Electron-Beam Sintering of Al2O3-Cr-Based Composites Using a Forevacuum Electron Source
Abstract
:1. Introduction
2. Materials and Methods
3. Experimental Results and Analysis
3.1. Electron-Beam Sintering
3.2. Microstructure and Parameters
3.3. Composite Thermal Conductivity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foltz, J.V.; Blackmon, C.M. Metal Matrix Composites in Metals Handbook, 10th ed.; Second Print, Properties and Selection; ASM: Metals Park, OH, USA, 1992; Volume 2, p. 2536. [Google Scholar]
- Fan, R.; Liu, B.; Zhang, J.; Bi, J.; Yin, Y. Kinetic evaluation of combustion synthesis 3TiO2 + 7Al → 3TiAl + 2Al2O3 using non-isothermal DSC method Mater. Chem. Phys. 2005, 91, 140–145. [Google Scholar]
- Niu, F.Y.; Wu, D.J.; Zhou, S.Y.; Ma, G.Y. Power prediction for laser engineered net shaping of Al2O3 ceramic parts. J. Eur. Ceram. Soc. 2014, 34, 3811–3817. [Google Scholar] [CrossRef]
- Reddy, M.P.; Ubaid, F.; Shakoor, R.A.; Parande, G. Effect of reinforcement concentration on the properties of hot extruded Al-Al2O3 composites synthesized through microwave sintering process. Mater. Sci. Eng. A 2017, 696, 60–69. [Google Scholar] [CrossRef]
- Ramesh, M.; Marimuthu, K.; Karuppuswamy, P.; Rajeshkumar, L. Microstructure and properties of YSZ-Al2O3 functional ceramic thermal barrier coatings for military applications. Bol. Soc. Esp. Cerám. Vidr. 2021; in press. [Google Scholar] [CrossRef]
- Pietrzak, K.; Chmielewski, M.; Wlosinski, W. Sintering Al2O3–Cr composites made from micro-and nanopowders. Sci. Sinter. 2004, 36, 171–177. [Google Scholar] [CrossRef]
- Oh, S.T.; Sekino, T.; Niihara, K. Fabrication and mechanical properties of 5 vol% copper dispersed alumina nanocomposites. J. Eur. Ceram. Soc. 1998, 18, 31–37. [Google Scholar] [CrossRef]
- Sekino, T.; Nakahira, A.; Nawa, M.; Niihara, K. Fabrication of Al2O3/W nanocomposites. J. Powder Metal. 1991, 38, 326–330. [Google Scholar] [CrossRef]
- Pan, Y.; Xiao, S.; Lu, X.; Zhou, C.; Li, Y.; Liu, Z.; Qu, X. Fabrication, mechanical properties and electrical conductivity of Al2O3 reinforced Cu/CNTs composites. J. Alloys Compd. 2019, 782, 1015–1023. [Google Scholar] [CrossRef]
- Hossain, S.; Rahman, M.M.; Chawla, D.; Kumar, A.; Seth, P.P.; Gupta, P.; Jamwal, A. Fabrication, microstructural and mechanical behavior of Al-Al2O3-SiC hybrid metal matrix composites. Mater. Today Proc. 2020, 21, 1458–1461. [Google Scholar] [CrossRef]
- Farvizi, M.; Javan, M.K.; Akbarpour, M.R.; Kim, H.S. Fabrication of NiTi and NiTi-nano Al2O3 composites by powder metallurgy methods: Comparison of hot isostatic pressing and spark plasma sintering techniques. Ceram. Int. 2018, 44, 15981–15988. [Google Scholar] [CrossRef]
- Okamoto, H. The Cr-O (chromium-oxygen) system. J. Phase Equilb. 1997, 18, 402. [Google Scholar] [CrossRef]
- Gulbransen, E.A.; Andrew, K.F. Kinetics of the oxidation of chromium. J. Electrochem. Soc. 1957, 104, 334–338. [Google Scholar] [CrossRef]
- Holzwarth, U.; Stamm, H. Mechanical and thermomechanical properties of commercially pure chromium and chromium alloys. J. Nucl. Mater. 2002, 300, 161–177. [Google Scholar] [CrossRef]
- Pfeiffer, S.; Florio, K.; Puccio, D.; Grasso, M.; Colosimo, B.M.; Aneziris, C.G.; Graule, T. Direct laser additive manufacturing of high performance oxide ceramics: A state-of-the-art review. J. Eur. Ceram. Soc. 2021, 41, 6087–6114. [Google Scholar] [CrossRef]
- Vailes, J.; Hagedorn, Y.C.; Wilhelm, M.; Konrad, W. Additive manufacturing of ZrO2-Al2O3 ceramic components by selective laser melting. Rapid Prototyp. J. 2013, 19, 51–57. [Google Scholar]
- Nguyen, T.D.; Caccia, M.; McCormack, C.K.; Itskos, G.; Kenneth, H.S. Corrosion of Al2O3/Cr and Ti2O3/Cr composites in flowing air and CO2 at 750 °C. Corros. Sci. 2021, 179, 109115. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Tian, B.; Jia, Y.; Liu, Y.; Song, K.; Volinsky, A.A.; Xue, H. Cr effects on the electrical contact properties of the Al2O3-Cu/15W composites. Nanotechnol. Rev. 2019, 8, 128–135. [Google Scholar] [CrossRef]
