Ceramic Tile Adhesives from the Producer’s Perspective: A Literature Review
Abstract
:1. Introduction
2. Composition of Ceramic Tile Adhesives
2.1. The Specificity of Thin-Layer Mortars
2.2. Influence of Cellulose Derivatives (CDs) on the Properties of CTAs
2.3. Influence of Redispersible Polymer Powders on the Properties of CTAs
3. Formulation of the CTAs
- compliance with the minimum classification requirements specified in the relevant standards, including:
- (a)
- the variability of the raw materials of local origin (cement, aggregates, other inert ingredients);
- (b)
- in the case of producers offering the product from different production locations, the need to optimize (average) the product quality;
- (c)
- the variability resulting from the measurement uncertainty of the test methods used;
- the real conditions of use on the construction site;
- fulfilling the expectations of tile fixers (appreciation) in terms of product friendliness in the broad sense, i.e., the ease of application, fresh-state application properties, and parameters not specified in the standards constituting the basis for the assessment of the product resulting from legal provisions;
- the competitiveness against other products intended for similar uses, including:
- (a)
- technical dimensions;
- (b)
- manufacturing costs;
- the competitiveness of the CTAs against other products: defining the ability of CTAs to compete with substitutional goods towards downstream clients.
4. Testing of the CTAs
4.1. Assessment and Verification of the Constancy of the Performance of the CTAs
4.2. Critical Remarks on the Laboratory Test Methods According to EN 12004
4.3. Manufacturers’ Risk Related to the Assessment and Verification of the Constancy of the Performance of the CTAs
4.4. A Few Remarks on the CTAs’ Exploitation Conditions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carter, C.B.; Norton, M.G. Ceramic Materials: Science and Engineering; Springer: New York, NY, USA, 2007; Volume 716, p. 712. [Google Scholar]
- Lutz, H.; Bayer, R. Dry Mortars. Ullmann’s Encyclopedia of Industrial Chemistry; Willey Online Library: Hoboken, NJ, USA, 2015. [Google Scholar]
- Baraldi, L. World production and consumption of ceramic tiles. Ceramic World Rev. 2020, 30, 40–54. [Google Scholar]
- Mordor Intelligence, Hyderabad, India. 2020. Available online: https://www.mordorintelligence.com/industry-reports/dry-mix-mortar-market (accessed on 27 April 2021).
- Market US, New York, USA. 2020. Available online: https://market.us/report/ceramic-tile-adhesive-market (accessed on 27 April 2021).
- Verified Market Research, New York, USA. 2019. Available online: https://www.verifiedmarketresearch.com/product/ceramic-tile-adhesive-market (accessed on 27 April 2021).
- Harder, J. Market review of the premixed dry mortar industry in Europe. ZKG Int. 2007, 60, 48–61. [Google Scholar]
- Winter, C.; Plank, J. The European dry-mix mortar industry (Part 1). ZKG Int. 2007, 60, 62–69. [Google Scholar]
- Michalak, J. Chemia budowlana. Zaprawy budowlane. (Building chemistry. Building mortars). Przemysł Chemiczny 2002, 81, 160–164. [Google Scholar]
- Zhi, Z.; Ma, B.; Jian, S.; Su, L.; Guo, Y.; Chen, F. Research on the interface and microstructure of thin layer mortar. ZKG Int. 2016, 69, 62–69. [Google Scholar]
- Schulze, J.; Jodlbauer, F.; Adler, K. Polymer Mofyfied Mortars for the Renovation and Rehabilitation of Conrete Structures. In Proceedings of the IXth International Congress on Polymers in Concrete, Bologna, Italy, 15–18 September 1998. [Google Scholar]
- Felixberger, J.K. Polymer-modified thin-bed tile adhesive. Institut De Promocio Ceramica: Castelló, Spain, 2008. [Google Scholar]
- Nguyen, D.D.; Devlin, L.P.; Koshy, P.; Sorrell, C.C. Impact of water-soluble cellulose ethers on polymer-modified mortars. J. Mater. Sci. 2014, 49, 923–951. [Google Scholar] [CrossRef]
- Reports and Data, New York, USA. 2019. Available online: https://www.reportsanddata.com/report-detail/cellulose-ether-market (accessed on 29 April 2021).
