Tailoring the Glass Composition to Increase the Thermal Stability without Impacting the Crystallization Behavior of Oxyfluorophosphate Glass
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Boetti, N.G.; Scarpignato, G.C.; Lousteau, J.; Pugliese, D.; Bastard, L.; Broquin, J.-E.; Milanese, D. High concentration Yb-Er co-doped phosphate glass for optical fiber amplification. J. Opt. 2015, 17, 65705. [Google Scholar] [CrossRef]
- Bunker, B.C.; Arnold, G.W.; Wilder, J.A. Phosphate glass dissolution in aqueous solutions. J. Non Cryst. Solids. 1984, 64, 291–316. [Google Scholar] [CrossRef]
- Gonçalves, M.C.; Santos, L.F.; Almeida, R.M. Rare-earth-doped transparent glass ceramics. Comptes Rendus Chim. 2002, 5, 845–854. [Google Scholar] [CrossRef]
- De Pablos-Martín, A.; Durán, A.; Pascual, M.J. Nanocrystallisation in oxyfluoride systems: Mechanisms of crystallisation and photonic properties. Int. Mater. Rev. 2012, 57, 165–186. [Google Scholar] [CrossRef]
- Zanotto, E.D. A bright future for glass-ceramics. Am. Ceram. Soc. Bull. 2010, 89, 19–27. [Google Scholar]
- Shang, F.; Chen, Y.; Xu, J.; Yang, T.; Yang, Y.; Chen, G. Up-conversion luminescence and highly sensing characteristics of Er3+/Yb3+ co-doped borophosphate glass-ceramics. Opt. Commun. 2019, 441, 38–44. [Google Scholar] [CrossRef]
- Saad, M.; Elhouichet, H. Good optical performances of Eu3+/Dy3+/Ag nanoparticles co-doped phosphate glasses induced by plasmonic effects. J. Alloys Compd. 2019, 806, 1403–1409. [Google Scholar] [CrossRef]
- Wang, Y.; Ohwaki, J. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion. Appl. Phys. Lett. 1993, 63, 3268–3270. [Google Scholar] [CrossRef]
- Qiao, X.; Fan, X.; Wang, J.; Wang, M. Luminescence behavior of Er3+ ions in glass–ceramics containing CaF2 nanocrystals. J. Non Cryst. Solids 2005, 351, 357–363. [Google Scholar] [CrossRef]
- Kang, S.; Xiao, X.; Pan, Q.; Chen, D.; Qiu, J.; Dong, G. Spectroscopic properties in Er3+-doped germanotellurite glasses and glass ceramics for mid-infrared laser materials. Sci. Rep. 2017, 7, 43186. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Lu, X.; Lin, C.; Jain, R.K. Luminescent ion-doped transparent glass ceramics for mid-infrared light sources. Opt. Express 2020, 28, 21522–21548. [Google Scholar] [CrossRef] [PubMed]
- Xing, Z.; Gao, S.; Liu, X.; Sun, S.; Yu, C.; Xiong, L.; Li, K.; Liao, M. Study on the structure, mechanical properties, and 2-μm fluorescence of Ho3+-doped transparent TeO2-based glass–ceramics. J. Alloys Compd. 2016, 660, 375–381. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96. [Google Scholar] [CrossRef]
- Ojha, N.; Szczodra, A.; Boetti, N.G.; Massera, J.; Petit, L. Nucleation and growth behavior of Er3+ doped oxyfluorophosphate glasses. RSC Adv. 2020, 10, 25703–25716. [Google Scholar] [CrossRef]
- Stolov, A.; Simoff, D.A.; Li, J. Thermal Stability of Specialty Optical Fibers. J. Light. Technol. 2008, 26, 3443–3451. [Google Scholar] [CrossRef]
- Donald, I.W.; Metcalfe, B.L.; Taylor, R.N.J. The immobilization of high level radioactive wastes using ceramics and glasses. J. Mater. Sci. 1997, 32, 5851–5887. [Google Scholar] [CrossRef]
- Donald, I.W. Preparation, properties and chemistry of glass- and glass-ceramic-to-metal seals and coatings. J. Mater. Sci. 1993, 28, 2841–2886. [Google Scholar] [CrossRef]
- Wei, T.Y.; Hu, Y.; Hwa, L.G. Structure and elastic properties of low-temperature sealing phosphate glasses. J. Non Cryst. Solids 2001, 288, 140–147. [Google Scholar] [CrossRef]