- Betül, K.Y.; Hüseyin, Y.; Yahya, K.T. Evaluation of mechanical properties of Al2O3–Cr2O3 ceramic system prepared in different Cr2O3 ratios for ceramic armour components. Ceram. Int. 2019, 45, 20575–20582. [Google Scholar]
- Pulgarín, H.L.C.; Albano, M.P. Sintering and Microstructure of Al2O3 and Al2O3-ZrO2. Ceramics. Procedia Mater. Sci. 2015, 8, 180–189. [Google Scholar] [CrossRef] [Green Version]
- Daguano, J.K.M.F.; Santos, C.; Souza, R.C.; Balestra, R.M.; Strecker, K.; Elias, C.N. Properties of ZrO2–Al2O3 composite as a function of isothermal holding time. Int. J. Refract. Met. Hard Mater. 2007, 25, 374–379. [Google Scholar] [CrossRef]
- Maca, K.; Pouchly, V.; Shen, Z. Two-step sintering and spark plasma sintering of Al2O3, ZrO2 and SrTiO3 ceramics. Integr. Ferroelectr. 2008, 99, 114–124. [Google Scholar] [CrossRef]
- Liu, X.; Zou, B.; Xing, H.; Huang, C. The preparation of ZrO2-Al2O3 composite ceramic by SLA-3D printing and sintering processing. Ceram. Int. 2019, 46, 937–944. [Google Scholar] [CrossRef]
- Hu, K.; Li, X.; Qu, S.; Li, Y. Effect of Heating Rate on Densification and Grain Growth During Spark Plasma Sintering of 93W-5.6Ni-1.4Fe Heavy Alloys. Metall. Mater. Trans. 2013, 44, 4323–4336. [Google Scholar] [CrossRef]
- Luo, G.N.; Yamaguchi, K.; Terai, T.; Yamawaki, M. Charging effect on work function measurements of lithium ceramics under irradiation. J. Alloys Compd. 2003, 349, 211–216. [Google Scholar] [CrossRef]
- Mekni, O.; Goeuriot, D.; Damamme, G.; Raouadi, K.; Sao, S.J.; Meunier, C.; Aoufi, A. Dynamic investigation of charging kinetics in sintered yttria stabilized zirconia and α-alumina polycrystalline ceramics under electron beam irradiation. Ceram. Int. 2016, 42, 8729–8737. [Google Scholar] [CrossRef]
- Burdovitsin, V.A.; Klimov, A.S.; Medovnik, A.V.; Oks, E.M. Electron beam treatment of non-conducting materials by a fore-pump-pressure plasma-cathode electron beam source. Plasma Sources Sci. Technol. 2010, 19, 055003. [Google Scholar] [CrossRef]
- Klimov, A.S.; Bakeev, I.Y.; Dvilis, E.S.; Oks, E.M.; Zenin, A.A. Electron beam sintering of ceramics for additive manufacturing. Vacuum 2019, 169, 108933. [Google Scholar] [CrossRef]
- Klimov, A.S.; Bakeev, I.Y.; Oks, E.M.; Zenin, A.A. Electron-beam sintering of an Al2O3/Ti composite using a forevacuum plasma-cathode electron source. Ceram. Int. 2020, 46, 22276–22281. [Google Scholar] [CrossRef]
- Klimov, A.S.; Zenin, A.A.; Bakeev, I.Y.; Oks, E.M. Formation of gradient metalloceramic materials using electron-beam irradiation in the forevacuum. Russ. Phys. J. 2019, 62, 1123–1129. [Google Scholar] [CrossRef]
- Abyzov, A.M. Aluminum oxide and alumina ceramics (Review). Part 1. Properties of Al2O3 and industrial production of dispersed Al2O3. Novye Ogneup. 2019, 1, 16–23. [Google Scholar] [CrossRef]
- Jacobs, J.A.; Testa, S.M. Overview of Chromium (VI) in the Environment: Background and History. In Chromium (VI) Handbook, 1st ed.; CRC Press: Boca Raton, FL, USA, 2005; pp. 1–21. [Google Scholar]
- Martienssen, W.; Warlimont, H. Springer Handbook of Condensed Matter and Materials; Springer: Berlin/Heidelberg, Germany, 2005; pp. 431–476. [Google Scholar]
- Toyoda, S.; Shinohara, T.; Kumigashira, H.; Oshima, M.; Kato, Y. Significant increase in conduction band discontinuity due to solid phase epitaxy of Al2O3 gate insulator films on GaN semiconductor. Appl. Phys. Lett. 2012, 101, 231607. [Google Scholar] [CrossRef]
- Klimov, A.; Bakeev, I.; Oks, E.; Zenin, A. Forevacuum plasma source of continuous electron beam. Laser Part. Beams 2019, 37, 203–208. [Google Scholar] [CrossRef]