- Pichniarczyk, P.; Malata, G. Microcalorimetric analysis of methylcellulose influence on the hydration process of tricalcium aluminate, alite and their mixture. J. Therm. Anal. Calorim. 2017, 128, 771–778. [Google Scholar] [CrossRef] [Green Version]
- Pichniarczyk, P. The Influence of Methylcellulose on the Hydration Process of C3S, C3A and Mixture of these Phases. Procedia Eng. 2015, 108, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Pichniarczyk, P. The influence of methylcellulose on hydration of tricalcium aluminate. Cement Wapno Beton 2013, 18, 65–73. [Google Scholar]
- Ou, Z.H.; Ma, B.G.; Jian, S.W. Influence of cellulose ethers molecular parameters on hydration kinetics of Portland cement at early ages. Constr. Build. Mater. 2012, 33, 78–83. [Google Scholar] [CrossRef]
- Pourchez, J.; Grosseau, P.; Ruot, B. Changes in C3S hydration in the presence of cellulose ethers. Cem. Concr. Res. 2010, 40, 179–188. [Google Scholar] [CrossRef] [Green Version]
- Ridi, F.; Fratini, E.; Mannelli, F.; Baglioni, P. Hydration process of cement in the presence of a cellulosic additive. A calorimetric investigation. J. Phys. Chem. B 2005, 109, 14727–14734. [Google Scholar] [CrossRef]
- Peschard, A.; Govin, A.; Fredon, E.; Grosseau, P.; Fantozzi, G. Influence of polysaccharides on cement hydration. Key Eng. Mater. 2004, 264, 2141–2144. [Google Scholar] [CrossRef] [Green Version]
- Coarna, M.; Georgescu, M.; Puri, A.; Diaconu, D. ESCA, MIP and mechanical characterization of some Portland cement–methyl-cellulose composites. Key Eng. Mater. 2004, 264, 2153–2156. [Google Scholar] [CrossRef]
- Petit, J.Y.; Wirquin, E. Evaluation of various cellulose ethers performance in ceramic tile adhesive mortars. Int. J. Adhes. Adhes. 2013, 40, 202–209. [Google Scholar] [CrossRef]
- Bülichen, D.; Kainz, J.; Plank, J. Working mechanism of methyl hydroxyethyl cellulose (MHEC) as water retention agent. Cem. Concr. Res. 2012, 42, 953–959. [Google Scholar] [CrossRef]
- Patural, L.; Marchal, P.; Govin, A.; Grosseau, P.; Ruot, B.; Deves, O. Cellulose ethers influence on water retention and consistency in cement-based mortars. Cem. Concr. Res. 2011, 41, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Pichniarczyk, P.; Niziurska, M. Properties of ceramic tile adhesives modified by different viscosity hydroxypropyl methylcellulose. Constr. Build. Mater. 2015, 77, 227–232. [Google Scholar] [CrossRef]
- Marliere, C.; Mabrouk, E.; Lamblet, M.; Coussot, P. How water retention in porous media with cellulose ethers works. Cem. Concr. Res. 2012, 42, 1501–1512. [Google Scholar] [CrossRef]
- Chen, N.; Wang, P.; Zhao, L.; Zhang, G. Water retention mechanism of HPMC in cement mortar. Materials 2020, 13, 2918. [Google Scholar] [CrossRef] [PubMed]
- Curto, F.; Monaco, M.; Carrà, S. Rheological properties of cellulose ethers and their application in cementitious tile adhesives formulation. Annu. Trans. Nord. Rheol. Soc. 2019, 27, 53–60. [Google Scholar]
- Artioli, G.; Secco, M.; Addis, A. The Vitruvian legacy: Mortars and binders before and after the Roman world. EMU Notes Miner. 2019, 20, 151–202. [Google Scholar]
- Sakai, E.; Sugita, J. Composite mechanism of polymer modified cement. Cem. Concr. Res. 1995, 25, 127–135. [Google Scholar] [CrossRef]
