Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers
Abstract
:1. Introduction
2. Materials, Methods, Technology, and Equipment
2.1. Materials
2.2. Chemical Composition of the Geopolymers
2.3. Testing Methods and Multicriteria Optimization
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Naghizadeh, A.; Ekolu, S.O. Effect of Mix Parameters on Strength of Geopolymer Mortars-Experimental Study. In Proceedings of the Sixth International Conference on Durability of Concrete Structures at Leeds, West Yorkshire, UK, 18–20 July 2018. [Google Scholar]
- Hattaf, R.; Aboulayt, A.; Samdi, A.; Lahlou, N.; Touhami, M.O.; Gomina, M.; Moussa, R. Reusing Geopolymer Waste from Matrices Based on Metakaolin or Fly Ash for the Manufacture of New Binder Geopolymeric Matrices. Sustainability 2021, 13, 8070. [Google Scholar] [CrossRef]
- Merabtene, M.; Kacimi, L.; Clastres, P. Elaboration of geopolymer binders from poor kaolin and dam sludge waste. Heliyon 2019, 5, e01938. [Google Scholar] [CrossRef]
- Kheradmand, M.; Abdollahnejad, Z.; Pacheco-Torgal, F. Drying shrinkage of fly ash geopolymeric mortars reinforced with polymer hybrid fibers. Proc. Inst. Civ. Eng. Constr. Mater. 2020, 173, 28–40. [Google Scholar] [CrossRef]
- Friedlander, L.R.; Weisbrod, N.; Garb, Y.J. Climatic and soil-mineralogical controls on the mobility of trace metal contamination released by informal electronic waste (e-waste) processing. Chemosphere 2019, 232, 130–139. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Y.; Yang, T.; Li, L.; Zhu, H.; Wang, H. Conversion of local industrial wastes into greener cement through geopolymer technology: A case study of high-magnesium nickel slag. J. Clean. Prod. 2017, 141, 463–471. [Google Scholar] [CrossRef]
- Aboshia, A.M.A.; Rahmat, R.A.; Zain, M.F.M.; Ismail, A. Enhancing mortar strengths by ternary geopolymer binder of metakaolin, slag, and palm ash. Int. J. Build. Pathol. Adapt. 2017, 35, 438–455. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Mechanical and durability properties of fly ash geopolymer concrete containing recycled coarse aggregates. Int. J. Sustain. Built Environ. 2016, 5, 277–287. [Google Scholar] [CrossRef]
- De Oliveira, L.B.; de Azevedo, A.R.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of geopolymers with industrial waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Cilla, M.S.; Colombo, P.; Morelli, M.R. Geopolymer foams by gel casting. Ceram. Int. 2014, 40, 5723–5730. [Google Scholar] [CrossRef]
- Rovnaník, P. Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr. Build. Mater. 2010, 24, 1176–1183. [Google Scholar] [CrossRef]
- Le, V.S.; Louda, P. Research of Curing Time and Temperature-Dependent Strengths and Fire Resistance of Geopolymer Foam Coated on an Aluminum Plate. Coatings 2021, 11, 87. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Le, V.S.; Louda, P.; Szczypiński, M.M.; Ercoli, R.; Růžek, V.; Łoś, P.; Prałat, K.; Plaskota, P.; Pacyniak, T.; et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers 2022, 14, 304. [Google Scholar] [CrossRef]
