Solvothermal Synthesis of LaF3:Ce Nanoparticles for Use in Medicine: Luminescence, Morphology and Surface Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Yan, R.X.; Li, Y.D. Down/Up Conversion in Ln3+-Doped YF3 Nanocrystals. Adv. Funct. Mater. 2005, 15, 763. [Google Scholar] [CrossRef]
- Tan, M.C.; Al-Baroudi, L.; Riman, R.E. Surfactant effects on efficiency enhancement of infrared-to-visible upconversion emissions of NaYF4:Yb-Er. Appl. Mater. Interfaces 2011, 3, 3910–3915. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Chan, H.L.W.; Li, H.L.; Hao, J.H. Highly efficient low-voltage cathodoluminescence of LaF3:Ln3+ (Ln=Eu3+, Ce3+, Tb3+) spherical particles. Appl. Phys. Lett. 2008, 93, 141106. [Google Scholar] [CrossRef]
- Jia, P.; Lin, J.; Yu, M. Sol–gel deposition and luminescence properties of LiYF4:Tb3+ thin films. J. Lumin. 2007, 122–123, 134–136. [Google Scholar] [CrossRef]
- Tuyet, D.T.; Quan, V.T.; Bondzior, B.; Dereń, P.J.; Velpula, R.T.; Nguyen, H.P.; Tuyen, L.A.; Hung, N.Q.; Nguyen, H.D. Deep red fluoride dots-in-nanoparticles for high color quality micro white light-emitting diodes. Opt. Express 2020, 28, 26189–26199. [Google Scholar] [CrossRef]
- Kemnitz, E.; Mahn, S.; Krahl, T. Nano metal fluorides: Small particles with great properties. ChemTexts 2020, 6, 19. [Google Scholar] [CrossRef]
- Quan, Z.; Yang, D.; Yang, P.; Zhang, X.; Lian, H.; Liu, X.; Lin, J. Uniform Colloidal Alkaline Earth Metal Fluoride Nanocrystals: Nonhydrolytic Synthesis and Luminescence Properties. Inorg. Chem. 2008, 47, 9509–9517. [Google Scholar] [CrossRef]
- Heer, S.; Kömpe, K.; Güdel, H.U.; Haase, M. Highly Efficient Multicolour Upconversion Emission in Transparent Colloids of Lanthanide-Doped NaYF4 Nanocrystals. Adv. Mater. 2004, 16, 2102. [Google Scholar] [CrossRef]
- Schietinger, S.; Menezes, L.S.; Lauritzen, B.; Benson, O. Observation of Size Dependence in Multicolor Upconversion in Single Yb3+, Er3+ Codoped NaYF4 Nanocrystals. Nano Lett. 2009, 9, 2477–2481. [Google Scholar] [CrossRef]
- Yi, G.S.; Lu, H.C.; Zhao, S.Y.; Ge, Y.; Yang, W.J.; Chen, D.P.; Guo, L.H. Synthesis, Characterization, and Biological Application of Size-Controlled Nanocrystalline NaYF4:Yb,Er Infrared-to-Visible Up-Conversion Phosphors. Nano Lett. 2004, 4, 2191–2196. [Google Scholar] [CrossRef]
- Nam, S.H.; Bae, Y.M.; Park, Y.I.; Kim, J.H.; Kim, H.M.; Choi, J.S.; Lee, K.T.; Hyeon, T.; Suh, Y.D. Long-term real-time tracking of lanthanide ion doped upconverting nanoparticles in living cells. Angew. Chem. Int. Ed. Engl. 2011, 50, 6093–6097. [Google Scholar] [CrossRef]
- Zhou, S.F.; Jiang, N.; Miura, K.; Tanabe, S.; Shimizu, M.; Sakakura, M.; Shimotsuma, Y.; Nishi, M.; Qiu, J.R.; Hirao, K. Simultaneous Tailoring of Phase Evolution and Dopant Distribution in the Glassy Phase for Controllable Luminescence. J. Am. Chem. Soc. 2010, 132, 17945–17952. [Google Scholar] [CrossRef]