- Schulze, J. Influence of water-cement ratio and cement content on the properties of polymer-modified mortars. Cem. Concr. Res. 1999, 29, 909–915. [Google Scholar] [CrossRef]
- Jenni, A.; Holzer, L.; Zurbriggen, R.; Herwegh, M. Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cem. Concr. Res. 2005, 35, 35–50. [Google Scholar] [CrossRef]
- Wang, R.; Wang, P.M. Action of redispersible vinyl acetate and versatate copolymer powder in cement mortar. Constr. Build. Mater. 2011, 25, 4210–4214. [Google Scholar] [CrossRef]
- Betioli, A.M.; Gleize, P.J.P.; John, V.M.; Pileggi, R.G. Effect of EVA on the fresh properties of cement paste. Cem. Concr. Compos. 2012, 34, 255–260. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, P.; Zhang, G. Principles of polymer film in tile adhesive mortars at early ages. Mater. Res. Express 2018, 6, 025317. [Google Scholar] [CrossRef]
- Fujii-Yamagata, A.L.; Cardoso, F.A.; Sarou-Kanian, V.; Daubresse, A.; Prat, E.; Chaouche, M. Skin formation in adhesive mortars evaluated by MRI and interfacial rheology. Cem. Concr. Compos. 2019, 99, 251–261. [Google Scholar] [CrossRef]
- Bühler, T.; Zurbriggen, R.; Pieles, U.; Huwiler, L.; Raso, R.A. Dynamics of early skin formation of tiling mortars investigated by microscopy and diffuse reflectance infrared Fourier transformed spectroscopy. Cem. Concr. Compos. 2013, 37, 161–170. [Google Scholar] [CrossRef]
- Afridi, M.U.K.; Ohama, Y.; Iqbal, M.Z.; Demura, K. Water retention and adhesion of powdered and aqueous polymer-modified mortars. Cem. Concr. Compos. 1995, 17, 113–118. [Google Scholar] [CrossRef]
- Jenni, A.; Zurbriggen, R.; Holzer, L.; Herwegh, M. Changes in microstructures and physical properties of polymer-modified mortars during wet storage. Cem. Concr. Res. 2006, 36, 79–90. [Google Scholar] [CrossRef]
- Petit, J.Y.; Comelli, B.; Perrin, R.; Wirquin, E. Effect of formulation parameters on adhesive properties of ANSI 118-15 and 118-11 compliant tile adhesive mortars. Int. J. Adhes. Adhes. 2016, 66, 73–80. [Google Scholar] [CrossRef]
- Brien, J.V.; Mahboub, K.C. Influence of polymer type on adhesion performance of a blended cement mortar. Int. J. Adhes. Adhes. 2013, 43, 7–13. [Google Scholar] [CrossRef]
- Kulesza, M.; Debski, D.; Fangrat, J.; Michalak, J. Effect of redispersible polymer powders on selected mechanical properties of thin-bed cementitious mortars. Cement Wapno Beton 2020, 25, 168–177. [Google Scholar]
- Barluenga, G.; Hernandez-Olivares, F. SBR latex modified mortar rheology and mechanical behaviour. Cem. Concr. Res. 2004, 34, 527–535. [Google Scholar] [CrossRef]
- Schulze, J.; Killermann, O. Long-term performance of redispersible powders in mortars. Cem. Concr. Res. 2001, 31, 357–362. [Google Scholar] [CrossRef]
- Pascal, S.; Alliche, A.; Pilvin, P. Mechanical behaviour of polymer modified mortars. Mater. Sci. Eng. A 2004, 380, 1–8. [Google Scholar] [CrossRef]
- Medeiros, M.H.F.; Helene, P.; Selmo, S. Influence of EVA and acrylate polymers on some mechanical properties of cementitious repair mortars. Constr. Build. Mater. 2009, 23, 2527–2533. [Google Scholar] [CrossRef]