- Le Chi, H.; Louda, P.; Le Van, S.; Volesky, L.; Kovacic, V.; Bakalova, T. Composite Performance Evaluation of Basalt Textile-Reinforced Geopolymer Mortar. Fibers 2019, 7, 63. [Google Scholar] [CrossRef]
- Szczypinski, M.M.; Louda, P.; Exnar, P.; Le Chi, H.; Kovačič, V.; Van Su, L.; Voleský, L.; Bayhan, E.; Bakalova, T. Evaluation of Mechanical Properties of Composite Geopolymer Blocks Reinforced with Basalt Fibres. Manuf. Technol. 2018, 18, 861–865. [Google Scholar] [CrossRef]
- Ercoli, R.; Laskowska, D.; Nguyen, V.V.; Le, V.S.; Louda, P.; Łoś, P.; Ciemnicka, J.; Prałat, K.; Renzulli, A.; Paris, E.; et al. Mechanical and Thermal Properties of Geopolymer Foams (GFs) Doped with By-Products of the Secondary Aluminum Industry. Polymers 2022, 14, 703. [Google Scholar] [CrossRef]
- Mostefa, F.; Bouhamou, N.-E.; Aggoune, S.; Mesbah, H. Elaboration of geopolymer cement based on dredged sediment. J. Mater. Eng. Struct. 2019, 6, 39–51. [Google Scholar]
- Kan, L.; Wang, W.; Wang, J.; Duan, X. Preparation and Tensile Property of Metakaolin-Fly Ash Based Engineered Geopolymer Composites. Jianzhu Cailiao Xuebao J. Build. Mater. 2019, 22, 5. [Google Scholar] [CrossRef]
- Mas, M.A.; Tashima, M.M.; Payá, J.; Borrachero, M.; Soriano, L.; Monzó, J. A Binder from Alkali Activation of FCC Waste: Use in Roof Tiles Fabrication. Key Eng. Mater. 2016, 668, 411–418. [Google Scholar] [CrossRef]
- Ojha, P.N.; Materials, I.N.C.F.C.A.B.; Singh, B.; Kaura, P.; Singh, A. Lightweight geopolymer fly ash sand: An alternative to fine aggregate for concrete production. Res. Eng. Struct. Mater. 2021, 7, 3. [Google Scholar] [CrossRef]
- Sivasakthi, M.; Jeyalakshmi, R. Effect of change in the silica modulus of sodium silicate solution on the microstructure of fly ash geopolymers. J. Build. Eng. 2021, 44, 102939. [Google Scholar] [CrossRef]
- Muduli, S.D.; Nayak, B.D.; Mishra, B.K. Geopolymer fly ash building brick by atmospheric curing. Int. J. Chem. Sci. 2014, 12, 1086–1094. [Google Scholar]
- Sun, H.; Zeng, L.; Peng, T. Research Status and Progress of High-value Utilization of Coal Fly Ash. Cailiao Daobao Mater. Rep. 2021, 35, 03010–03015. [Google Scholar] [CrossRef]
- Li, C.; Li, J.; Ren, Q.; Zhao, Y.; Jiang, Z. Degradation mechanism of blended cement pastes in sulfate-bearing environments under applied electric fields: Sulfate attack vs. decalcification. Compos. Part B Eng. 2022, 246, 110255. [Google Scholar] [CrossRef]
- Li, J.; Zhang, W.; Li, C.; Monteiro, P.J. Eco-friendly mortar with high-volume diatomite and fly ash: Performance and life-cycle assessment with regional variability. J. Clean. Prod. 2020, 261, 121224. [Google Scholar] [CrossRef]
- Koumoto, T. Production of High Compressive Strength Geopolymers Considering Fly Ash or Slag Chemical Composition. J. Mater. Civ. Eng. 2019, 31, 8. [Google Scholar] [CrossRef]
- Sanjay, K.; Rakesh, K. Tailoring Geopolymer Properties through Mechanical Activation of Fly Ash. 2010. Available online: https://www.semanticscholar.org/paper/Tailoring-geopolymer-properties-through-mechanical-Kumar-Kumar/85937be89e1451b54467c2095ad2fda2bc73abc5 (accessed on 7 October 2022).
