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Abstract: We describe our studies of the influence of Cr content in an Al2O3-Cr composite on
its thermal and electrical conductivity properties during and after electron-beam sintering in the
forevacuum range of pressure. Sintering was carried out using a plasma-cathode forevacuum-
pressure electron source of an original design, capable of processing non-conducting materials
directly. It is shown that the chromium content affects the efficiency of the beam power transfer to the
irradiated composite. The efficiency decreases with increasing chromium content. Measurement of
the composite’s coefficient of thermal conductivity, in the temperature range 50–400 ◦C, shows that it
varies almost linearly from 25 W/(m·K) to 68 W/(m·K) as the Cr content in the composite increases
from 25% to 75% wt. The electrical conductivity properties after sintering exhibit a non-linear
behavior. The conduction activation energy Ea, measured via the dependence of the current through
composites of different compositions, is slightly lower than the Al2O3 band-gap. The addition of
metallic Cr results in a disproportionate decrease in Ea, almost by an order of magnitude, from 6.9 eV
to 0.68 eV. By varying the chromium content, it is possible to form a material with thermal and
electrical conductivities controllable over a wide range.

Keywords: pressureless sintering; composite ceramics; electron beam; electron-beam irradiation;
sintering; conduction activation energy; Al2O3-Cr; thermal conductivity; electrical conductivity;
forevacuum pressure region

1. Introduction

Metal–ceramic composites offer numerous advantages. They are materials of high
hardness and mechanical strength that can operate at temperatures above 1000 ◦C [1]. Wide
commercial use of composites is possible, contingent upon the availability of rapid produc-
tion methods and a good understanding of their thermal and electrical characteristics. Of
the various kinds of ceramic materials, Al2O3-based ceramic is one of the most widely used,
possessing high strength, high hardness, and excellent thermal resistance [2–5]. However,
its high brittleness restricts its possible applications. The introduction of malleable metal
phases to ceramics is an effective method of reducing its brittleness. Metal–ceramic com-
posites obtained in this way acquire not only low brittleness but also often new electrical,
optical, magnetic, and thermal properties [6–11]. In the work described here, for the metallic
component we select Cr, which has a high melting point (1863 ◦C [12]), high-temperature
oxidation resistance, and high-temperature plasticity [13,14]. These properties may be
useful in creating thermally, chemically, and mechanically strong metal–ceramic materials.
Among the main areas of application of such materials are the coating of jet nozzles and
the protective coating of gas furnaces, crucibles, heat shields, etc.

The main methods used for forming composite materials can be divided into two
types. The first is selective sintering by an electron or laser beam [15,16], and the second
includes hot pressing, [17,18], cold pressing, microwave, thermal [19], and spark plasma
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sintering [20–22]. The sintering of powders involves issues with controlling the heating rate
and the uniformity of target heating. Furnace heating and sintering require time-consuming
exposure at high temperatures and have low energy efficiency. When a target is irradiated
by laser radiation, heating of the material starts from the surface and proceeds to the core
unevenly [23]. This temperature gradient leads to uneven distribution of grain size and
of density with depth [24]. These problems can be resolved by lowering the heating rate,
thereby increasing the overall processing time. Additionally, the efficiency of the laser
energy transfer to the target depends on its optical properties, which restricts the range of
materials that can be used for sintering.

In the case of target heating by an electron beam, the target optical properties are
not important. However, a new problem arises, which is removing the electrical charge
carried by the electron beam onto the dielectric target. The charged surface causes electron
beam defocusing and diminishes the efficiency of the beam power transfer to the irradiated
target [25,26]. This issue can be resolved by use of a forevacuum-pressure plasma-cathode
electron source for the e-beam irradiation. Such sources generate electron beams at a
pressure of 1–100 Pa, and the negative surface charge is compensated by the positive ion
flux from the beam plasma created during beam propagation at such elevated pressure
values [27]. We have previously shown [28–30] that the use of electron beams generated by
forevacuum plasma electron sources is a useful approach for sintering ceramic compacts.
In the work described here, we have used this method for electron-beam sintering of
Al2O3-Cr-based composites and have explored the thermal and electrical properties of the
Al2O3-Cr composites produced.

2. Materials and Methods

We used commercially available Al2O3 powders with particle size 10–30 µm, and Cr
powder with particle size 50 µm.