- Mirza, J.; Mirza, M.S.; Lapointe, R. Laboratory and field performance of polymer-modified cement-based repair mortars in cold climates. Constr. Build. Mater. 2002, 16, 365–374. [Google Scholar] [CrossRef]
- Patural, L.; Porion, P.; Van Damme, H.; Govin, A.; Grosseau, P.; Ruot, B.; Devès, O. A pulsed field gradient and NMR imaging I;vestigations of the water retention mechanism by cellulose ethers in mortars. Cem. Concr. Res. 2010, 40, 1378–1385. [Google Scholar] [CrossRef] [Green Version]
- Kulesza, M.; Dębski, D.; Fangrat, J. Effect of redispersible polymer powder on setting time of thin-bed mortars. MATEC Web Conf. 2018, 163, 04005. [Google Scholar] [CrossRef]
- Peng, Y.; Zeng, Q.; Xu, S.; Zhao, G.; Wang, P.; Liu, X. BSE-IA reveals retardation mechanisms of polymer powders on cement hydration. J. Am. Ceram. Soc. 2020, 103, 3373–3389. [Google Scholar] [CrossRef]
- Beeldens, A.; Van Gemert, D.; Schorn, H.; Ohama, Y.; Czarnecki, L. From microstructure to macrostructure: An integrated model of structure formation in polymer-modified concrete. Mater. Struct. 2005, 38, 601–607. [Google Scholar] [CrossRef]
- Czarnecki, L.; Schorn, H. Nanomonitoring of Polymer Cement Concrete Microstructure/Untersuchung des Mikrogefiiges von Polymer-Zement-Beton im Nanobereich. Restor. Build. Monum. 2007, 13, 141–152. [Google Scholar] [CrossRef]
- Dimmig-Osburg, A. Microstructure of PCC–Effects of polymer components and additives. In Proceedings of the 12th International Congress on Polymers in Concrete, Chuncheon, Korea, 27 September 2007; pp. 239–248. [Google Scholar]
- Knapen, E.; Van Gemert, D. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cem. Concr. Res. 2009, 39, 6–13. [Google Scholar] [CrossRef]
- Tian, Y.; Li, Z.J.; Ma, H.Y.; Jin, N.; Jin, N.G. An investigation on the microstructure formation of polymer modified mortars in the presence of polyacrylate latex. In Proceedings of the International RILEM Conference on Advances in Construction Materials through Science and Engineering, Hong Kong, China, 5–7 September 2011; p. 7177. [Google Scholar]
- Silva, D.A.D.; Roman, H.R.; Gleize, P.J.P. Evidences of chemical interaction between EVA and hydrating Portland cement. Cem. Concr. Res. 2002, 32, 1383–1390. [Google Scholar] [CrossRef]
- Kotwica, L.; Małolepszy, J. The influence of ethylene-vinyl acetate copolymer redispersible powders on cement hydration. Cement Wapno Beton 2009, 14, 282–291. [Google Scholar]
- Kotwica, L.; Małolepszy, J. Polymer-cement and polymer-alite interactions in hardening of cement-polymer composites. Cement Wapno Beton 2012, 17, 12–16. [Google Scholar]
- Wang, R.; Li, J.; Zhang, T.; Czarnecki, L. Chemical interaction between polymer and cement in polymer-cement concrete. Bull. Polish Acad. Sci. Tech. Sci. 2016, 785–792. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization (CEN). EN 12004:2001 Adhesives for Tiles—Definitions and Specifications; European Committee for Standardization (CEN): Brussels, Belgium, 2001. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Summary of References of Harmonized Standards Published in the Official Journal—Regulation (EU) No 305/2011 of the European Parliament and of the Council of 9 March 2011 Laying Down Harmonized Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/docsroom/documents/38863 (accessed on 27 April 2021).