- Wang, Z.L.; Quan, Z.W.; Jia, P.Y.; Lin, C.K.; Luo, Y.; Chen, Y.; Fang, J.; Zhou, W.; O’Connor, C.J.; Cerium, J.L. III Fluoride Thin Films by XPS. Chem. Mater. 2006, 18, 2030. [Google Scholar] [CrossRef]
- Sivakumar, S.; van Veggel, F.C.J.M.; Raudsepp, M. Bright White Light through Up-Conversion of a Single NIR Source from Sol−Gel-Derived Thin Film Made with Ln3+-Doped LaF3 Nanoparticles. J. Am. Chem. Soc. 2005, 127, 12464–12465. [Google Scholar] [CrossRef]
- Liu, S.M.; Chen, W.; Wang, Z.G. Luminescence Nanocrystals for Solar Cell Enhancement. J. Nanosci. Nanotechnol. 2010, 10, 1418–1429. [Google Scholar] [CrossRef]
- Liu, Y.F.; Chen, W.; Wang, S.P.; Joly, A.G. Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl. Phys. Lett. 2008, 92, 043901. [Google Scholar] [CrossRef]
- Chen, W. Nanoparticle Self-Lighting Photodynamic Therapy for Cancer Treatment. J. Biomed. Nanotechnol. 2008, 4, 369–376. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Moses, W.; Derenzo, S.; Weber, M.; Ray-Chaudhuri, A.; Cerrina, F. Scintillation mechanisms in cerium fluoride. J. Lumin. 1994, 59, 89–100. [Google Scholar] [CrossRef]
- Yao, M.; Joly, A.G.; Chen, W. Formation and Luminescence Phenomena of LaF3:Ce3+ Nanoparticles and Lanthanide−Organic Compounds in Dimethyl Sulfoxide. J. Phys. Chem. C 2010, 114, 826–831. [Google Scholar] [CrossRef]
- Birowosuto, M.D.; Dorenbos, P.; van Eijk, C.W.E.; Krmer, K.W.; Gudel, H.U. Scintillation properties and anomalous Ce3+ emission of Cs2NaREBr6:Ce3+ (RE = La,Y,Lu). J. Phys. Condens. Matter 2006, 18, 6133. [Google Scholar] [CrossRef] [PubMed]
- Petousis, I.; Mrdjenovich, D.; Ballouz, E.; Liu, M.; Winston, D.; Chen, W.; Graf, T.; Schladt, T.D.; Persson, K.A.; Prinz, F.B. High-throughput screening of inorganic compounds for the discovery of novel dielectric and optical materials. Sci. Data 2017, 4, 160134. [Google Scholar] [CrossRef] [PubMed]
- Tabatabaee, F.; Sabbagh Alvani, A.A.; Sameie, H.; Moosakhani, S.; Salimi, R.; Taherian, M. Ce3+-doped LaF3 nanoparticles: Wet-chemical synthesis and photo-physical characteristics “optical properties of LaF3:Ce nanomaterials”. Met. Mater. Int. 2014, 20, 169–176. [Google Scholar] [CrossRef]
- Canning, A.; Chaudhry, A.; Boutchko, R.; Gronbech-Jensen, N. First-principles study of luminescence in Ce-doped inorganic scintillators. Phys. Rev. 2011, 83, 125115. [Google Scholar] [CrossRef]
- Freitas, C.; Müller, R.H. Müller Spray-drying of solid lipid nanoparticles (SLNTM). Eur. J. Pharm. Biopharm. 1998, 46, 145–151. [Google Scholar] [CrossRef]
- Shah, S.; McRae, A.F.; Marioni, R.E.; Harris, S.E.; Gibson, J.; Henders, A.K.; Redmond, P.; Cox, S.R.; Pattie, A.; Corley, J.; et al. Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Res. 2014, 24, 1725–1733. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, M.R.; Wan, H.T. Discussion about Several Potential Drawbacks of PEGylated Therapeutic Proteins. Biol. Pharm. Bull. 2014, 37, 335–339. [Google Scholar] [CrossRef]