The main parameters pertaining to the experiment are shown in Table 1 [31–34].

Table 1. Material parameters at 20 ◦C.

Material Theoretical
Density, g/cm3

Thermal
Conductivity,

W/(m·K)

Melting
Point, ◦C

Specific Electrical
Conductivity, S/m

Band
Gap, eV

Al2O3 3.97 27–34 2054 10−9–10−11 5.1–8.7

Cr 7.19 93.9 1907 5.104 × 106 -

The composites for sintering were produced by mixing ceramic and metal powders in
various mass proportions. The sample and the mixture used to produce it were assigned
the same nomenclature label. The proportions are shown in Table 2.

Table 2. Mixture contents used to prepare Al2O3-Cr composite.

Mixture Label Al2O3 Content, % wt. Cr Content, % wt.

100A 100 0

75A 75 25

50A 50 50

25A 25 75

Pellets 3 ± 0.1 mm thick and 10 ± 0.1 mm in diameter were formed from the mixtures
by uniaxial pressing. The composites were processed in a vacuum chamber equipped with
necessary pumping equipment and manipulators; see Figure 1a. A forevacuum plasma-
cathode electron source [35] was used for composite heating. A beam-focusing system
of a special design allowed an electron beam of 0.6 mm in diameter to be generated in
the vacuum chamber, under forevacuum conditions at a pressure of 30 Pa (helium). For
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sintering, the composite of given composition was placed in the vacuum chamber on a
graphite holder of special design. The holder assembly consisted of a graphite crucible with
mounting and bracing that minimized heat loss to its fastening elements. The composite
heating efficiency was improved by placing a heat-reflecting shield around the graphite
holder to reduce heat transfer to the chamber walls by thermal radiation. After installing
the composite and evacuating the chamber to a working pressure of 3.0 Pa, the electron
source was turned on. Sintering was performed as follows. First, a smooth heating of
the composite at constant electron beam energy of 15 keV, by slowly increasing the beam
current from 10 to 100 mA, depending of the composite composition; then, exposure to
the beam at a constant temperature of 1400 ◦C for 10 minutes; next, cooling by reducing
the beam current, followed by turning off the electron source and further cooling in the
vacuum chamber for 20 minutes. Since the area of the irradiated surface was much greater
than the cross-sectional area of the electron beam at its point of incidence on the composite,
the electron beam was rapidly scanned over the composite surface. The scanning was
performed using a magnetic deflecting system controlled by a sweep circuit. The scanning
frequency was 100 Hz, and the scanned area was 1 × 1 cm2.
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Figure 1. Schematic diagram of the experimental setup (a) and electrical heater (b). 
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Figure 1. Schematic diagram of the experimental setup (a) and electrical heater (b).

The composite surface during sintering was monitored remotely by a RAYTEK 1MH
(Raytek Corp., Santa Cruz, CA, USA) infrared pyrometer with measurement range
550–3000 ◦C. A tungsten–rhenium thermocouple was used to measure the temperature of
the composite non-irradiated side. The thermocouple and the composite surface were in
tight contact with each other. The thermocouple and the pyrometer were calibrated by
heating of a thin copper plate. The difference in readings did not exceed 10 ◦C.

Current through the composite during its irradiation was measured by replacing the
thermocouple with a flat metal electrode (not shown in Figure 1). The sample was placed
on this electrode on the irradiated side. The current through the sample was measured
by a True-RMS Multimeter 289 (Fluke Corp., Everett, WA, USA), with one sensing wire
connected to the electrode and the other grounded.

In order to investigate the thermal properties of the composites after sintering, a model
of an electrical heater was made; see Figure 1b. The heater could heat composite materials
up to 400 ◦C in a controlled manner. In addition, it was possible to measure the heat flow
through the samples and to measure the temperature of the irradiated and non-irradiated
surfaces. The temperature was measured using standard chromel–copel thermocouples.
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Sample microstructure and elemental composition were studied using a JEOL JSM-
7500FA (JEOL Ltd., Freising, Germany) scanning electron microscope, equipped with a set
of add-on units for energy dispersive elemental analysis (EDS) and electron backscatter
diffraction (EBSD) (Bruker Nano GmbH, Berlin, Germany). We used the facilities at the
TPU Center for Sharing Use, “Nanomaterials and Nanotechnologies”, supported by the
Ministry of Education and Science of Russia under grant number 075-15-2021-710.