- European Committee for Standardization (CEN). EN 12004:2007+A1:2012 Adhesives for Tiles—Requirements, Evaluation of Conformity, Classification, and Designation; European Committee for Standardization (CEN): Brussels, Belgium, 2012. [Google Scholar]
- European Committee for Standardization (CEN). EN 12004-1:2017 Adhesives for Ceramic Tiles—Part 1: Requirements, Assessment, and Verification of Constancy of Performance; Classification, and Marking; European Committee for Standardization (CEN): Brussels, Belgium, 2017. [Google Scholar]
- Regulation (EU) No. 305/2011 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32011R0305 (accessed on 4 May 2021).
- The Council of European Communities. Council Directive of 21 December 1988 on the approximation of laws, regulations and administrative provisions of the Member States relating to construction products. Off. J. Eur. Communities 1989, 40, 12–26. [Google Scholar]
- Kulesza, M.; Michalak, J. Zmiany w ocenie i weryfikacji stałości właściwości użytkowych cementowych zapraw klejących do płytek ceramicznych w ostatnim trzydziestoleciu (Changes in assessment and verification of constancy of performance of cementitious ceramic tiles adhesives over the last thirty years). Mater. Bud. 2020, 5, 2–6. [Google Scholar]
- International Organization for Standardization (ISO). ISO 13007-1:2014 Ceramic Tile—Grouts and adhesive—Part 1:Terms, Definitions and Specifications for Adhesive; International Organization for Standardization ISO: Geneva, Switzerland, 2014. [Google Scholar]
- European Committee for Standardization (CEN). EN 1323:2007 Adhesives for Tiles—Concrete Slabs for Tests; European Committee for Standardization (CEN): Brussels, Belgium, 2007. [Google Scholar]
- Coarna, M.; Guslicov, G.; Stancu, C.; Vlad, C. Interlaboratory test on adhesives for ceramic tiles in the last 5 years. In Proceedings of the 4th International Proficiency Testing Conference, Brasov, Romania, 18–20 September 2013; pp. 17–20. [Google Scholar]
- European Committee for Standardization (CEN). EN ISO/IEC 17043:2010 Conformity Assessment—General Requirements for Proficiency Testing; European Committee for Standardization (CEN): Brussels, Belgium, 2010. [Google Scholar]
- Stancu, C. The 10th edition of interlaboratory tests adhesives for ceramic tiles-an anniversary edition. In Proceedings of the 7th International Proficiency Testing Conference, Oradea, Romania, 10–13 September 2019; p. 99. [Google Scholar]
- Nosal, K.; Niziurska, M.; Wieczorek, M. Wpływ zanieczyszczeń zawartych w wodzie przeznaczonej do sezonowania zapraw klejowych do płytek na ich przyczepność. Prace Instytutu Ceramiki i Materiałów Budowlanych 2015, 8, 61–70. [Google Scholar]
- Niziurska, M. Znaczenie właściwości płytek ceramicznych w zapewnieniu trwałości okładzin mocowanych zaprawami cementowymi. Prace Instytutu Ceramiki i Materiałów Budowlanych 2013, 6, 17–26. [Google Scholar]
- Regulation (EU) No. 765/2008 of the European Parliament and of the Council. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008R0765&from (accessed on 7 May 2021).
