diffractometer (D8 Advance, Bruker-AXS, Karlsruhe,
Germany) in Bragg-Brentano configuration with Cu-kα radiation, scintillation detector, in the 25–60◦

2θ range, 0.05◦ step size, 5 s per step.
For the flash sintering experiments, BITIVOX cylindrical pellets were positioned into the sample

holder of a vertical dilatometer (Unitherm 1161, Anter, Pittsburgh, PA, USA). Platinum grids, placed
on both parallel surfaces of the sample, were connected with platinum wires to a custom-made
power supply operating at 50–60 V, 1.0 A, 1.1 kHz. The applied voltage and the electric current
through the specimen were collected with two Fluke 8050 A multimeters and stored in a computer [39].
The experimental procedure for flash sintering consisted on applying an electric voltage during 5 min
when the temperature of the specimen reached 700 ◦C or 800 ◦C, monitoring voltage and current pulses
with the multimeters, and specimen thickness shrinkage (±1 µm) with the dilatometer gauge. Typical
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electric field and current profiles are shown in Figure 1, with initial field and current peaks, the voltage
decreasing to a value dependent on the electrical resistance of the sample, to keep constant the pre-set
current. The inset shows that the incubation time, i.e., the elapsed time to the occurrence of the electric
current pulse, is 3.2 s and the half-width of the electric current pulse is approximately 0.5 s.Ceramics2019, 2 FOR PEER REVIEW  3 
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Figure 1. Time evolution of applied electric field and electric current through a BITIVOX pellet during 
300 s at 800 °C. Inset: exploded view of the first 5 s under the electric field. 
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Figure 1. Time evolution of applied electric field and electric current through a BITIVOX pellet during 
300 s at 800 °C. Inset: exploded view of the first 5 s under the electric field. 

Figure 1. Time evolution of applied electric field and electric current through a BITIVOX pellet during
300 s at 800 ◦C. Inset: exploded view of the first 5 s under the electric field.

The apparent hydrostatic density of the sintered samples was evaluated by the Archimedes
method in a Mettler Toledo AG245 analytical balance (Columbus, OH, USA) with a special density
determination kit. The evaluated values were in the 76%−83% T.D. range (T.D.: theoretical density,
7.74 g cm−3 apud [31]): 5.86 g cm−3 (76.2% T.D.), 6.00 g cm−3 (77.5) and 6.43 g cm−3 (83.1) for the
specimens flash sintered at 700 ◦C, heat-treated at 800 ◦C/8 h and flash sintered at 800 ◦C, respectively.
Denser specimens could be obtained by stripping the external surfaces of the flash sintered specimen.
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Impedance spectroscopy measurements were carried out with a Hewlett Packard 4192 A impedance
analyzer (Yokogawa-Hewlett Packard, Tokyo, Japan) in the 275 ◦C−400 ◦C temperature range from 5 Hz
to 13 MHz, 16 points per decade, with 200 mV input AC voltage. Three cylindrical samples, with their
parallel surfaces covered with silver electrodes, were spring-loaded in a sample chamber with platinum
disk electrodes and leads, which was positioned inside a programmable furnace. [-Z”(ω) × Z’(ω)]
impedance data were collected with a special software [40].

Scanning electron microscopy images were observed with a FEG-SEM microscope (Inspect F50,
FEI, Brno, Czech Republic) in the flat surfaces of the sintered pellets.

3. Results and Discussion

The thermogravimetric and differential thermal analyses of the synthesized BITIVOX gel are
shown in Figure 2. These curves exhibit two main thermal events: a weight loss due to dehydration
and evaporation of volatiles, besides the decomposition of free citric acid (added in excess during
synthesis) and initial decomposition of the organic matter from room temperature to approximately
200 ◦C and an exothermic peak related to organic decomposition from 200 ◦C to approximately 480 ◦C.
The inflection of the peak close to 550 ◦C points out to the beginning of the crystallization process.
Based on these results, calcination at 750 ◦C was then carried out for producing the BITIVOX powders.
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Figure 2. Thermogravimetric and differential thermal analysis curves of BITIVOX gel synthesized by 
the complex polymerization technique. 

