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Abstract: A series of LaF3:Ce3+ phosphors for application in photodynamic therapy are synthesized
using a one-stage solvothermal synthesis. The synthesis conditions; type and quantity of stabilizer;
concentration of activator providing the maximum intensity of UV- and X-ray-excited luminescence;
lowest size; and highest colloidal stability of the phosphor nanoparticles are found. As a result of this study,
the following parameters are determined using cerium content 5% mol. ethanol as the reaction medium
for the solvothermal synthesis and polyvinylpyrrolidone as the stabilizer at an optimized amount.
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1. Introduction

Fluorides have many advantages as fluorescent raw materials due to their low phonon
energy and high ionicity [1]. Compared with oxide luminescent materials, rare earth fluorides
have optical clarity, low vibrational energy, minimal dopant ion excited state quenching and
are also less prone to staining due to the formation of hole centers under the action of an
ionizing emitter [2]. Fluoride nanocrystals doped with rare earth ions are of great interest due
to their potential applications in lighting and displays [3–7], boost converters [8,9], biological
fluorescent labels [10,11], transparent glass [12], scintillators [13], optical amplifiers [14], solar
cell amplification [15] and photodynamic therapy [16,17]. Recently, some researchers have
devoted themselves to the development of LaF3 nanocrystals doped with rare earth ions due
to their high photochemical stability, low toxicity and biocompatibility. In addition, their
luminescent properties, including sharp absorption and emission lines and long lifetimes, are
almost independent of particle size and can be tuned through doping with various lanthanide
ions [18]. Ce3+ is a strong emitter with a nanosecond luminescence lifetime that is shorter than
rare earth elements with 4f configurations due to the allowed 5d-4f optical transition, which is
independent of crystal field state mixing due to its dipole nature. Although the ion–lattice
interaction for the 5d configuration is higher than for the 4f configuration, nonradiative decay
with multiphonon emission is impossible due to the large distance between the 5d band and
the nearest 4f level [19–21]. LaF3, which has a large band gap (according to various sources:
from 6.04 eV [22] to 10.1 eV [23]), is an ideal host for Ce3+ scintillator fluorescence since the 4f
and 5d levels of cerium are located in the gap receiving grid. In addition, since interactions
between lanthanum and cerium ions have very similar chemical properties, the interaction
between optically active Ce3+ ions can be reduced by replacing these ions with La3+ ions [24].

The agglomeration of LaF3 nanocrystals doped with lanthanide ions is very common
firstly because of the reduced open surface in nanocrystals, which reduces surface energy,
and secondly because, as a rule, nanocrystals that do not have a special coating have a
surface charge closer to neutral, which leads to the aggregation and flocculation of particles
due to the action of van der Waals forces of attraction on them. This can lead to physical
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instability [25,26]. To increase biocompatibility, as well as to prevent agglomeration, the
particles are coated with various stabilizers. The most widely used and studied stabilizer
is polyethylene glycol (PEG). The process of applying a PEG coating to biomaterials
to impart a latent characteristic is commonly referred to as PEGylation. It is now well
known that PEGylation has many attractive properties; for example, it has been shown
to increase the half-life of a drug in the body, prolonging its potency and thus reducing
dosing frequency. The ability of PEG to prolong carrier circulation time is mainly due to its
physical properties, which, in turn, can reduce or prevent protein absorption. It has been
approved by the FDA for use in a variety of dosage forms. PEGylation remains the reference
process for the development of biologically relevant systems with in vivo characteristics.
However, the disadvantages of this stabilizer have also become known: a long elimination
time; lack of biodegradability; the formation of undesirable by-products; and mechanical
degradation [27]. Alternatively, polyethyleneimine and polyvinylpyrrolidone have also
been successfully used as stabilizers.

Oncological diseases in terms of prevalence and mortality occupy one of the leading
places among socially significant pathologies. Many types of oncological tumors are
resistant to certain types of anticancer therapy; thus, the development of new types of
therapy is an extremely important task, especially for the development of personalized
medicine approaches. Photodynamic therapy (in the optical range of radiation) has recently
been increasingly used to treat a number of types of oncological tumors with shallow
localization. However, due to the small depth of the penetration of optical radiation into
B tissue, this method has significant limitations in terms of the area of the localization of
pathogenic tissues in the body.