- Chmielewski, M.; Pietrzak, K. Processing, microstructure and mechanical properties of Al2O3–Cr nanocomposites. J. Eur. Ceram. Soc. 2007, 27, 1273–1279. [Google Scholar] [CrossRef]
- Galusek, D.; Galusková, D. Alumina matrix composites with non-oxide nanoparticle addition and enhanced functionalities. Nanomaterials 2015, 5, 115–143. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Cho, S.; Goto, T.; Sekino, T. The effects of sintering temperature on mechanical and electrical properties of Al2O3/Ti composites. Mater. Today Commun. 2020, 25, 101522. [Google Scholar] [CrossRef]
- Grimvall, G. Thermophysical Properties of Materials, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Parchovianský, M.; Galusek, D.; Švančárek, P.; Sedláček, J.; Šajgalík, P. Thermal behavior, electrical conductivity and microstructure of hot pressed Al2O3/SiC nanocomposites. Ceram. Int. 2014, 14, 14421–14429. [Google Scholar] [CrossRef]
- Hasselman, D.P.H.; Johnson, L.F. Effective thermal conductivity of composites with interfacial thermal barrier resistance. J. Compos. Mater. 1987, 21, 508–515. [Google Scholar] [CrossRef]
- Hostaša, J.; Pabst, W.; Matějíček, J. Thermal conductivity of Al2O3–ZrO2 composite ceramics. J. Am. Ceram. Soc. 2011, 94, 4404–4409. [Google Scholar] [CrossRef]
- McCluskey, P.H.; Williams, R.K.; Graves, R.S.; Tiegs, T.N. Thermal Diffusivity/Conductivity of Alumina—Silicon Carbide Composites. J. Am. Ceram. Soc. 1990, 73, 461–464. [Google Scholar] [CrossRef]
- Moore, J.P.; Williams, R.K.; Graves, R.S. Thermal conductivity, electrical resistivity, and Seebeck coefficient of high-purity chromium from 280 to 1000 K. J. Appl. Phys. 1977, 48, 610–617. [Google Scholar] [CrossRef]
- Wada, S.; Piempermpoon, B.; Nakorn, P.N.; Wasanapiarnpong, T.; Jinawath, S. Thermal conductivity of Al2O3 ceramics: The inconsistency between measured value and calculated value based on analytical models for a composite. J. Sci. Res. Chula. Univ. 2005, 30, 109–120. [Google Scholar]
Material | Theoretical Density, g/cm3 | Thermal Conductivity, W/(m·K) | Melting Point, °C | Specific Electrical Conductivity, S/m | Band Gap, eV |
---|---|---|---|---|---|
Al2O3 | 3.97 | 27–34 | 2054 | 10−9–10−11 | 5.1–8.7 |
Cr | 7.19 | 93.9 | 1907 | 5.104 × 106 | - |
Mixture Label | Al2O3 Content, % wt. | Cr Content, % wt. |
---|---|---|
100A | 100 | 0 |
75A | 75 | 25 |
50A | 50 | 50 |
25A | 25 | 75 |
Sample | 100A | 75A | 50A | 25A | |
---|---|---|---|---|---|
Mass m, mg | before | 395 | 420 | 493 | 610 |
after | 356 | 401 | 479 | 580 | |
Thickness h, mm | before | 2.78 | 2.83 | 2.82 | 2.73 |
after | 2.6 | 2.63 | 2.68 | 2.61 | |
Diameter d, mm | before | 10.3 | 10.32 | 10.23 | 10.30 |
after | 9.32 | 9.54 | 9.69 | 9.86 | |
Density ρ, g/cm3 | before | 1.7 | 1.77 | 2.13 | 2.68 |
after | 2.02 | 2.14 | 2.43 | 2.92 |
Sample | 75A | 50A | 25A |
---|---|---|---|
Ea, eV | 3.1 ± 0.4 | 2.5 ± 0.3 | 0.68 ± 0.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klimov, A.; Bakeev, I.; Dolgova, A.; Oks, E.; Tran, V.T.; Zenin, A. Electron-Beam Sintering of Al2O3-Cr-Based Composites Using a Forevacuum Electron Source. Ceramics 2022, 5, 748-760. https://doi.org/10.3390/ceramics5040054
Klimov A, Bakeev I, Dolgova A, Oks E, Tran VT, Zenin A. Electron-Beam Sintering of Al2O3-Cr-Based Composites Using a Forevacuum Electron Source. Ceramics. 2022; 5(4):748-760. https://doi.org/10.3390/ceramics5040054
Chicago/Turabian StyleKlimov, Aleksandr, Ilya Bakeev, Anna Dolgova, Efim Oks, Van Tu Tran, and Aleksey Zenin. 2022. "Electron-Beam Sintering of Al2O3-Cr-Based Composites Using a Forevacuum Electron Source" Ceramics 5, no. 4: 748-760. https://doi.org/10.3390/ceramics5040054
APA StyleKlimov, A., Bakeev, I., Dolgova, A., Oks, E., Tran, V. T., & Zenin, A. (2022). Electron-Beam Sintering of Al2O3-Cr-Based Composites Using a Forevacuum Electron Source. Ceramics, 5(4), 748-760. https://doi.org/10.3390/ceramics5040054