- Saif, M.S.; El-Hariri, M.O.; Sarie-Eldin, A.I.; Tayeh, B.A.; Farag, M.F. Impact of Ca+ content and curing condition on durability performance of metakaolin-based geopolymer mortars. Case Stud. Constr. Mater. 2022, 16, e00922. [Google Scholar] [CrossRef]
- Guo, X.; Pan, X. Effects of Steel Slag on Mechanical Properties and Mechanism of Fly Ash–Based Geopolymer. J. Mater. Civ. Eng. 2020, 32, 2. [Google Scholar] [CrossRef]
- Dinesh, H.T.; Shivakumar, M.; Dharmaprakash, M.S.; Ranganath, R.V. Influence of reactive SiO2 and Al2O3 on mechanical and durability properties of geopolymers. Asian J. Civ. Eng. 2019, 20, 1203–1215. [Google Scholar] [CrossRef]
- Buchwald, A.; Dombrowski, K.; Weil, M. The influence of calcium content on the performance of geopolymeric binder especially the resistance against acids. Proc. World Geopolym. 2005, 29, 6. [Google Scholar]
- Yaswanth, K.; Revathy, J.; Gajalakshmi, P. Strength, durability and micro-structural assessment of slag-agro blended based alkali activated engineered geopolymer composites. Case Stud. Constr. Mater. 2022, 16, e00920. [Google Scholar] [CrossRef]
- Radhi, M.S.; Al-Ghaban, A.M.H.; Al-Hydary, I.A.D. RSM Optimizing the Characteristics of Metakaolin based Geopolymer Foam. J. Phys. Conf. Ser. 2021, 1973, 012151. [Google Scholar] [CrossRef]
- Caicedo, M.A.V.; De Gutiérrez, R.M. Synthesis of ternary geopolymers based on metakaolin, boiler slag and rice husk ash. DYNA 2015, 82, 104–110. [Google Scholar] [CrossRef]
- Elimbi, A.; Tchakoute, H.; Kondoh, M.; Manga, J.D. Thermal behavior and characteristics of fired geopolymers produced from local Cameroonian metakaolin. Ceram. Int. 2014, 40, 4515–4520. [Google Scholar] [CrossRef]
- Talakokula, V.; Singh, R.; Karunakaran, V. Effect of delay time and duration of steam curing on compressive strength and microstructure of fly ash based geopolymer concrete. Indian Concr. J. 2015, 89, 69–72. [Google Scholar]
- Yin, X.; Wang, X.; Fang, Y.; Ding, Z. Influence of curing age on high-temperature properties of additive manufactured geopolymer mortar. E3S Web Conf. 2020, 218, 03019. [Google Scholar] [CrossRef]
- Kamal, M.A. Recycling of Fly Ash as an Energy Efficient Building Material: A Sustainable Approach. Key Eng. Mater. 2016, 692, 54–65. [Google Scholar] [CrossRef]
- Mahdi, S.N.; Hossiney, N.; Abdullah, M.M.A.B. Strength and durability properties of geopolymer paver blocks made with fly ash and brick kiln rice husk ash. Case Stud. Constr. Mater. 2022, 16, e00800. [Google Scholar] [CrossRef]
- Kalinkin, A.M.; Gurevich, B.I.; Kalinkina, E.V.; Semushin, V.V. Synthesis of geopolymers based on mechanically activated low-calcium iron-rich fly ash. Environ. Prog. Sustain. Energy 2022, 41, e13733. [Google Scholar] [CrossRef]
- Buketov, A.; Academy, U.K.S.M.; Sharko, A.; Zinchenko, D.; Stepanchikov, D. To the problem of ingredients optimization of composite materials based on epoxy resin. Bull. Karaganda Univ. 2017, 86, 37–44. [Google Scholar] [CrossRef]
- Standards. Available online: https://standards.iteh.ai/catalog/standards/cen/14596d4c-119b-4a78-94e1-3fe481a29bde/en-1015-11-2019 (accessed on 7 October 2022).
- ISO. Available online: https://www.iso.org/standard/63802.html (accessed on 7 October 2022).