3. Experimental Results and Analysis
3.1. Electron-Beam Sintering

Focused electron-beam heating in the forevacuum medium enabled us to heat the
composite surfaces quite easily to temperatures of 800–900 ◦C. The temperature growth
rate at constant beam power of 40 W/min was 80 ◦C/min; see Figure 2.
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Figure 2. Dependencies of the electron beam power 1 and the temperature of irradiated 2 and
non-irradiated 3 surfaces of the 75A composite, as a function of time.

The sample temperature growth rate decreased to 26–30 ◦C/min, depending on the
chromium content in the composite. The temperature-increase rate for zero chromium
content is 30 ◦C/min, and the addition of chromium decreases the temperature growth
rate to 26 ◦C/min. This change in the rate of temperature rise is not significant, but is still
noticeable. Clearly the thermal parameters, especially the coefficient of thermal conduc-
tivity, affect the composite heating. Since chromium has a greater coefficient of thermal
conductivity than aluminum oxide, 94 W/(m·K) and, on average, 30 W/(m·K), respectively,
the addition of chromium results in greater heat transfer to the graphite crucible and the
holder elements, thereby reducing the composite heating. This circumstance should be
taken into account when automating and optimizing the process.

3.2. Microstructure and Parameters

After sintering, the samples were cut in half along a diameter and were polished. In
order to remove the products of grinding, they were then rinsed in alcohol and distilled
water in an ultrasonic bath for 20 minutes. The microstructures of 75A, 50A, and 25A
composites are shown in Figure 3. The samples display homogeneous areas with good
compaction, as well as pores of various sizes formed at grain boundaries. EDX analysis
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revealed that the gray areas correspond to Al2O3 ceramic matrix and the lighter areas are
Cr. The size of Al2O3 grains is 20–40 µm, and the size of Cr grains is 20 to 80 µm. With the
increase in Cr content, the Cr grain size increases due to smaller grains amalgamating into
bigger grains.

Ceramics 2022, 5, FOR PEER REVIEW  5 
 

 

3.2. Microstructure and Parameters 

After sintering, the samples were cut in half along a diameter and were polished. In 

order to remove the products of grinding, they were then rinsed in alcohol and distilled 

water in an ultrasonic bath for 20 minutes. The microstructures of 75А, 50А, and 25А 

composites are shown in Figure 3. The samples display homogeneous areas with good 

compaction, as well as pores of various sizes formed at grain boundaries. EDX analysis 

revealed that the gray areas correspond to Al2O3 ceramic matrix and the lighter areas are 

Cr. The size of Al2O3 grains is 20–40 µm, and the size of Cr grains is 20 to 80 µm. With the 

increase in Cr content, the Cr grain size increases due to smaller grains amalgamating 

into bigger grains. 

 

Figure 3. SEM image of composite microstructure for samples (a) 75A, (b) 50A, and (c) 25A. 

The elemental composition of the selected areas, obtained by energy-dispersive 

analysis, is shown in Figure 4. The increase in Cr content corresponds to its content in the 

initial mixture of powders used for sintering. 

 

Figure 4. Contents of O, Al, and Cr in the cross sections of 75А, 50А, and 25А composites. 

Composite parameters before and after electron-beam sintering are shown in Table 3. 

Table 3. Composite parameters before and after sintering. 

Sample 100A 75A 50A 25A 

Mass m, mg 
before 395 420 493 610 

after 356 401 479 580 

Thickness h, mm 
before 2.78 2.83 2.82 2.73 

after 2.6 2.63 2.68 2.61 

0

10

20

30

40

50

60

70

80

O Al Cr

E
le

m
en

t 
co

n
te

n
ts

, 
at

. % 75A

50A

25A

Figure 3. SEM image of composite microstructure for samples (a) 75A, (b) 50A, and (c) 25A.

The elemental composition of the selected areas, obtained by energy-dispersive analy-
sis, is shown in Figure 4. The increase in Cr content corresponds to its content in the initial
mixture of powders used for sintering.
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Figure 4. Contents of O, Al, and Cr in the cross sections of 75A, 50A, and 25A composites.