- De Wild, J.; Meijerink, A.; Rath, J.K.; van Sark, W.G.J.H.M.; Schropp, R.E.I. Upconverter solar cells: Materials and applications. Energy Environ. Sci. 2011, 4, 4835–4848. [Google Scholar] [CrossRef] [Green Version]
- Van Sark, W.G.; de Wild, J.; Rath, J.K.; Meijerink, A.; Schropp, R.E.I. Upconversion in solar cells. Nanoscale Res. Lett. 2013, 8, 81. [Google Scholar] [CrossRef] [Green Version]
- Bingham, P.A.; Hand, R.J.; Forder, S.D. Doping of iron phosphate glasses with Al2O3, SiO2 or B2O3 for improved thermal stability. Mater. Res. Bull. 2006, 41, 1622–1630. [Google Scholar] [CrossRef]
- Marasinghe, G.K.; Karabulut, M.; Ray, C.S.; Day, D.E.; Allen, P.G.; Bucher, J.J.; Shuh, D.K.; Badyal, Y.; Saboungi, M.L.; Grimsditch, M.; et al. Environment Issues and Waste Management Technologies IV (special issue). Ceram. Trans. 1999, 93, 195. [Google Scholar]
- Zhang, L.; Ghussn, L.; Schmitt, M.L.; Zanotto, E.D.; Brow, R.K.; Schlesinger, M.E. Thermal stability of glasses from the Fe4(P2O7)3-Fe(PO3)3 system. J. Non Cryst. Solids 2010, 356, 2965–2968. [Google Scholar] [CrossRef]
- Cui, S.; Massera, J.; Lastusaari, M.; Hupa, L.; Petit, L. Novel fluorophosphates glasses and glass-ceramics. J. Non Cryst. Solids 2016, 445, 40–44. [Google Scholar] [CrossRef]
- Takebe, H.; Suzuki, Y.; Uemura, T. The effects of B2O3 and Al2O3 additions on the structure of phosphate glasses. Phys. Chem. Glas. Eur. J. Glas. Sci. Technol. Part B 2014, 55, 207–210. [Google Scholar]
- Raguenet, B.; Tricot, G.; Silly, G.; Ribes, M.; Pradel, A. The mixed glass former effect in twin-roller quenched lithium borophosphate glasses. Solid State Ionics 2012, 208, 25–30. [Google Scholar] [CrossRef]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the “Debye-Scherrer equation”. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xu, D.; Liu, X.; Guo, H. Dual valence Eu-doped phospho-alumino-silicate glass-ceramics containing Ba3AlO3PO4 nanocrystals for W-LEDs. RSC Adv. 2017, 7, 53839–53845. [Google Scholar] [CrossRef] [Green Version]
- Auzel, F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. [Google Scholar] [CrossRef]
- Szczodra, A.; Mardoukhi, A.; Hokka, M.; Boetti, N.G.; Petit, L. Fluorine losses in Er3+ oxyfluoride phosphate glasses and glass-ceramics. J. Alloys Compd. 2019, 797, 797–803. [Google Scholar] [CrossRef]
- Seneschal, K.; Smektala, F.; Bureau, B.; Floch, M.L.; Jiang, S.; Luo, T.; Lucas, J.; Peyghambarian, N. Properties and Structure of High Erbium Doped Phosphate Glass for Short Optical Fibers Amplifiers. Mater. Res. Bull. 2005, 40, 1433–1442. [Google Scholar] [CrossRef]
- Ersundu, A.E.; Karaduman, G.; Çelikbilek, M.; Solak, N.; Aydın, S. Effect of Rare-Earth Dopants on the Thermal Behavior of Tungsten Tellurite Glasses. J. Alloys Compd. 2010, 508, 266–272. [Google Scholar] [CrossRef]
- Nazabal, V.; Todoroki, S.; Nukui, A.; Matsumoto, T.; Suehara, S.; Hondo, T.; Araki, T.; Inoue, S.; Rivero, C.; Cardinal, T. Oxyfluoride tellurite glasses doped with erbium: Thermal analysis, structural organization and spectral properties. J. Non Cryst. Solids 2003, 325, 85–102. [Google Scholar] [CrossRef]
- Shyu, J.-J.; Chiang, C.-C. Effects of Er2O3 Doping on the Structure, Thermal Properties, and Crystallization Behavior of SnO–P2O5 Glass. J. Am. Ceram. Soc. 2010, 93, 2720–2725. [Google Scholar] [CrossRef]
- Nommeots-Nomm, A.; Boetti, N.G.; Salminen, T.; Massera, J.; Hokka, M.; Petit, L. Luminescence of Er3+ doped oxyfluoride phosphate glasses and glass-ceramics. J. Alloys Compd. 2018, 751, 224–230. [Google Scholar] [CrossRef]