The X-ray photodynamic therapy (XPDT) method makes it possible to overcome the
above limitations; however, in order to ensure the efficient adsorption and subsequent
transformation of X-ray energy, materials for (XPDT) are usually designed on the basis of
toxic heavy elements. The objective of this project is to develop effective nanocomposite
materials for XPDT applications with improved biocompatibility parameters.

In the previous years of project implementation, syntheses of a wide range of X-ray
phosphors have been carried out, including those based on matrices such as Y2O3 [28] and
Na3PO4 [29], as well as the further creation of composites based on them. However, samples
of nanocomposites based on fluorides and rare-earth elements such as lantanium and
yttrium proved to be the most effective for the needs of XPDT. At the same time, the presence
of such elements in the system makes it possible to use the developed nanocomposites for
processes such as CT and MRI imaging.

This study is related to the improvement of the parameters of the process used for
the synthesis of LaF3 nanocrystals using the solvothermal method. The influence of the
reaction medium and stabilizers on the structural, morphological and surface properties
are studied using appropriate mathematical and analytical methods. Then, Ce3+ ions of
the optimal concentration are doped into the optimal host nanomaterial, and the optical
characteristics for medical applications are studied.

2. Materials and Methods

A series of fluoride phosphors with the composition LaF3:Ce3+ 4 . . . 6% mol. was
synthesized using the solvothermal method to determine the optimal concentration of
Ce3+. Ordinarily, the synthesis is carried out in organic solvents to provide electrostatic
and electrosteric interaction between individual particles and thus prevent their aggrega-
tion [30]. A typical synthesis [31] was carried out in ethylene glycol. Water solution of
cerium and lanthanum chlorides (8 mmol) was well mixed and added to ethylene glycol.
After adding stabilizer polyethylene glycol Mw = 20,000 (PEG-20000), the mixture was
vigorously stirred on a magnetic stirrer at room temperature. Ammonium fluoride NH4F
(12 mL of 110 mol. solution) was dissolved in ethylene glycol, added to the above solution
and again stirred vigorously at room temperature for 30 min. Finally, the mixture was
transferred to a Teflon liner and placed in a sealed stainless-steel autoclave, where it was
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subjected to a solvothermal treatment at 200 ◦C for 4 h and was then cooled naturally to
room temperature. The precipitate was washed in ethanol and deionized water several
times, and the final products were dried at 40 ◦C for 6 h in a normal atmosphere.

To determine the most suitable synthesis media, a series of samples was synthesized
by the earlier described method, but in the case of synthesis in ethanol, medium ammo-
nium fluoride was dissolved in DI water. For this series, the same stabilizer (PEG-20000),
synthesis parameters (200 ◦C, 4 h) and the same concentration of Ce3+ (5% mol.) for all the
samples were applied.

To determine the optimal stabilizer that would prevent particle coalescence and ensure
biocompatibility, LaF3:Ce3+ nanocrystals were synthesized with various organic surfactants,
including polyethylene glycol (PEG-200, PEG-2000, PEG-20000), polyethyleneimine (PEI
Mw 60,000–80,000) and polyvinylpyrrolidone (PVP Mw 1,300,000), and the luminescent
and surface properties of nanoparticles were investigated. The synthesis was carried out in
ethanol medium at 200 ◦C for 4 h; all samples of this series had a cerium concentration of
5% mol.

As a result of the previous series of syntheses, PVP was chosen as the optimal stabilizer
for LaF3:Ce nanocrystals. The next step was to study the optimal amount of PVP. A total of
4 samples were synthesized with the amount of PVP ranging from 0 to 1.5 g. Synthesis was
carried out using the same parameters as in previous series (200 ◦C, 4 h, ethanol medium).