Composite parameters before and after electron-beam sintering are shown in Table 3.

Table 3. Composite parameters before and after sintering.

Sample 100A 75A 50A 25A

Mass m, mg
before 395 420 493 610

after 356 401 479 580

Thickness h, mm
before 2.78 2.83 2.82 2.73

after 2.6 2.63 2.68 2.61

Diameter d, mm
before 10.3 10.32 10.23 10.30

after 9.32 9.54 9.69 9.86

Density ρ, g/cm3 before 1.7 1.77 2.13 2.68

after 2.02 2.14 2.43 2.92
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The maximum increase in density after irradiation, 21%, was for the composite contain-
ing 75% aluminum oxide. The minimum increase in density, 9%, was for the 25A sample,
with the lowest content of Al2O3. It is apparent that since aluminum oxide has greater
shrinkage in the course of sintering, the corresponding samples with greater content of
it must have smaller geometric dimensions and, hence, a higher density after sintering.
Compared with the sintering of similar composites using the hot-pressing method [36],
the porosity value in this work turned out to be higher. This difference may be due to the
peculiarity of the electron beam method—sintering without applying pressure.

The mass of all composites changes (decreases) after sintering; see Table 3. A possible
reason could be mass evaporation during sintering. However, the sintering temperature
of 1400 ◦C is not high enough for melting and evaporating the composite components;
see Table 1. To further explore the possibility of mass loss by evaporation, we conducted
experiments to study the composition of coatings on witness substrates. Substrates in
the form of flat steel disks were placed at a distance of 5 cm from the sintered composite,
as shown in Figure 1. After sintering, the sample surface elemental composition was
studied by energy-dispersive analysis. According to the composition measurements for
three compacts, the substrate coatings contained elemental constituents of the composites,
namely chromium and aluminum; see Figure 5.
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As shown in Figure 5, the coatings contain a significant amount of the composite
elements. Thus, for the composite with 75% aluminum oxide (75A), the substrate coating
contains over 13% at. aluminum. The witness substrates used for the other composites
with a lower aluminum oxide content demonstrate a considerable decrease in aluminum
in the coating. For the 50A composite, the aluminum content on the substrate is less than
for 75A, by almost a factor of 10. At the same time, the chromium content in the substrate
coating increases almost proportionally to the increase in chromium content in the sintered
composite—from 1.26% for composite 75A with 25% Cr to 3.56% for composite 25A with
75% Cr. Evidently, these elements appear on the substrate due to evaporation from the
composite surface. Despite the rather low temperature, according to pyrometer readings,
for the evaporation of these elements to occur, such an effect can occur during electron-
beam sintering of ceramics employing an electron beam deflecting system. When scanning
the ceramic surface, the high power-density electron beam can cause local heating of the
surface at the impact point; the beam cross-section at the impact point is less than 1 mm2.
Since the pyrometer measures the mean value of the composite surface temperature over
an area of about 2.5 cm2, the local temperature increase at the beam impact point is not
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readily registered. Additionally, mass loss from the composite surface can occur due to
evaporation of low-melting-point impurities with a content in the aluminum oxide powder
used in the experiments that can be as high as 5%.

Another possible mechanism for heating to the evaporation temperatures of Al2O3 and
Cr could be heating due to the current through the composite bulk, as is the case for the flash-
sintering technique. In this technique, a constant electric field of 100–150 V/m is established
between the two opposite surfaces of the sintered sample, which is simultaneously heated
to a high temperature. The electrical conduction, arising as a result of the temperature
increase, leads to Joule heating of the sample. This significantly reduces the ceramic
sintering time.

Measurement of the current through the composite show that it can reach several
milliamperes; see Figure 6.
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(1) composite 75A; (2) composite 50A; (3) composite 25A.