SiO2 (wt.%) | Al2O3 (wt.%) | TiO2 (wt.%) | Fe2O3 (wt.%) | K2O (wt.%) | CaO (wt.%) | MgO (wt.%) | Na2O (wt.%) | C (wt.%) | LOI (wt.%) | |
---|---|---|---|---|---|---|---|---|---|---|
MK | 54.10 | 40.10 | 1.80 | 1.10 | 0.80 | 0.13 | 0.18 | - | - | 2.20 |
SF | 90 | 1 | - | - | - | 0.8 | 1.5 | 0.5 | - | - |
CFs | - | - | - | - | - | - | - | - | >95 | - |
FLY ASH | FA1 | FA2 | FA3 | FA4 | FA5 | FA6 | FA7 |
---|---|---|---|---|---|---|---|
T (°C) | 835 | 615 | 725 | ||||
TPPs/Element (wt.%) | Louchovice | Cesky Krumlov | Pisek | Otin | Mydlovy | Trhove Sviny | |
O | 40.4 | 43.2 | 32.3 | 32.7 | 39.5 | 60.3 | 33.1 |
C | 32.9 | 30.0 | 50.0 | 50.7 | 32.5 | - | 43.2 |
Ca | 9.4 | 5.2 | 9.8 | 3.3 | 10.7 | 9.4 | 5.4 |
Si | 6.6 | 6.1 | 2.4 | 3.7 | 5.7 | 9.9 | 2.1 |
K | 3.6 | 3.1 | 1.9 | 3.6 | 2.9 | 8.9 | 7.2 |
Al | 1.9 | 3.5 | 0.9 | 1.1 | 1.5 | 1.2 | 0.9 |
S | 1.4 | 1.3 | 0.9 | 1.2 | 1.0 | 2.8 | 3.2 |
Mg | 1.0 | 2.3 | 0.5 | 0.9 | 2.1 | 1.5 | 1.3 |
Cl | 0.8 | 0.5 | 0.5 | 1.0 | 0.5 | 2.3 | 1.4 |
Na | - | - | 0.4 | 0.7 | 0.4 | 1.2 | 0.8 |
Fe | 0.6 | 3.5 | 0.4 | 0.4 | 0.9 | 0.9 | 0.6 |
P | - | - | 0.2 | 0.3 | 1.1 | 0.5 | 0.4 |
Mn | - | - | - | 0.3 | 1.0 | 0.5 | 0.5 |
Zn | - | - | - | 0.1 | 0.2 | 0.6 | - |
Ti | - | - | - | 0.1 | - | - | - |
FLY ASH | Crystalline Phase—Chemical Formula (wt.%) | ||||||
---|---|---|---|---|---|---|---|
Calcite | Quartz | Syngenite | Magnesite | Aluminum Oxide | Arcanite | Corundum | |
CaCO3 | SiO2 | K2Ca(SO4)2·H2O | MgCO3 | Al2O3 | K2SO4 | Al2O3 | |
FA1 | 35.2 | 37.1 | 27.7 | - | - | - | - |
FA2 | 42.7 | 55.8 | - | 0.9 | 0.5 | - | - |
FA3 | 35.2 | 37.1 | - | - | - | 27.7 | - |
FA4 | 34.0 | 35.2 | - | - | - | 30.8 | - |
FA5 | 39.7 | 39.0 | - | - | - | 21.3 | - |
FA6 | 39.9 | 38.2 | - | - | - | 21.9 | - |
FA7 | 31.3 | 29.7 | - | - | - | 38.4 | 0.6 |
FLY ASH | Grain Size Parameters | Volume | Number | Surface | Rosin-Rammler |
---|---|---|---|---|---|
FA1 | D10 (μm) | 20.851 | 16.626 | 18.645 | 20.049 |
D50 (μm) | 39.737 | 21.821 | 30.307 | 40.132 | |
D90 (μm) | 63.698 | 38.889 | 56.161 | 62.539 | |
Mean Size (μm) | 43.127 | 26.364 | 36.331 | 42.904 | |
Span | 1.078 | 1.020 | 1.238 | 1.059 | |
D [5,3] (μm) | 46.416 | - | - | - | |
FA2 | D10 (μm) | 18.015 | 1.4756 | 14.453 | 18.000 |
D50 (μm) | 39.510 | 1.7204 | 26.462 | 39.174 | |
D90 (μm) | 65.290 | 14.378 | 55.507 | 64.571 | |
Mean Size (μm) | 42.493 | 4.293 | 32.722 | 42.416 | |
Span | 1.197 | 7.500 | 1.551 | 1.189 | |