Figure 3 shows dilatometric curves of BITIVOX compounds with the following temperature 
profile: room temperature to 700 °C or 800 °C for a 5 min dwelling and back to room temperature. 
Figure 3a refers to with and without the application of 200 V cm−1 during 5 min for a programmed 
800 °C for 30 min. Figure 3b with the application of 200 V cm−1 during 5 min when the samples 
reached 700 °C or 800 °C. 

Figure 2. Thermogravimetric and differential thermal analysis curves of BITIVOX gel synthesized by
the complex polymerization technique.

Figure 3 shows dilatometric curves of BITIVOX compounds with the following temperature
profile: room temperature to 700 ◦C or 800 ◦C for a 5 min dwelling and back to room temperature.
Figure 3a refers to with and without the application of 200 V cm−1 during 5 min for a programmed
800 ◦C for 30 min. Figure 3b with the application of 200 V cm−1 during 5 min when the samples
reached 700 ◦C or 800 ◦C.

The application of the electric field for 5 min when the BITIVOX temperature reached 800 ◦C
Figure 3a) promoted additional 3.2% shrinkage of the sample thickness (13.6–10.4%. The difference may
be due to the Joule heating caused by the electric current pulse limited to 1 A through the ceramic pellet.
Figure 3b shows the difference in densification when the electric field was applied at two temperatures,
700 ◦C and 800 ◦C: the higher the temperature the higher the shrinkage upon applying the same
electric field for the same time and electric current limit. A simple explanation is that increasing
the temperature decreases the electrical resistivity of the ceramic pellet [ρ = ρ0 exp (H/kT), ρ is the
resistivity at the absolute temperature T, ρ0 the pre-exponential factor, H the activation energy and
k the Boltzmann constant], allowing for an increase in the electric current J for a constant applied
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voltage. The temperature T resulting from the application of the electric field E may be estimated by

using the black-body radiation equation T = [T4
0 + W/Aσ]

1/4
[41]. T0 is the temperature the electric

current pulse starts, A = 1.82 × 10−5 m2 the pellet parallel surface area, σ = 5.67 × 10−8 W m−2 K−4 the
Stefan-Boltzmann constant, W = V × J ×

√
2/2 (V = E × pellet thickness): 2170 ◦C is the evaluated

temperature when the voltage V is applied (time = 0 s in Figure 1) and 1090 ◦C at 700 ◦C and 1120 ◦C at
800 ◦C at subsequent times, when the power supply voltage drops to keep constant the electric current.
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Figure 3. Dilatometric curves of BITIVOX ceramic pellets: (a) heating to 800 ◦C/30 min without and
with application of 200 V cm−1 during 5 min at 800 ◦C; (b) applying 200 V cm−1 at 700 ◦C/5 min and at
800 ◦C/5 min.

Figure 4 shows the results of the impedance spectroscopy measurements at 400 ◦C of the BITIVOX
ceramic pellets sintered according to Figure 3. The BITIVOX sample sintered by applying 200 V cm−1