The current increases with increasing chromium content, which is directly related
to the increase in the composite electrical conductivity. The addition of a metal, as a
more electrically conducting material, increases the overall electrical conductivity of the
composite. The dependence of the coefficient of electrical conductivity is well-known to be
exponential with temperature:

γ = γ0 · exp
(
−∆Ea

kT

)
(1)

where
γ0 is an electrical conductivity of the conductor/dielectric, S/m;
γ0 is a temperature-independent coefficient determined by the properties of the con-

ductor/dielectric, S/m;
k is Boltzmann’s constant, J/K;
T is the temperature of the irradiated composite surface, K; and
Ea is the conduction activation energy, eV.
The conduction current in semiconductors, of which aluminum oxide may be referred

to as a particular kind, depends on the coefficient of electrical conductivity, as well as on
the field strength in the semiconductor. Assuming that the field strength is determined by
the difference of potentials between the irradiated and non-irradiated surfaces, one can
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write an equation for evaluating the value of the conduction current flowing through the
composite as a function of temperature during electron-beam irradiation:

Iγ =
∆ϕ

h
· S · γ0 · exp

(
− Ea

kT

)
(2)

where
S is the composite base area, m2;
∆ϕ is the difference of potentials between the irradiated and non-irradiates surfaces of

the composite, V; and
h is the composite thickness.
Expression (2) allows the conduction activation energy to be estimated for composites

with different elemental contents. Assuming that the temperature dependence of the
potential of the composite surface is not as strong as that of the coefficient of electrical
conductivity and plotting the graphs ln(I) = f

(
1
T

)
using the experimental data of Figure 4,

one can determine the activation energy from the slope of the straight lines obtained. The
dependencies ln(I) = f

(
1
T

)
, plotted for the three composites over the temperature range

1000–1400 ◦C, where a noticeable increase in current is observed, are shown in Figure 7.
As can be seen, the experimental points of the logarithm of the current from the inverse
temperature fit into a linear dependence. From one perspective, this serves as an argument
in favor of the chosen mechanism for increasing electrical conductivity with increasing
temperature and the correctness of choosing Formula (1) for theoretical estimates.
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Figure 7. Temperature dependencies ln(I) = f
(

1
T

)
for composites of different compositions: (1) com-

posite 75A; (2) composite 50A; (3) composite 25A.

The fact that the experimental data fit well to straight lines indirectly indicates that the
assumption not to take into account the change in potential on the composite surface over
the given temperature range is correct.

The calculated values of the conduction activation energy Ea are given in Table 4.



Ceramics 2022, 5 756

Table 4. Conduction activation energy for composites of different compositions.

Sample 75A 50A 25A

Ea, eV 3.1 ± 0.4 2.5 ± 0.3 0.68 ± 0.08

The obtained values of Ea for the Cr-containing composites are slightly lower than
the Al2O3 band gap, which is predictable, since it was a metal that was added to the
composite. The addition of metallic Cr results in a disproportional decrease in Ea. Thus, for
the composite with 25% chromium content, the conduction activation energy, or band gap,
decreases compared to pure Al2O3, from an average value of 6.9 eV (see Table 2) to 3.1 eV,
i.e., by more than a factor of two. The addition of 75% Cr leads to a further decrease in Ea,
down to 0.68 eV, which is almost by an order of magnitude.

As shown in [37], the electrical conductivity of aluminum oxide-based composites
can be adjusted, when reinforced with conductive or semi-conductive phases (such as
silicon carbide, for example), added in an amount at which they penetrate into an insu-
lating aluminum oxide matrix. After sintering, such a composite can be used in many
industries. The main factors affecting the electrical properties of composites with reinforced
semiconductor phases are the volume fraction of SiC and the content of other impurities.
The addition of SiC improves the electrical conductivity, which increases with an increase
in the volume fraction of SiC [37]. Thus, in a composite with 20 vol.% SiC, the conductivity
of 4.05 × 10−2 S·m−1 was measured, which is an increase of four orders of magnitude
compared to the reference monolithic alumina (7.80 × 10−6 S·m−1).

A rather strong dependence of the composite electrical conductivity on the content of
metal phase has been observed [38], when adding Ti to an Al2O3 ceramic matrix. Specific
electrical resistance, with the addition of 20% vol. Ti, decreases from 1012 Ohm·m to
10−2–10−3 Ohm·m, and the fall is rather abrupt. The authors have explained this by the
formation of conducting paths through the composite bulk, due to the melting of fine
grains of Ti. In the present work, the changes are not so severe, which may be related
to pressureless sintering. Chromium grains combine without forming conducting paths
throughout the composite volume; see Figure 3.

The electrical parameters of the Al2O3-Cr composite can be controlled over a fairly
wide range.