D [5,3] (μm) | 46.507 | - | - | - | |
FA3 | D10 (μm) | 20.459 | 15.848 | 18.017 | 19.972 |
D50 (μm) | 41.021 | 20.997 | 30.212 | 41.019 | |
D90 (μm) | 66.306 | 38.346 | 57.873 | 65.314 | |
Mean Size (μm) | 44.202 | 25.529 | 36.579 | 44.032 | |
Span | 1.118 | 1.071 | 1.319 | 1.105 | |
D [5,3] (μm) | 47.818 | - | - | - | |
FA4 | D10 (μm) | 22.000 | 16.851 | 19.259 | 21.899 |
D50 (μm) | 42.902 | 22.632 | 33.463 | 42.787 | |
D90 (μm) | 66.899 | 42.355 | 59.257 | 66.134 | |
Mean Size (μm) | 45.781 | 27.657 | 38.735 | 45.632 | |
Span | 1.047 | 1.127 | 1.195 | 1.034 | |
D [5,3] (μm) | 49.073 | - | - | - | |
FA5 | D10 (μm) | 16.279 | 0.01157 | 0.01798 | 13.019 |
D50 (μm) | 41.021 | 0.02069 | 0.3592 | 39.771 | |
D90 (μm) | 70.329 | 0.03702 | 44.283 | 81.091 | |
Mean Size (μm) | 43.960 | 0.04670 | 13.696 | 46.123 | |
Span | 1.318 | 1.230 | 123.218 | 1.712 | |
D [5,3] (μm) | 49.018 | - | - | - | |
FA6 | D10 (μm) | 15.723 | 0.4177 | 1.7900 | 14.723 |
D50 (μm) | 39.789 | 0.4968 | 19.464 | 38.732 | |
D90 (μm) | 69.142 | 1.7044 | 53.559 | 71.771 | |
Mean Size (μm) | 42.931 | 0.8589 | 25.218 | 43.420 | |
Span | 1.343 | 2.590 | 2.660 | 1.473 | |
D [5,3] (μm) | 47.966 | - | - | - | |
FA7 | D10 (μm) | 21.204 | 16.708 | 18.884 | 20.647 |
D50 (μm) | 39.611 | 22.247 | 31.144 | 40.043 | |
D90 (μm) | 62.222 | 39.711 | 55.415 | 61.254 | |
Mean Size (μm) | 42.807 | 26.821 | 36.514 | 42.616 | |
Span | 1.036 | 1.034 | 1.173 | 1.014 | |
D [5,3] (μm) | 45.820 | - | - | - |
Metakaolin (MK) | Activator (A) | Fly Ash (FA1–7) | Carbon Fibers (CFs) | Silica Fume (SF) | |
---|---|---|---|---|---|
Density—ρ (kg/m3) | 1220 | 1640 | 625.89 | 1800 | 350 |
645.53 | |||||
669.08 | |||||
667.89 | |||||
702.92 | |||||
692.05 | |||||
623.23 | |||||
Particle size (μm) | 20 | - | 15–10,000 | 6000 | 100 |
Components ratios | 1 | 0.9 MK | 1 MK | 0.02 MK | 0.08 MK |
0.75 MK | |||||
0.50 MK |
Geopolymer—GP | Fly Ash—FA Content | Density—ρ (kg/m3) | Flexural Strength—σf (MPa) | Compressive Strength—σc (MPa) | Charpy Impact Strength—σi (KJ/m2) |
---|---|---|---|---|---|
GP.FA1 | 1 max | 1850 | 7.14 ± 0.31 | 34.33 ± 3.53 | 12.22 ± 0.34 |
0.75 max | 1610 | 6.34 ± 0.45 | 32.27 ± 2.57 | 8.26 ± 0.30 | |
0.5 max | 1250 | 5.55 ± 0.05 | 27.96 ± 4.05 | 8.35 ± 0.32 | |
GP.FA2 | 1 max | 1430 | 5.50 ± 0.17 | 27.88 ± 2.55 | 8.25 ± 0.70 |
0.75 max | 1510 | 5.37 ± 0.05 | 27.18 ± 1.04 | 13.57 ± 0.55 | |
0.5 max | 1620 | 5.48 ± 0.08 | 29.44 ± 1.51 | 27.17 ± 0.33 | |