- Hinrichs, W. The impact of measurement uncertainty on the producer’s and user’s risks, on classification and conformity assessment: An example based on tests on some construction products. Accredit. Qual. Assur. 2010, 15, 289–296. [Google Scholar] [CrossRef]
- Rossi, G.B.; Crenna, F. A probabilistic approach to measurement-based decisions. Measurement 2006, 39, 101–119. [Google Scholar] [CrossRef]
- Szewczak, E.; Piekarczuk, A. Performance evaluation of the construction products as a research challenge. Small error–big difference in assessment? Bull. Pol. Acad. Sci. Tech. Sci. 2016, 675–686. [Google Scholar] [CrossRef] [Green Version]
- Łukasik, M.; Michałowski, B.; Michalak, J. Assessment of the Constancy of Performance of Cementitious Adhesives for Ceramic Tiles: Analysis of the Test Results Commissioned by Polish Market Surveillance Authorities. Appl. Sci. 2020, 10, 6561. [Google Scholar] [CrossRef]
- Kulesza, M.; Łukasik, M.; Michalowski, B.; Michalak, J. Risk related to the assessment and verification of the constancy of performance of construction products. Analysis of the results of the tests of cementitious adhesives for ceramic tiles commissioned by Polish construction supervision authorities in 2016–2020. Cement Wapno Beton 2020, 25, 444–456. [Google Scholar]
- Fritze, P.; Feichtner, G. Flexibility of CTA Beyond Standards. Qualicer 2018, 1–13. [Google Scholar]
- Wetzel, A.; Zurbriggen, R.; Herwegh, M.; Greminger, A.; Kaufmann, J. Long-term study on failure mechanisms of exterior applied tilings. Constr. Build. Mater. 2012, 37, 335–348. [Google Scholar] [CrossRef]
- Maranhão, F.L.; John, V.M. Bond strength and transversal deformation aging on cement-polymer adhesive mortar. Constr. Build. Mater. 2009, 23, 1022–1027. [Google Scholar] [CrossRef]
- De Freitas, V.P.; Sá, A.V. Cementitious adhesives performance during service life. In Proceedings of the 10DBMC International Conference On Durability of Building Materials and Components, Lyon, France, 17–20 April 2005. [Google Scholar]
- Zurbriggen, R.; Herwegh, M. Daily and seasonal thermal stresses in tilings: A field survey combined with numeric modeling. Mater. Struct. 2016, 49, 1917–1933. [Google Scholar] [CrossRef]
- Wetzel, A.; Herwegh, M.; Zurbriggen, R.; Winnefeld, F. Influence of shrinkage and water transport mechanisms on microstructure and crack formation of tile adhesive mortars. Cem. Concr. Res. 2012, 42, 39–50. [Google Scholar] [CrossRef]
- Shohet, I.M.; Laufer, A. Exterior cladding methods: A technoeconomic analysis. J. Constr. Eng. Manag. 1996, 122, 242–247. [Google Scholar] [CrossRef]
- Janjua, S.Y.; Sarker, P.K.; Biswas, W.K. Impact of service life on the environmental performance of buildings. Buildings 2019, 9, 9. [Google Scholar] [CrossRef] [Green Version]
- Wacker Chemie AG. Vinneco; Wacker Chemie AG: Munich, Germany, 2021; Available online: https://www.wacker.com/cms/en-us/products/brands/vinneco/vinneco.html (accessed on 11 June 2021).