3.3. Composite Thermal Conductivity

Thermal conductivity is an important parameter in such applications of Al2O3 ceramics
as high-temperature structural components, refractories, gas burners, wear parts, and
cutting tools. To reduce thermal shock, the thermal conductivity of the composite in
all these applications should be as high as possible. It can be expected that Cr particles
improve the thermal conductivity of Al2O3-based composites due to the inherent high
thermal conductivity of Cr.

To measure the thermal conductivity, the sintered composites were placed in a heating
device with a fixed heater temperature T1 and a temperature T2 on the composite side
not subject to irradiation; see Figure 1b. The coefficient of thermal conductivity λ was
determined using the expression:

λ =
Q · h

∆T · S (3)

where λ is the coefficient of thermal conductivity, W/(m·K);
Q is the heat flux through the composite, W/m2;
∆T is the difference of temperatures: T1 − T2, ◦C; and
S is the composite surface area, m2.
The obtained value of the coefficient of thermal conductivity corresponds to the

average temperature ∆T/2.
The measured thermal conductivity over the temperature range 50–400 ◦C is shown

in Figure 8. As seen, the coefficient of thermal conductivity decreases with increasing
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temperature for composites of any composition, as reported in the literature [39]. The
general pattern here is as follows: the thermal conductivity of ceramics of a crystalline
structure, especially an oxide, with an increase in temperature, as a rule, drops signifi-
cantly [40]. This is based on the idea of heat transfer in solid non-metallic bodies by thermal
elastic waves—phonons. The thermal conductivity of the composite is closely related to
their microstructure and depends on the free path length of the phonons: the degree of
disturbance of the harmonic oscillations of heat waves during their passage through a
given substance. Phonons are also known to interact with lattice defects, grain boundaries,
and other microstructure defects. The presence of a metallic phase in the form of chromium
inclusions leads to a higher porosity value, characteristic of composites and, as a result,
negatively affect thermal conductivity. The resulting internal stresses in composites also
lead to a decrease in thermal conductivity [41]. However, despite these negative factors, the
thermal conductivity of the composite increases with an increase in the chromium content
and is still higher than that of pure aluminum oxide.
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Figure 8. Temperature dependence of thermal conductivity for composites of different compositions:
(1) composite 75A; (2) composite 50A; (3) composite 25A.

The coefficient of thermal conductivity of the composite with 75% content of Al2O3 is
25 W/m·K and does not differ significantly from that of pure Al2O3 at the same tempera-
ture [42]. The values of thermal conductivity measured at room temperature are somewhat
lower than the data given in the literature [43] and are measured for mono-cast Al2O3
(28–30 W/m·K). A possible reason is the greater porosity of the materials obtained in this
work. With the addition of Cr, the composite conductivity rises almost proportionally to
the content of Cr. Thus, for the composite with 75% content of Cr, i.e., three times as much
compared to that in the 25% Cr composite, the conductivity increases from 25 to 68 W/m·K.
For both Al2O3 and Cr, the thermal conductivity decreases with temperature [44], as is
reflected in Figure 8. Compared with the data of [45], the thermal conductivity of the
composite remains at a high level and does not decrease to values below 15 W/m·K.

4. Conclusions

Electron-beam irradiation allows Al2O3-Cr-based composites to be sintered at a tem-
perature of 1400 ◦C. The complete sintering cycle, including heating and cooling, is no
longer than 50 minutes. By varying the Cr content, one can change the electrical and
thermal conductivity properties of the composite. In this case, the thermal conductivity in
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the temperature range of 20–400 ◦C varies directly proportionally to the Cr content and
inversely proportionally to temperature. The thermal conductivity increases from 25 to 68
W/m·K, when the Cr content increases from 25% to 75%, and decreases with increasing
temperature, especially for composites with higher Al2O3 content.

The electrical conductivity properties, illustrated by the current through the composite
and the conduction activation energy, depend on the Cr content nonlinearly. The addition
of 75% Cr to the composite decreases the Al2O3-Cr activation by an order of magnitude
compared to that of Al2O3, from 6.9 to 0.68 eV. At the same time, the addition of 50%
Cr reduces this energy only by a factor of two, to 2.5 eV. In general, by varying the
chromium content, it is possible to produce materials with values of electrical conductivity
controllable over orders of magnitude and thermal conductivity controllable within range
limits differing by almost a factor of two.
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