The structural characteristics of the final products were investigated by powder X-ray
diffraction (XRD) using Cu-Ka radiation (l = 0.15405 nm) on a Rigaku-RINT2200 diffractometer.
The morphologies and sizes of the obtained samples were observed using field emission
scanning electron microscope (FE-SEM, JSM-7001F, JEOL). Size distribution histograms were
obtained using ImageJ software. Four images were taken for each sample to calculate average
size and size distribution. The emission spectra of ultraviolet and visible photoluminescence
were recorded using a laboratory setup: a spectrofluorometer with two monochromators
(model of an ultramonochromatic light source) equipped with a xenon lamp as an exciter. The
emission and excitation spectra were obtained with excitation photons from Beamline 3B of
the Ultraviolet Synchrotron Orbital Radiation Facility III (UVSOR-III) at a temperature of 7 K
using liquid helium. The X-ray luminescence spectra were measured on a laboratory setup
with a copper anode at a voltage of 80 kV and a current of 62 mA. FTIR spectrum is recorded
between 4000 and 400 cm−1. Dried samples were measured with FT/IR-6300, JASCO. Surface
charge and size distribution of the samples were measured with Zetasizer Ultra and analyzed
with ZS Xplorer software by Malvern Pnalytical. All measurements were carried out at room
temperature. The Vienna ab initio simulation package (VASP) within the DFT framework for
full structure optimizations and total energy calculations was employed [32,33].

3. Results and Discussion

To determine the optimal concentration of cerium, a series of syntheses of the samples
with a concentration of 4 . . . 6 mol% was carried out. Figure 1 shows the XRD patterns
of the obtained samples. The structure of the obtained LaF3:Ce3+ nanoparticles was in
good agreement with the hexagonal structure of bulk LaF3 (card 72-1435). The diffraction
peaks for all the samples were broadened, which indicates the nanocrystalline nature of the
samples. The average crystallite sizes were estimated from the Scherrer equation [34],

Dhkl = kλ/ßcosΘ (1)

where k = 1, λ = 0.154184 nm represents the wavelength of Cu K radiation, Θ is the angle
of the X-ray diffraction peak and ß represents the corrected half width of the diffraction
peak. Taking the 9 main peaks (002, 110, 111, 112, 300, 113, 220, 221, 223), the average
crystallite sizes of LaF3:4%Ce3+, LaF3:5%Ce3+ and LaF3:6%Ce3+ were about 25.1, 31.9 and
33.1 nm, respectively. Figure 1b shows the peak (111) at 2Θ = 27.6◦; it can be seen that with
the increase in the concentration of cerium, the peak shifts towards lower degrees, which
indicates an increase in the amount during the cerium fluoride phase.
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Figure 1. XRD patterns of LaF3:Ce (a) with different Ce3+ concentration; (b) XRD peak (111) at 27.6◦.

Figure 2 shows the photo and X-ray luminescence spectra of LaF3:Ce phosphors with
different activator concentrations. Photoluminescence was measured at room temperature
with an excitation wave of 255 nm (Figure 2a).

Broadband radiation in the region from 270 to 400 nm and peaking at 300 nm can be
attributed to the 5d–4f transition of Ce3+. With the increase in the doping concentration of
Ce3+, the radiation intensity gradually increases, reaching a maximum at a concentration
of 5% mol., and then decreases. The decrease in radiation intensity was related to the
concentration effect of quenching at a higher doping concentration of Ce3+. A similar
behavior was also observed upon X-ray excitation (Figure 2b).

It is known that the luminescence spectra of trivalent lanthanide ions are mainly due to
two types of electronic transitions: the 4f–4f transition and the 5d–4f transition. The excited
electronic configuration of Ce3+ has the form 5d1 and is not shielded from the surroundings.
The 5d electron interacts strongly with neighboring anion ligands in compounds, which
leads to broadband emission. The 4f orbital is shielded from the environment by the filled
5s2 and 5p6 orbitals. Thus, the effect of the main lattice on optical transitions within the 4fn

configuration is small [35].

Ceramics 2022, 5, FOR PEER REVIEW  5 
 

 
 

(a) (b) 

Figure 2. Photoluminescent (a) and X-ray luminescent (b) spectra of LaF3:Ce with different Ce3+ 

concentrations. 

