Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range
Abstract
:1. Introduction
2. Sample Preparation
3. Experimental Setup
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tejero-Martin, D.; Bennett, C.; Hussain, T. A review on environmental barrier coatings: History, current state of the art and future developments. J. Eur. Ceram. Soc. 2021, 41, 1747–1768. [Google Scholar] [CrossRef]
- Lee, K.N.; Miller, R.A.; Jacobson, N.S.; Opila, E.J. Environmental durability of mullite coating/SiC and mullite-YSZ coating/SiC systems. Ceram. Eng. Sci. Proc. 1995, 16, 1037–1044. [Google Scholar] [CrossRef]
- Lee, K.N. Current status of environmental barrier coatings for Si-Based ceramics Surf. Coat. Technol. 2000, 133, 1–7. [Google Scholar] [CrossRef]
- Lee, K.N.; Fox, D.S.; Robinson, R.C.; Bansal, N.P. Environmental barrier coatings for silicon-based ceramics. In High Temp. Ceram. Matrix Compos; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 224–229. [Google Scholar] [CrossRef]
- Krause, A.R.; Garces, H.F.; Senturk, B.S.; Padture, N.P. 2ZrO2·Y2O3 thermal barrier coatings resistant to degradation by molten CMAS: Part II, interactions with sand and fly ash. J. Am. Ceram. Soc. 2014, 97, 3950–3957. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Yushenko, A.Y.; Zolotukhin, D.B. Electron-Beam Deposition of Aluminum Nitride and Oxide Ceramic Coatings for Microelectronic Devices. Coatings 2021, 11, 645. [Google Scholar] [CrossRef]
- Padture, N.P. Advanced structural ceramics in aerospace propulsion. Nat. Mater. 2016, 15, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, K.B.; Alizadeh, J. Deposition and optical studies of silicon carbide nitride thin films. Thin Solid Films 2000, 370, 151–154. [Google Scholar] [CrossRef]
- Hou, N.Y.; Perinpanayagam, H.; Mozumder, M.S.; Zhu, J. Novel Development of Biocompatible Coatings for Bone Implants. Coatings 2015, 5, 737–757. [Google Scholar] [CrossRef] [Green Version]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Zolotukhin, D.B. Electron-Beam Synthesis of Dielectric Coatings Using Forevacuum Plasma Electron Sources (Review). Coatings 2022, 12, 82. [Google Scholar] [CrossRef]
- Anders, A. Physics of arcing, and implications to sputter deposition. Thin Solid Films 2006, 502, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Kelly, P.J.; Arnell, R.D. Magnetron sputtering: A review of recent developments and applications. Vacuum 2000, 56, 159–172. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Zolotukhin, D.B. Alumina Coating Deposition by Electron-Beam Evaporation of Ceramic Using a Forevacuum Plasma-Cathode Electron Source. Ceram. Int. 2019, 45, 9782–9787. [Google Scholar] [CrossRef]
- Burdovitsin, V.A.; Medovnik, A.V.; Oks, E.M.; Skrobov, E.V.; Yushkov, Y.G. Potential of a Dielectric Target during Its Irradiation by a Pulsed Electron Beam in the Forevacuum Pressure Range. Tech. Phys. 2012, 57, 1424–1429. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V. Deposition of Boron-Containing Coatings by Electron-Beam Evaporation of Boron-Containing Targets. Ceram. Int. 2020, 46, 4519–4525. [Google Scholar] [CrossRef]
- Savkin, K.P.; Bugaev, A.S.; Nikolaev, A.G.; Oks, E.M.; Kurzina, I.A.; Shandrikov, M.V.; Yushkov, G.Y.; Brown, I.G. Decrease of ceramic surface resistance by implantation using a vacuum arc metal ion source. In Proceedings of the 2012 25th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV), Tomsk, Russia, 2–7 September 2012; pp. 554–557. [Google Scholar] [CrossRef]
- Zolotukhin, D.B.; Oks, E.M.; Tyunkov, A.V.; Yushkov, Y.G. Deposition of Dielectric Films on Silicon Using a Fore-Vacuum Plasma Electron Source. Rev. Sci. Instrum. 2016, 87, 063302. [Google Scholar] [CrossRef] [PubMed]
- Tyunkov, A.V.; Oks, E.M.; Yushkov, Y.G.; Zolotukhin, D.B. Ion Composition of the Beam Plasma Generated by Electron-Beam Evaporation of Metals and Ceramic in the Forevacuum Range of Pressure. Catalysts 2022, 12, 574. [Google Scholar] [CrossRef]
- Tyunkov, A.V.; Yushkov, Y.G.; Zolotukhin, D.B. Generation of Metal Ions in the Beam Plasma Produced by a Forevacuum-Pressure Electron Beam Source. Phys. Plasmas 2014, 21, 123115. [Google Scholar] [CrossRef]
- Yushkov, Y.G.; Oks, E.M.; Tyunkov, A.V.; Zolotukhin, D.B. Dielectric Coating Deposition Regimes during Electron-Beam Evaporation of Ceramics in the Fore-Vacuum Pressure Range. Coatings 2022, 12, 130. [Google Scholar] [CrossRef]
Component Percentage, Mass % | ||||
---|---|---|---|---|
Component | Target 1 | Target 2 | Target 3 | Target 4 |
Al2O3 | 99.9 | 99 | 90 | 80 |
Cu | 0.1 | 1 | 10 | 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tyunkov, A.V.; Klimov, A.S.; Savkin, K.P.; Yushkov, Y.G.; Zolotukhin, D.B. Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range. Ceramics 2022, 5, 789-797. https://doi.org/10.3390/ceramics5040057
Tyunkov AV, Klimov AS, Savkin KP, Yushkov YG, Zolotukhin DB. Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range. Ceramics. 2022; 5(4):789-797. https://doi.org/10.3390/ceramics5040057
Chicago/Turabian StyleTyunkov, A. V., A. S. Klimov, K. P. Savkin, Y. G. Yushkov, and D. B. Zolotukhin. 2022. "Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range" Ceramics 5, no. 4: 789-797. https://doi.org/10.3390/ceramics5040057
APA StyleTyunkov, A. V., Klimov, A. S., Savkin, K. P., Yushkov, Y. G., & Zolotukhin, D. B. (2022). Electron-Beam Deposition of Metal and Ceramic-Based Composite Coatings in the Fore-Vacuum Pressure Range. Ceramics, 5(4), 789-797. https://doi.org/10.3390/ceramics5040057