at 800 ◦C had bulk electrical resistivity of 0.37 kOhm.cm, while it was 0.76 kOhm.cm without the
application of the electric field (Figure 4a). This means that besides the effect of the furnace temperature
heating the sample from its outside surface towards the bulk, Joule heating inside the sample due to
electric current pulses helps to improve densification. By decreasing the temperature the electric field is
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applied, there is an increase in the value of the electrical resistivity (Figure 4b). This result has already
been reported for other solid electrolytes and the explanation is simple: higher temperature means
lower electrical resistivity and higher amplitude of the electric current, with consequent increased
Joule heating, promoting therefore higher densification. An extrapolation to 400 ◦C of the reported
value for the electrical conductivity of the Bi4V1.8Ti0.2O11 composition sintered at 800 ◦C for 12 h
(electrical conductivity at 320 ◦C, σ320 = 2.56 × 10−5 S cm−1, activation energy E = 0.61 eV [32]) leads to
σ400 = 1.1 × 10−4 S cm−1, which is 25 times lower than the electrical conductivity of our sample flash
sintered at 800 ◦C (2.7 × 10−3 S cm−1).
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Figure 4. Impedance spectroscopy plots of BITIVOX ceramic pellets and equivalent circuits: (a) 
sintered at 800 °C/5 min and flash sintered applying 200 V cm−1 at 800 °C for 5 min; (b) flash sintered 
applying 200 V cm−1 at 700 °C/5 min and at 800 °C/5 min; Temperature of measurement: 400 °C. 
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Figure 4. Impedance spectroscopy plots of BITIVOX ceramic pellets and equivalent circuits: (a) sintered
at 800 ◦C/5 min and flash sintered applying 200 V cm−1 at 800 ◦C for 5 min; (b) flash sintered applying
200 V cm−1 at 700 ◦C/5 min and at 800 ◦C/5 min; Temperature of measurement: 400 ◦C. Numbers stand
for log f (f: Hz).

Figure 5 shows impedance and Bode diagrams of BITIVOX samples flash sintered at 700 ◦C
and at 800 ◦C, measured at four temperatures in the 275 ◦C−400 ◦C range, for comparison purpose.
The diagrams are composed of a skewed semicircle at high frequencies due to the bulk resistivity [42]
and a spike at lower frequencies due to electrode polarization [43]. A comparison of the electrical
conductivity was possible due to the similar crystallographic phase(s) of all sintered BITIVOX samples
(cf. X-ray diffraction results). The sample flash sintered at 800 ◦C is a better electric conductor (lower
electrical resistivity) than the one flash sintered at 700 ◦C: 4 kOhm.com (50), 2 (20) kOhm.cm, 0.8 (5.8)
kOhm.cm and 0.6 (1.9) kOhm.cm for the flash (conventionally) sintered BITIVOX pellets at 275 ◦C,
300 ◦C, 350 ◦C and 400 ◦C, respectively.
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Figure 5. Impedance spectroscopy diagrams (left) and Bode diagrams (right), with data collected
at 275 ◦C, 300 ◦C, 350 ◦C, and 400 ◦C, of BITIVOX samples flash sintered at 700 ◦C/5 min and at
800 ◦C/5 min. Bulk resistivity values are shown in the left figures. Maximum frequencies in the
right figures.

Figure 6 shows the Arrhenius plots of BITIVOX samples sintered at 800 ◦C/8 h and flash sintered
at 700 ◦C and 800 ◦C. The activation energy for the conductive process was determined as 0.78 eV,
in agreement with reported values [17,30]. A comparison with reported values for the electrical
conductivity and the activation energy is shown in Table 1.
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micrographs indicate a broad distribution of irregular grains of average sizes higher than 1 µm. The 
sample flash sintered at 800 °C had larger average grain size than the sample flash sintered at 700 °C, 
probably due to the lower electrical resistivity, which is exponentially dependent on temperature. 
The sample flash sintered at 700 °C for 5 min shows grains similar to those of the sample sintered 
conventionally for 8 h. This means that the electric current was able to produce Joule heating leading 
to grain growth similar to the sample heated at 800 °C/8 h. The electric current provides also higher 
mobility of the charge carriers, increasing local Joule heating, promoting grain growth, decreasing 
porosity, and consequently improving the total conductivity, as shown in Figure 4a. 
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Figure 6. Arrhenius plots of BITIVOX sintered at 800 ◦C/8 h and flash sintered at 700 ◦C/5 min and
800 ◦C/5 min.

Table 1. Reported and this work values of electrical conductivity σ and activation energy E.