It is important to use the correct technique to synthesize nanoparticles for a medical 

application because each nanoparticle must have the appropriate morphology for the 

desired application. It is known that toxicity increases from spherical to acicular particles 

[36]. It is therefore very important to synthesize nanosized particles and also, if possible, 

to produce their ideal shape. We thought that solvothermal methods would control the 

morphology to an appropriate degree. When conducting a solvothermal reaction, many 

factors must be taken into account, such as the concentrations of the reactants, the 

solubility of the reactants, the reaction temperature, the reaction time, the choice of solvent 

and the pressure, all of which can be varied. In our previous papers, we have already 

discussed the optimal parameters for the synthesis of yttrium fluoride [37]. In this article, 

we paid special attention to the solvent used as the reaction medium. In this case, we used 

ethanol and ethylene glycol (EG). 

The solvothermal reaction was carried out at 200 °C for 4 h using PEG-20000 as a 

stabilizer and with a cerium concentration of 5% mol. As a result of synthesis using these 

reaction media, pure hexagonal lanthanum fluoride was obtained (Figure 3). Thus, it can 

be concluded that the synthesis medium does not affect the formation of the phase. This 

statement was also confirmed for us in [37].  

Figures 4 and 5 show SEM images and size distribution histograms calculated from 

the acquired images, respectively.  

 

Figure 3. XRD patterns of LaF3:Ce synthesized in various media. 

270 290 310 330 350 370 390

6%mol

5%mol

4%mol

λ, nm

In
te
n
si
ty
,a
.u
.

250 300 350 400

4%mol.

5%mol.

6%mol.

Figure 2. Photoluminescent (a) and X-ray luminescent (b) spectra of LaF3:Ce with different
Ce3+ concentrations.
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It is important to use the correct technique to synthesize nanoparticles for a medical
application because each nanoparticle must have the appropriate morphology for the desired
application. It is known that toxicity increases from spherical to acicular particles [36]. It is
therefore very important to synthesize nanosized particles and also, if possible, to produce
their ideal shape. We thought that solvothermal methods would control the morphology to
an appropriate degree. When conducting a solvothermal reaction, many factors must be taken
into account, such as the concentrations of the reactants, the solubility of the reactants, the
reaction temperature, the reaction time, the choice of solvent and the pressure, all of which
can be varied. In our previous papers, we have already discussed the optimal parameters for
the synthesis of yttrium fluoride [37]. In this article, we paid special attention to the solvent
used as the reaction medium. In this case, we used ethanol and ethylene glycol (EG).

The solvothermal reaction was carried out at 200 ◦C for 4 h using PEG-20000 as a
stabilizer and with a cerium concentration of 5% mol. As a result of synthesis using these
reaction media, pure hexagonal lanthanum fluoride was obtained (Figure 3). Thus, it can
be concluded that the synthesis medium does not affect the formation of the phase. This
statement was also confirmed for us in [37].
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Figures 4 and 5 show SEM images and size distribution histograms calculated from
the acquired images, respectively.

The shape of nanoparticles can affect their biocompatibility and toxicity. This was illus-
trated by a change in the shape of the material from equiaxed to acicular, after which the toxic
reaction intensified [38]. This may have been due to the interaction forces of longitudinally
oriented nanomaterials, which increase in proportion to their length. Consequently, the van
der Waals forces for rod nanomaterials are greater than for spherical ones. The shape of
nanomaterials can also influence the rate of cell internalization. Spherical particles penetrate
the cell membrane more easily than particles with a large length-to-radius ratio (elongated)
lying parallel to the cell membrane. For example, spherical gold nanoparticles absorb more
than their rod counterparts. Therefore, the nanomaterials can be shaped appropriately to
more easily enter cells for therapeutic purposes such as cancer therapy.

