High-Strength Optical Coatings for Single-Crystal ZnGeP2 by the IBS Method Using Selenide and Oxide Materials
Abstract
:1. Introduction
2. Substrate and Sputtering Equipment
3. AR Coating Design
4. LIDT Test of AR-Coated OPO
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sorokina, I.; Vodopyanov, K. Solid-State Mid-Infrared Laser Sources; Springer: Berlin/Heidelberg, Germany, 2003; p. 557. ISSN 1437-0859. [Google Scholar] [CrossRef]
- Wang, L.; Xing, T.; Hu, S.; Wu, X.; Wu, H.; Wang, J.; Jiang, H. Mid-infrared ZGP-OPO with a high optical-to-optical conversion efficiency of 75.7%. Opt. Express 2017, 25, 3373–3380. [Google Scholar] [CrossRef]
- Wu, R.; Lai, K.; Wong, H.; Xie, W.; Lim, Y.; Lau, E. Multiwatt mid-IR output from a Nd: YALO laser pumped intracavity KTA OPO. Opt. Express 2001, 8, 694–698. [Google Scholar] [CrossRef]
- Fu, Q.; Xu, L.; Liang, S.; Shardlow, P.C.; Shepherd, D.P.; Alam, S.U.; Richardson, D.J. High-average-power picosecond mid-infrared OP-GaAs OPO. Opt. Express 2020, 28, 5741–5748. [Google Scholar] [CrossRef]
- Henriksson, M.; Tiihonen, M.; Pasiskevicius, V.; Laurell, F. Mid-infrared ZGP OPO pumped by near-degenerate narrowband type-I PPKTP parametric oscillator. Appl. Phys. B 2007, 88, 37–41. [Google Scholar] [CrossRef]
- Sun, G.; Soref, R.; Cheng, H. Design of a Si-based lattice-matched room-temperature GeSn/GeSiSn multi-quantum-well mid-infrared laser diode. Opt. Express 2010, 18, 19957–19965. [Google Scholar] [CrossRef]
- Tournié, E.; Baranov, A.N. Chapter 5—Mid-Infrared Semiconductor Lasers: A Review. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2012; Volume 86, pp. 183–226. ISSN 0080-8784. ISBN 9780123910660. [Google Scholar] [CrossRef]
- Yao, Y.; Hoffman, A.; Gmachl, C. Mid-infrared quantum cascade lasers. Nat. Photonics 2012, 6, 432–439. [Google Scholar] [CrossRef]
- Żendzian, W.; Jabczyński, J.; Wachulak, P.; Kwiatkowski, J. High-repetition-rate, intracavity-pumped KTP OPO at 1572 nm. Appl. Phys. B 2005, 80, 329–332. [Google Scholar] [CrossRef]
- Haakestad, M.W.; Fonnum, H.; Lippert, E. Mid-infrared source with 0.2 J pulse energy based on nonlinear conversion of Q-switched pulses in ZnGeP2. Opt. Express 2014, 22, 8556–8564. [Google Scholar] [CrossRef]
- Murphy, F.J.; Amrania, H.; Phillips, C.C. Widely Tunable Midinfrared Radiation from GaSe OPO. Nonlinear Opt. B 2013, NW4A.21. [Google Scholar] [CrossRef]
- Aydin, C.; Zaslavsky, A.; Sonek, G.; Goldstein, J. Reduction of reflection losses in ZnGeP2 using motheye antireflection surface relief structures. Appl. Phys. Lett. 2002, 80, 2242–2244. [Google Scholar] [CrossRef]
- Böntgen, T.; Alig, T.; Balasa, I.; Jensen, L.; Ristau, D. Advances in IBS Coatings for space applications on the topics of curved surfaces and laser damage. In Proceedings of the International Conference on Space Optics, Chania, Greece, 9–12 October 2018; SPIE: Bellingham, WA, USA, 2019; Volume 11180, pp. 1539–1545. [Google Scholar]