Composition T (◦C) σ (S cm−1) E (eV) Reference

Bi2V0.9Cu0.1O9 227 2.9 × 10−4 0.66 [44]
Bi2V0.9Ni0.1O9 227 3.05 × 10−4 0.71 [45]
Bi2V0.9Zn0.1O9 227 1.27 × 10−4 0.73 [45]
Bi2V0.8Ti0.2O9 320 1.1 × 10−4 0.61 [32]
Bi2V0.8Ti0.2O9 400 3.7 × 10−2 0.78 this work

Figure 7 shows the scanning electron microscopy images of surfaces of BITIVOX pellets sintered
following different procedures: (a) conventionally in air at 800 ◦C during 8 h in a resistive furnace;
inside a dilatometer by applying 200 V cm−1 at 700 ◦C (b) and 800 ◦C (c) during 5 min. The FEG-SEM
micrographs indicate a broad distribution of irregular grains of average sizes higher than 1 µm.
The sample flash sintered at 800 ◦C had larger average grain size than the sample flash sintered at
700 ◦C, probably due to the lower electrical resistivity, which is exponentially dependent on temperature.
The sample flash sintered at 700 ◦C for 5 min shows grains similar to those of the sample sintered
conventionally for 8 h. This means that the electric current was able to produce Joule heating leading
to grain growth similar to the sample heated at 800 ◦C/8 h. The electric current provides also higher
mobility of the charge carriers, increasing local Joule heating, promoting grain growth, decreasing
porosity, and consequently improving the total conductivity, as shown in Figure 4a.

Intergranular and intragranular pores were observed in the polished surfaces, evidenced by the
large contribution to the bulk electrical resistivity (cf. Figure 4).

After the scanning electron microscopy and electrochemical impedance measurements, the
sintered pellets were ground in an agate mortar for using the powders for the X-ray diffraction analyses.
The results are shown in Figure 8. All diffraction patterns are similar with minor residuals of the BiVO4

parent phase and were indexed for tetragonal the majority phase (PDF 86-0104) [46].
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4. Conclusions 
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Further research work is necessary for achieving higher density samples. 

Author Contributions: conceptualization, R.M.; methodology, R.M. and E.N.S.M.; formal analysis, R.M., 
E.N.S.M. and M.S.M.; investigation, M.S.M., S.G.M.C., R.M. and E.N.S.M.; resources, R.M.; writing—original 
draft preparation, R.M. and M.S.M.; writing—review and editing, R.M., M.S.M., S.G.M.C. and E.N.S.M.; 
supervision, R.M.; project administration, R.M.; funding acquisition, R.M. and ENSM. 

Funding: This research was funded by the Brazilian Agencies: CNEN, CNPq (Procs. 302357/2018-1 and 
305889/2018-4) and FAPESP (CEPID-CDMF Proc. 2013/07296-2). 

Acknowledgments: R.M. is grateful to Federal University of ABC for the Senior Visiting Researcher fellowship. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Minh, N.Q. Ceramic Fuel Cells. J. Am. Ceram. Soc. 1993, 76, 563–588. 
2. Goodenough, J.B. Oxide-ion electrolytes. Annu. Rev. Mater. Res. 2003, 33, 91–128. 
3. Fergus, J.W. Electrolytes for solid oxide fuel cells. J. Power Sources 2006, 162, 30−40. 
4. Amado, R.S.; Malta, L.G.B.; Garrido, F.M.S.; Medeiros, M.E. Solid oxide fuel cells: Materials, components 

and configurations. Quim. Nova 2006, 30, 189−197. 
5. Jacobson, A.J. Materials for solid oxide fuel cells. Chem. Mater. 2010, 22, 660−674. 

Figure 8. X-ray diffraction patterns of BITIVOX. From top to bottom: sintered at 800 ◦C/8 h, flash
sintered with application of 200 V cm−1 at 800 ◦C/5 min and at 700 ◦C/5 min. Also shown the main
Miller indices; + location of diffraction peaks of BiVO4.
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Bi4V1.8Ti0.2O11 (BITIVOX) ceramic powders were successfully synthesized by a complex
polymerization method followed by calcination at 750 ◦C. Compacts of the powders sintered by
applying AC electric voltages (flash sintering) at 800 ◦C showed enhanced shrinkage and higher
electrical conductivity than compacts flash sintered at 700 ◦C. Moreover, samples flash sintered at 800 ◦C
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