- Trigo, T.; Flores-Colen, I.; Silva, L.; Vieira, N.; Raimundo, A.; Borsoi, G. Performance and Durability of Rendering and Basecoat Mortars for ETICS with CSA and Portland Cement. Infrastructures 2021, 6, 60. [Google Scholar] [CrossRef]
Fundamental Characteristics | ||
Characteristics | Requirement | Test Method |
Normal setting adhesives (C1) | ||
Initial tensile adhesion strength | ≥0.5 N/mm2 | 8.2 of EN 1348 |
Tensile adhesion strength after water immersion | ≥0.5 N/mm2 | 8.3 of EN 1348 |
Tensile adhesion strength after heat aging | ≥0.5 N/mm2 | 8.4 of EN 1348 |
Tensile adhesion strength after freeze-thaw cycles | ≥0.5 N/mm2 | 8.5 of EN 1348 |
Open time: tensile adhesion strength | ≥0.5 N/mm2 | EN 1346 |
Fast setting adhesives (C1F) | ||
Early tensile adhesion strength | ≥0.5 N/mm2 | 8.2 of EN 1348 |
Open time: tensile adhesion strength | ≥0.5 N/mm2 | EN 1346 |
All other requirements as in Table 1a of EN 1348 | EN 1348 | |
Optional Characteristics | ||
Special Characteristics | ||
Slip | ≤0.5 mm | EN 1308 |
Extended open time: tensile adhesion strength | ≥0.5 N/mm2 | EN 1346 |
Deformable adhesive: transverse deformation | ≥2.5 mm and <5 mm | EN 12002 |
Highly deformable adhesive: transverse deformation | ≥5 mm | EN 12002 |
Additional characteristics (C2) | ||
High initial tensile adhesion strength | ≥1 N/mm2 | 8.2 of EN 1348 |
High initial adhesion strength after water immersion | ≥1 N/mm2 | 8.3 of EN 1348 |
High tensile adhesion strength after heat aging | ≥1 N/mm2 | 8.4 of EN 1348 |
High tensile adhesion strength after freeze-thaw cycles | ≥1 N/mm2 | 8.5 of EN 1348 |
Fundamental Characteristics | ||
Characteristics | Requirement | Test Method |
Normal setting adhesives (C1) | ||
Initial tensile adhesion strength | ≥0.5 N/mm2 | 8.2 of EN 1348 |
Tensile adhesion strength after water immersion | ≥0.5 N/mm2 | 8.3 of EN 1348 |
Tensile adhesion strength after heat aging | ≥0.5 N/mm2 | 8.4 of EN 1348 |
Tensile adhesion strength after freeze-thaw cycles | ≥0.5 N/mm2 | 8.5 of EN 1348 |
Open time: tensile adhesion strength | ≥0.5 N/mm2 | EN 1346 |
Fast setting adhesives (C1F) | ||
Early tensile adhesion strength | ≥0.5 N/mm2 | 8.2 of EN 1348 |
Open time: tensile adhesion strength | ≥0.5 N/mm2 | EN 1346 |
All other requirements as in Table 1a EN 1348 | EN 1348 | |
Optional Characteristics | ||
Special Characteristics | ||
Slip | ≤0.5 mm | EN 1308 |
Extended open time: tensile adhesion strength | ≥0.5 N/mm2 | EN 1346 |
Deformable adhesive: transverse deformation | ≥2.5 mm and <5 mm | EN 12002 |
Highly deformable adhesive: transverse deformation | ≥5 mm | EN 12002 |
Additional characteristics (C2) | ||
High initial tensile adhesion strength | ≥1 N/mm2 | 8.2 of EN 1348 |
High initial adhesion strength after water immersion | ≥1 N/mm2 | 8.3 of EN 1348 |
High tensile adhesion strength after heat aging | ≥1 N/mm2 | 8.4 of EN 1348 |
High tensile adhesion strength after freeze-thaw cycles | ≥1 N/mm2 | 8.5 of EN 1348 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalak, J. Ceramic Tile Adhesives from the Producer’s Perspective: A Literature Review. Ceramics 2021, 4, 378-390. https://doi.org/10.3390/ceramics4030027
Michalak J. Ceramic Tile Adhesives from the Producer’s Perspective: A Literature Review. Ceramics. 2021; 4(3):378-390. https://doi.org/10.3390/ceramics4030027
Chicago/Turabian StyleMichalak, Jacek. 2021. "Ceramic Tile Adhesives from the Producer’s Perspective: A Literature Review" Ceramics 4, no. 3: 378-390. https://doi.org/10.3390/ceramics4030027
APA StyleMichalak, J. (2021). Ceramic Tile Adhesives from the Producer’s Perspective: A Literature Review. Ceramics, 4(3), 378-390. https://doi.org/10.3390/ceramics4030027