- Vlasenko, A.B.; Dorokhina, A.M.; Bakhmetyev, V.V.; Khristyuk, N.A.; Mjakin, S.V.; Kuzina, E.N.; Sychov, M.M.; Kominami, H.; Toru, A.; Morii, H. Hydrothermal synthesis and characterization of nano-sized phosphors based on rare-earth activated yttrium compounds for photodynamic therapy. J. Sol-Gel Sci. Technol. 2023, 1–18. [Google Scholar] [CrossRef]
- Viktorovich, M.V.; Vladimirovich, B.V.; Aleksandrovich, L.L. Synthesis and study of the properties of nabapo4:eu2+ phosphores of increased dispersion. Izv. SPbGTI (TU) 2017, 65. [Google Scholar]
- Hotze, E.; Phenrat, T.; Lowry, G. Nanoparticle aggregation: Challenges to understanding transport and reactivity in the environment. J. Environ. Qual. 2010, 39, 1909–1924. [Google Scholar] [CrossRef]
- Sudheendra, L.; Das, G.K.; Li, C.; Stark, D.; Cena, J.; Cherry, S.; Kennedy, I.M. NaGdF4:Eu3+ Nanoparticles for Enhanced X-ray Excited Optical Imaging. Chem. Mater. 2014, 26, 1881–1888. [Google Scholar] [CrossRef]
- Rezende, M.V.d.S.; Araujo, R.M.; Valerio, M.E.G.; Jackson, R.A. Intrinsic Defects in Strontium Aluminates Studied via Computer Simulation Technique. J. Phys. Conf. Ser. 2010, 249, 012042. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59, 1758. [Google Scholar] [CrossRef]
- Vinila, V.S.; Isac, J. Design, Fabrication, and Characterization of Multifunctional Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Guo, H.; Zhang, T.; Qiao, Y.; Zhao, L.; Li, Z. Ionic Liquid-Based Approach to Monodisperse Luminescent LaF3:Ce,Tb Nanodiskettes: Synthesis, Structural and Photoluminescent Properties. J. Nanosci. Nanotechnol. 2010, 10, 1913–1919. [Google Scholar] [CrossRef]
- Nakashima, K.; Ueno, S.; Wada, S. Solvothermal synthesis of KNbO3 nanocubes using various organic solvents. J. Ceram. Soc. Jpn. 2014, 122, 547–551. [Google Scholar] [CrossRef]
- Dorokhina, A.M.; Bakhmetyev, V.V.; Kominami, H.; Toru, A.; Hisashi, M. Study of the properties of Ce3+-doped fluoride nanophosphors: Phase composition, morphology, luminescence. J. Phys. Conf. Ser. 2021, 2056, 012048. [Google Scholar] [CrossRef]
- Tarantola, M.; Pietuch, A.; Schneider, D.; Rother, J.; Sunnick, E.; Rosman, C.; Pierrat, S.; Sönnichsen, C.; Wegener, J.; Janshoff, A. Toxicity of gold-nanoparticles: Synergistic effects of shape and surface functionalization on micromotility of epithelial cells. Nanotoxicology 2011, 5, 254–268. [Google Scholar] [CrossRef]
- Chaudhuri, R.G.; Paria, S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112, 2373–2433. [Google Scholar] [CrossRef]
- Varga, Z.; Wacha, A.; Vainio, U.; Gummel, J.; Bóta, A. Characterization of the PEG layer of sterically stabilized liposomes: A SAXS study. Chem. Phys. Lipids 2012, 165, 387–392. [Google Scholar] [CrossRef]
- Römer, I.; White, T.; Baalousha, M.; Chipman, K.; Viant, M.; Lead, J. Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J. Chromatogr. A 2011, 1218, 4226–4233. [Google Scholar] [CrossRef]