SEM images (Figure 4) show that the obtained particles were oval in shape and did
not exceed nanosize. These samples are also histograms in Figure 5, which were read from
the acquired images using the software. It should be noted that the synthesis medium had
practically no effect on the particle morphology; however, a narrower particle size distribution
was obtained as a result of synthesis in an ethanol medium. Furthermore, in this medium, as
the calculations show, it is possible to obtain an average particle size of about 30 nm, while in
an ethylene glycol (EG) medium, the average size is about 45 nm. Thus, ethanol was chosen
as the reaction medium for the solvothermal synthesis of lanthanum fluoride.
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Nanoparticles must be stabilized with suitable compounds since a decrease in particle
size increases the number of surface atoms and the surface energy of the formed particles [39].
Nanoparticles are stabilized before their actual use in any technological applications by modify-
ing their surface with appropriate stabilizers. This surface modification with stabilizers (also
called blocking ligands) is critical to achieving sufficient repulsive forces between particles
that prevent particle aggregation and help obtain the stable suspension of particles. A special
polymer coating allows for higher biocompatibility, prevents agglomeration and also makes it
possible to obtain a stable colloidal nanosuspension. We synthesized a series of samples with
various stabilizers: polyethylene glycol (PEG) with Mw 200 and 2000, polyvinylpyrrolidone
(PVP) and polyethyleneimine (PEI). PEG and PVP belong to a steric model of stabilization [40,41].
It is worth noting that the sheath is usually not a continuous impermeable layer, but rather a
discontinuous layer. Thus, there is an interaction between the nucleus and the environment.
Heterogeneity arises from steric and electrosteric forces between macromolecules attached to
the surface. At present, the control of the morphology and size of fluoride nanoparticles during
their preparation is an important factor that needs to be addressed for their use in medicine.

The functional groups of the samples were measured using FT-IR as shown in Figure 6.
A broad absorption band of around 3500–3400 cm−1 is related to stretching vibrations
(-OH). In the spectrum of PEG-200 and PEG-2000, characteristic bands at 2874.2 cm−1 and
at 1103.9 cm−1 of certain functional groups were found belonging to the –CH group [42] and
the –C–O–C group [43], respectively. The appearance of these two characteristic bands and
some other bands near 1103.9 cm−1 in the PEG–LaF3:Ce spectrum indicated the successful
conjugation of PEG to the LaF3:Ce surface. The spectrum of PEI shows a few weak peaks
in the 1170–1050 cm−1 range that correspond to C-O, C-C and C-O-C stretching vibrations
(associated with carbo-hydrate ring), and presence of C-N stretching is characteristic of PEI.
The large band at 1632–1622 cm−1 may have been due to C=O asymmetric stretching in
(COO−), (-N-H) bending vibration (for primary and secondary amines) and/or open-chain
amino groups (-C=N-). In addition, in the region 2980–2850 cm−1 stretching vibrations
of -CH bonds appeared, which confirmed the expected presence of linear aliphatic chains.
The spectrum of PVP had characteristic peaks C=O (1660 cm−1) and C-N (1290 cm−1),
which confirmed the functionalization of PVP lanthanum fluoride nanoparticles through
intermolecular hydrogen bonding.
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Particles with a zeta-potential of ±30 mV have an optimal surface charge, which is
acceptable for biocompatibility [44]. Typically, zeta-potential values are in the range of +100
to−100 mV. A high value for the zeta-potential of nanoparticles indicates the good physical
stability of nanosuspensions due to the electrostatic repulsion of individual particles. A
zeta-potential value other than one between −30 mV and +30 mV is generally considered to
have sufficient repulsive force to achieve better physical colloidal stability. A low zeta-potential
can lead to physical instability due to particle aggregation and flocculation due to van der Waals
attractive forces acting on them [45]. However, surface charge affects the behaviors of particles
with biological constituents, such as cell-to-cell interactions, permeation, protein adsorption
and stability in biological fluid. Neutral particles show a slower opsonization rate than charged
particles, and nanoparticles with small negative charges tend to accumulate more efficiently
in tumor tissues. Positively charged particles can be more easily taken up by cells than other
nanoparticles due to the attractive interaction between positively charged nanoparticles and
negative cell membranes. On the other hand, cationic nanoparticles are much more effective in
activating the immune response than neutral or anionic nanoparticles.