- Liu, H.; Jensen, L.; Ma, P.; Ristau, D. Stress compensated anti-reflection coating for high power laser deposited with IBS SiO2 and ALD Al2O3. Appl. Surf. Sci. 2019, 476, 521–527. [Google Scholar] [CrossRef]
- Cheng, X.J.; Zhao, Y.; Qiang, Y.; Zhu, Y.; Guo, L.; Shao, J. Comparison of laser-induced damage in Ta2O5 and Nb2O5 single-layer films and high. Chin. Opt. Lett. 2011, 9, 013102. [Google Scholar]
- Ribeaud, A.; Pistner, J.; Hagedorn, H.; Brophy, M.; Kupinski, P.; Watson, J.; Hand, R. Production of high laser induced damage threshold mirror coatings using plasma ion assisted evaporation, plasma assisted reactive magnetron sputtering and ion beam sputtering. In Proceedings of the Laser-Induced Damage in Optical Materials 2018: 50th Anniversary Conference, Boulder, CO, USA, 23–26 September 2018; SPIE: Bellingham, WA, USA, 2018; Volume 10805, pp. 134–142. [Google Scholar]
- Ribeaud, A.; Pistner, J.; Hagedorn, H.; Joseph, S. Infra-Red Multi-Layer Coatings Using YbF3 and ZnS in an Ion Beam Sputtering System. In Proceedings of the Optical Interference Coatings Conference (OIC), Santa Ana Pueblo, NM, USA, 2–7 June 2019; pp. 1–4. [Google Scholar]
- Zinovev, M.; Yudin, N.N.; Kinyaevskiy, I.; Podzyvalov, S.; Kuznetsov, V.; Slyunko, E.; Baalbaki, H.; Vlasov, D. Multispectral Anti-Reflection Coatings Based on YbF3/ZnS Materials on ZnGeP2 Substrate by the IBS Method for Mid-IR Laser Applications. Crystals 2022, 12, 1408. [Google Scholar] [CrossRef]
- Zinoviev, M.; Yudin, N.N.; Podzvalov, S.; Slyunko, E.; Yudin, N.A.; Kulesh, M.; Dorofeev, I.; Baalbaki, H. Optical AR Coatings of the Mid-IR Band for ZnGeP2 Single Crystals Based on ZnS and Oxide Aluminum. Crystals 2022, 12, 1169. [Google Scholar] [CrossRef]
- Adachi, S.; Taguchi, T. Optical properties of ZnSe. Phys. Rev. B 1991, 43, 9569. [Google Scholar] [CrossRef]
- Venkatachalam, S.; Mangalaraj, D.; Narayandass, S.K. Characterization of vacuum-evaporated ZnSe thin films. Phys. B Condens. Matter 2007, 393, 47–55. [Google Scholar] [CrossRef]
- Varasi, M.; Misiano, C.; Mancini, C.; Sartori, P. Plasma assisted ion plating deposition of optical thin films for coatings and integrated optical applications. Vacuum 1986, 36, 143–147. [Google Scholar] [CrossRef]
- Zou, F.; Xun, J.; Su, J.; Ma, J. Influence of Laser-Conditioning on Laser-Induced Damage Properties of ZnSe Thin Films. Adv. Mater. Res. 2012, 602–604, 1437–1443. [Google Scholar] [CrossRef]
- Rahe, M.; Ristau, D.; Schmidt, H. Effect of hydrogen concentration in conventional and IAD coatings on the absorption and laser-induced damage at 10.6 μm. In Proceedings of the 24th Annual Boulder Damage Symposium Proceedings—Laser-Induced Damage in Optical Materials, Boulder, CO, USA, 28–30 October 1992; SPIE: Bellingham, WA, USA, 1993; Volume 1848, pp. 335–348. [Google Scholar]
- Smolik, G.; Descharmes, N.; Herzig, H. Observation of Bloch Surface Waves in the Mid-Infrared Spectral Range. In Proceedings of the 2018 International Conference on Optical MEMS and Nanophotonics (OMN), Lausanne, Switzerland, 29 July–2 August 2018; pp. 66–67. [Google Scholar]