- Tolaymat, T.; El Badawy, A.; Genaidy, A.; Scheckel, K.; Luxton, T.; Suidan, M. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: A systematic review and critical appraisal of peer-reviewed scientific papers. Sci. Total Environ. 2010, 408, 999–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petersen, H.; Fechner, P.M.; Martin, A.L.; Kunath, K.; Stolnik, S.; Roberts, C.J.; Fischer, D.; Davies, M.C.; Kissel, T. Polyethylenimine-graftpoly(ethylene glycol) copolymers: Influence of copolymer block structure on DNA complexation and biological activities as gene delivery system. Bioconjug. Chem. 2002, 13, 845–854. [Google Scholar] [CrossRef] [PubMed]
- Samimi, S.; Maghsoudnia, N.; Eftekhari, R.B.; Dorkoosh, F. Chapter 3—Lipid-Based Nanoparticles for Drug Delivery Systems. In Micro and Nano Technologies, Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.S., Ranjan, S., Dasgupta, N., Mishra, R.K., Thomas, S., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 47–76. [Google Scholar]
- Joseph, E.; Singhvi, G. Chapter 4—Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 91–116. [Google Scholar]
- Finley, E.; Mansouri Tehrani, A.; Brgoch, J. Intrinsic Defects Drive Persistent Luminescence in Monoclinic SrAl2O4:Eu2+. J. Phys. Chem. C 2018, 122, 16309–16314. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens. Matter Mater. Phys. 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kochan, O.; Chornodolskyy, Y.; Selech, J.; Karnaushenko, V.; Przystupa, K.; Kotlov, A.; Demkiv, T.; Vistovskyy, V.; Stryhanyuk, H.; Rodnyi, P.; et al. Energy Structure and Luminescence of CeF3 Crystals. Materials 2021, 14, 4243. [Google Scholar] [CrossRef]
- Radzhabov, E.; Nepomnyashikh, A.I. F and Vk Centres in LaF3, CeF3 Crystals. 2015. Available online: http://arxiv.org/abs/1510.07781 (accessed on 30 June 2021).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorokhina, A.; Ishihara, R.; Kominami, H.; Bakhmetyev, V.; Sychov, M.; Aoki, T.; Morii, H. Solvothermal Synthesis of LaF3:Ce Nanoparticles for Use in Medicine: Luminescence, Morphology and Surface Properties. Ceramics 2023, 6, 492-503. https://doi.org/10.3390/ceramics6010028
Dorokhina A, Ishihara R, Kominami H, Bakhmetyev V, Sychov M, Aoki T, Morii H. Solvothermal Synthesis of LaF3:Ce Nanoparticles for Use in Medicine: Luminescence, Morphology and Surface Properties. Ceramics. 2023; 6(1):492-503. https://doi.org/10.3390/ceramics6010028
Chicago/Turabian StyleDorokhina, Anastasiia, Ryoya Ishihara, Hiroko Kominami, Vadim Bakhmetyev, Maxim Sychov, Toru Aoki, and Hisashi Morii. 2023. "Solvothermal Synthesis of LaF3:Ce Nanoparticles for Use in Medicine: Luminescence, Morphology and Surface Properties" Ceramics 6, no. 1: 492-503. https://doi.org/10.3390/ceramics6010028
APA StyleDorokhina, A., Ishihara, R., Kominami, H., Bakhmetyev, V., Sychov, M., Aoki, T., & Morii, H. (2023). Solvothermal Synthesis of LaF3:Ce Nanoparticles for Use in Medicine: Luminescence, Morphology and Surface Properties. Ceramics, 6(1), 492-503. https://doi.org/10.3390/ceramics6010028