As can be seen from Figure 7, PEG-coated particles have an extremely positive charge,
which can be as high as 70 mV. In the case of PEI, the particles have both positive and
negative charges, which directly leads to a high probability of agglomeration. PVP has
positively charged particles, most of which have a charge of about 40 mV, which is close
to the optimum particle charge to achieve colloidal stability. Thus, PVP was chosen as a
suitable stabilizer.

After determining the optimal surfactant, an experiment was conducted to determine
the optimal amount of PVP. Four samples were synthesized with different PVP quantities:
0 g, 0.375 g, 0.75 g and 1.5 g. Figure 8a shows the diffraction patterns of the obtained
samples. As noted earlier, the presence of surfactants does not affect the phase composition.
Therefore, it is possible to observe hexagonal lanthanum and cerium fluoride without
impurity phases.

Figure 8b shows the excitation and luminescence spectra of the obtained samples
measured at the temperature of 7 K using liquid helium. Peaks located in the region of
90–150 nm were related to the excitation of the phosphor host lanthanum fluoride. The
bandgap for LaF3 was calculated using the VASP method [46], and it was equal to 8.3 eV
(Figure 9), which correlated with the obtained excitation spectra peak at 125 nm (9.9 eV).
For the total energy calculations, the Vienna ab initio (VASP) DFT simulation package was
used. A basis set of plane waves and extended projector wave (PAW) potentials were used
to determine the electronic wave functions [47]. A 2 × 2 × 2 supercell (192 atoms–8 unit
cells of hexagonal LaF3) was first optimized using the Perdew–Burke–Ernzerhof (PBE)
exchange and correlation functional. The larger supercell was not tested; since the LaF3
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matrix is not complicated (only 2 types of atoms), we assumed that the error of calculation
would be very small as the difference in formation energy was found to be less than 3%,
which indicates that the effect of supercell size is negligible [46].
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As can be seen from the excitation spectra, the main peaks, in contrast to the emission
spectra, were not elementary. Conditioned to 4f–5d transition peaks in the excitation spectra
at 191.5, 206, 214, 229 and 246 nm correlated with the maxima of 5d1–5d5 of the cerium
luminescence in LaF3:Ce [48]. The emission spectra of the obtained samples demonstrated
the same pattern as the samples obtained earlier. The sample with a PVP content of 0.75 g
had the highest intensity.

The nature of the peak at 114 nm (Figure 8b) could be associated with the formation of
exciton states corresponding to the 2pF−→5d2 transitions. There was no exciton luminescence
associated with the appearance of an anionic exciton, which was possibly due to the deactivation
of the 2pF0 hole states by electronic transitions from 4fCe3+ [49].

The lower part of Figure 8b shows the luminescence spectrum of LaF3:Ce taken at
70 nm excitation wavelength. As can be seen from the spectra, the main peaks at 292 nm
and 310 nm were located at the same wavelength as at 255 nm excitation. However, the
intensity ratios of the peaks were different, which can be explained by the fact that since
the excitation wavelength was shorter, the luminescent peak with a shorter wavelength
became more intense in comparison to, in this case, the peak at 310 nm.
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4. Conclusions

As a result of the performed studies, a one-stage solvothermal procedure was developed
and optimized for obtaining Ce3+-doped LaF3 nanoparticles, which appears promising as an
efficient phosphor for medical usage, in particular for the photodynamic therapy of cancer.
Ce3+ concentration 5 mol. % afforded the highest luminescence intensity upon UV and X-ray
excitation. A theoretical calculation of the valence band of LaF3 was made, which coincided
with the practical result obtained. The wasted volume of the LaF3 valence band was 8.3 eV,
which corresponded to the 125 nm band of the excitation spectrum. The lowest phosphor
particle size of about 30 nm convenient for PDT application was achieved in using ethanol as
the reaction medium for the synthesis. The application of polyvinylpyrrolidone as a stabilizer
at an optimized amount provided the optimal zeta-potential and charge of the phosphor
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nanoparticles, affording the stabilization of their colloidal solutions. The developed approach
is promising for implementation in the commercial production of non-toxic water-soluble
luminescent LaF3:Ce nanoparticles useful in photodynamic therapy and other applications,
including various biological experiments.
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