- Peng, J.; Hu, X.; Chen, L.; Zhang, B. Effect of Structural Parameters of Deformable Mirrors on Phase Characteristics of High-Power Laser. Acta Opt. Sin. 2015, 35, 0514001-1–0514001-9. [Google Scholar] [CrossRef]
- Ivanov, M.M.; Zakirova, R.M.; Kobziev, V.F.; Krylov, P.N.; Fedotova, I.V. Properties of ZnSe/Al2O3 Nanostructures Obtained by RF Magnetron Sputtering. Tech. Phys. 2018, 63, 1504–1506. [Google Scholar] [CrossRef]
- Yudin, N.; Khudoley, A.; Zinoviev, M.; Podzvalov, S.; Slyunko, E.; Zhuravleva, E.; Kulesh, M.; Gorodkin, G.; Kumeysha, P.; Antipov, O. The Influence of Angstrom-Scale Roughness on the Laser-Induced Damage Threshold of Single-Crystal ZnGeP2. Crystals 2022, 12, 83. [Google Scholar] [CrossRef]
- Wachs, I.E. Raman and IR studies of surface metal oxide species on oxide supports: Supported metal oxide catalysts. Catal. Today 1996, 27, 437–455. [Google Scholar] [CrossRef]
- Amotchkina, T.; Trubetskov, M.; Hahner, D.; Pervak, V. Characterization of e-beam evaporated Ge, YbF3, ZnS, and LaF3 thin films for laser-oriented coatings. Appl. Opt. 2020, 59, A40–A47. [Google Scholar] [CrossRef]
Sputtering Target | Accelerating Voltage of the Ion Source, kV (Ion Energy in Ev) | Layer Deposition Rate, nm/s | Residual Pressure in the Chamber at the Beginning of the Sputtering Process, Pa | Working Pressure in the Chamber during Sputtering, Pa | Used Gas/Flow, cm3 per mSin | |
---|---|---|---|---|---|---|
Al2O3 | 3.5 (1200) | 0.1 | 5 × 10−4 | 5 × 10−2 | Ar/18 | O2/20 |
ZnSe | 2.5 (900) | 0.09 | 5 × 10−4 | 3.3 × 10−2 | Ar/15 |
Materials Used | Target Operating Range, in nm (Wavelength) | Number of Layers in the Designed Coating | Total Coating Thickness, nm |
---|---|---|---|
ZnSe/Al2O3 | R ≤ 1%, on 2097/R ≤ 2%, on 3500–5000 | 3 | 721 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zinovev, M.; Yudin, N.N.; Kuznetsov, V.; Podzyvalov, S.; Kalsin, A.; Slyunko, E.; Lysenko, A.; Vlasov, D.; Baalbaki, H. High-Strength Optical Coatings for Single-Crystal ZnGeP2 by the IBS Method Using Selenide and Oxide Materials. Ceramics 2023, 6, 514-524. https://doi.org/10.3390/ceramics6010030
Zinovev M, Yudin NN, Kuznetsov V, Podzyvalov S, Kalsin A, Slyunko E, Lysenko A, Vlasov D, Baalbaki H. High-Strength Optical Coatings for Single-Crystal ZnGeP2 by the IBS Method Using Selenide and Oxide Materials. Ceramics. 2023; 6(1):514-524. https://doi.org/10.3390/ceramics6010030
Chicago/Turabian StyleZinovev, Mikhail, Nikolay N. Yudin, Vladimir Kuznetsov, Sergey Podzyvalov, Andrey Kalsin, Elena Slyunko, Alexey Lysenko, Denis Vlasov, and Houssain Baalbaki. 2023. "High-Strength Optical Coatings for Single-Crystal ZnGeP2 by the IBS Method Using Selenide and Oxide Materials" Ceramics 6, no. 1: 514-524. https://doi.org/10.3390/ceramics6010030
APA StyleZinovev, M., Yudin, N. N., Kuznetsov, V., Podzyvalov, S., Kalsin, A., Slyunko, E., Lysenko, A., Vlasov, D., & Baalbaki, H. (2023). High-Strength Optical Coatings for Single-Crystal ZnGeP2 by the IBS Method Using Selenide and Oxide Materials. Ceramics, 6(1), 514-524. https://doi.org/10.3390/ceramics6010030