- Chen, D.; Wang, Y.; Yu, Y.; Ma, E.; Bao, F.; Hu, Z.; Cheng, Y. Influences of Er3+ content on structure and upconversion emission of oxyfluoride glass ceramics containing CaF2 nanocrystals. Mater. Chem. Phys. 2006, 95, 264–269. [Google Scholar] [CrossRef]
Glass Code | NaPO3 | CaF2 | Al2O3 | MgO | Fe2O3 | Er2O3 | ErF3 |
---|---|---|---|---|---|---|---|
0Mg/Al | 74.8 | 24.9 | 0.25 | ||||
1.5Mg | 73.7 | 24.6 | 1.50 | 0.25 | |||
3Mg | 72.6 | 24.2 | 3.00 | 0.25 | |||
4.5Mg | 71.4 | 23.8 | 4.50 | 0.25 | |||
6Mg | 70.3 | 23.4 | 6.00 | 0.25 | |||
0.5Al | 74.4 | 24.8 | 0.50 | 0.25 | |||
1Al | 74.1 | 24.7 | 1.00 | 0.25 | |||
1.25Al | 73.9 | 24.6 | 1.25 | 0.25 | |||
1Er2O3 | 74.3 | 24.8 | 1.00 | ||||
2Er2O3 | 73.5 | 24.5 | 2.00 | ||||
3Er2O3 | 72.8 | 24.2 | 3.00 | ||||
0.5ErF3 | 74.6 | 24.9 | 0.5 | ||||
2ErF3 | 73.5 | 24.5 | 2.0 | ||||
4ErF3 | 72.0 | 24.0 | 4.0 | ||||
6ErF3 | 70.5 | 23.5 | 6.0 | ||||
0Fe | 74.8 | 24.9 | 0.25 | ||||
0.5Fe | 74.4 | 24.8 | 0.5 | 0.25 | |||
1Fe | 74.1 | 24.7 | 1.0 | 0.25 |
Glass Code | Thermal Properties | Mean Size of the Crystallites ±2 (nm) | Er3+ Ions/cm3 (1019) ±5% | |||
---|---|---|---|---|---|---|
Tg ±3 (°C) | Tx ±3 (°C) | Tp ±3 (°C) | ΔT = Tx − Tg ±6 (°C) | |||
Prepared in Pt cucible | ||||||
0Mg/Al | 269 | 323 | 338 | 54 | 17 | 8.19 |
1.5Mg | 279 | 345 | 365 | 66 | 24 | 8.36 |
3Mg | 290 | 377 | 410 | 87 | 30 | 8.43 |
4.5Mg | 297 | 381 | 410 | 84 | 36 | 8.50 |
6Mg | 302 | 381 | 405 | 79 | 45 | 8.61 |
0.5Al | 281 | 378 | 420 | 97 | 30 | 8.31 |
1Al | 295 | 393 | 420 | 98 | 41 | 8.31 |
1.25Al | 299 | 399 | 429 | 100 | NA | 8.31 |
Prepared in alumina crucible | ||||||
0Fe | 270 | 343 | 360 | 73 | 18 | 8.19 |
0.5Fe | 300 | 390 | 435 | 86 | 31 | 8.28 |
1Fe | 330 | 499 | 538 | 169 | NA | 8.35 |
Glass Code | Thermal Properties | Mean Size of the Crystallites (nm) | Er3+ Ions/cm3 (1019) ±5% | |||
---|---|---|---|---|---|---|
Tg ±3 (°C) | Tx ±3 (°C) | Tp ±3 (°C) | ΔT = Tx − Tg ±6 (°C) | |||
0Mg/Al | 269 | 323 | 338 | 54 | 17 | 8.19 |
1Er2O3 | 281 | 357 | 376 | 76 | 26 | 33.02 |
2Er2O3 | 289 | 375 | 415 | 86 | 37 | 65.84 |
3Er2O3 | 298 | 384 | 466 | 86 | NA | 99.52 |
0.5ErF3 | 266 | 337 | 352 | 71 | 17 | 8.29 |
2 ErF3 | 267 | 354 | 368 | 87 | 28 | 32.99 |
4 ErF3 | 286 | 382 | 408 | 96 | 33 | 66.95 |
6 ErF3 | 296 | 396 | 456 | 100 | NA | 101.43 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ojha, N.; Dmitrieva, I.; Blanc, W.; Petit, L. Tailoring the Glass Composition to Increase the Thermal Stability without Impacting the Crystallization Behavior of Oxyfluorophosphate Glass. Ceramics 2021, 4, 148-159. https://doi.org/10.3390/ceramics4020013
Ojha N, Dmitrieva I, Blanc W, Petit L. Tailoring the Glass Composition to Increase the Thermal Stability without Impacting the Crystallization Behavior of Oxyfluorophosphate Glass. Ceramics. 2021; 4(2):148-159. https://doi.org/10.3390/ceramics4020013
Chicago/Turabian StyleOjha, Nirajan, Iuliia Dmitrieva, Wilfried Blanc, and Laeticia Petit. 2021. "Tailoring the Glass Composition to Increase the Thermal Stability without Impacting the Crystallization Behavior of Oxyfluorophosphate Glass" Ceramics 4, no. 2: 148-159. https://doi.org/10.3390/ceramics4020013
APA StyleOjha, N., Dmitrieva, I., Blanc, W., & Petit, L. (2021). Tailoring the Glass Composition to Increase the Thermal Stability without Impacting the Crystallization Behavior of Oxyfluorophosphate Glass. Ceramics, 4(2), 148-159. https://doi.org/10.3390/ceramics4020013