GP.FA3 | 1 max | 1300 | 4.44 ± 0.12 | 16.77 ± 0.67 | 8.46 ± 1.14 |
0.75 max | 1290 | 4.88 ± 0.07 | 19.66 ± 0.82 | 14.30 ± 0.51 | |
0.5 max | 1400 | 4.27 ± 0.11 | 24.18 ± 2.08 | 8.26 ± 0.39 | |
GP.FA4 | 1 max | 1330 | 4.06 ± 0.05 | 15.42 ± 2.10 | 4.54 ± 0.38 |
0.75 max | 1400 | 4.54 ± 0.05 | 20.03 ± 1.45 | 4.57 ± 0.33 | |
0.5 max | 1120 | 4.46 ± 0.14 | 21.97 ± 2.70 | 3.55 ± 0.24 | |
GP.FA5 | 1 max | 1070 | 3.35 ± 0.01 | 11.13 ± 1.12 | 3.60 ± 0.29 |
0.75 max | 1120 | 3.79 ± 0.12 | 16.06 ± 1.09 | 5.53 ± 0.38 | |
0.5 max | 1050 | 4.28 ± 0.08 | 20.51 ± 0.87 | 4.24 ± 0.25 | |
GP.FA6 | 1 max | 1240 | 3.71 ± 0.05 | 21.17 ± 1.26 | 4.06 ± 0.23 |
0.75 max | 1190 | 4.29 ± 0.03 | 20.79 ± 2.88 | 9.07 ± 0.35 | |
0.5 max | 1140 | 4.67 ± 0.17 | 31.43 ± 1.78 | 6.34 ± 0.36 | |
GP.FA7 | 1 max | 1160 | 3.36 ± 0.05 | 14.38 ± 0.39 | 6.27 ± 0.23 |
0.75 max | 1220 | 3.50 ± 0.01 | 15.57 ± 0.41 | 5.63 ± 0.18 | |
0.5 max | 1140 | 4.18 ± 0.21 | 21.76 ± 0.46 | 3.48 ± 0.37 |
GP | ρ | σf | σc | σi | min | max | ya | yms | ymd | |
---|---|---|---|---|---|---|---|---|---|---|
GP.FA1 | 1.000 | 0.018 | 0.014 | 0.635 | 0.014 | 1.000 | 0.507 | 0.417 | 0.114 | 0.374 |
0.703 | 0.226 | 0.101 | 0.800 | 0.101 | 0.800 | 0.451 | 0.458 | 0.337 | 0.394 | |
0.259 | 0.429 | 0.285 | 0.796 | 0.259 | 0.796 | 0.528 | 0.442 | 0.398 | 0.379 | |
GP.FA2 | 0.481 | 0.442 | 0.288 | 0.800 | 0.288 | 0.800 | 0.544 | 0.503 | 0.471 | 0.419 |
0.580 | 0.477 | 0.318 | 0.578 | 0.318 | 0.580 | 0.449 | 0.488 | 0.475 | 0.407 | |
0.716 | 0.448 | 0.222 | 0.011 | 0.011 | 0.716 | 0.363 | 0.349 | 0.168 | 0.313 | |
GP.FA3 | 0.321 | 0.718 | 0.760 | 0.792 | 0.321 | 0.792 | 0.556 | 0.648 | 0.610 | 0.510 |
0.309 | 0.605 | 0.637 | 0.548 | 0.309 | 0.637 | 0.473 | 0.525 | 0.505 | 0.432 | |
0.444 | 0.763 | 0.445 | 0.800 | 0.444 | 0.800 | 0.622 | 0.613 | 0.590 | 0.488 | |
GP.FA4 | 0.358 | 0.817 | 0.817 | 0.955 | 0.358 | 0.955 | 0.657 | 0.737 | 0.691 | 0.561 |
0.444 | 0.692 | 0.622 | 0.954 | 0.444 | 0.954 | 0.699 | 0.678 | 0.654 | 0.527 | |
0.099 | 0.713 | 0.539 | 0.997 | 0.099 | 0.997 | 0.548 | 0.587 | 0.441 | 0.479 | |
GP.FA5 | 0.037 | 1.000 | 1.000 | 0.994 | 0.037 | 1.000 | 0.518 | 0.758 | 0.439 | 0.581 |
0.099 | 0.887 | 0.790 | 0.914 | 0.099 | 0.914 | 0.507 | 0.672 | 0.502 | 0.530 | |
0.012 | 0.759 | 0.601 | 0.968 | 0.012 | 0.968 | 0.490 | 0.585 | 0.275 | 0.480 | |
GP.FA6 | 0.247 | 0.906 | 0.573 | 0.975 | 0.247 | 0.975 | 0.611 | 0.675 | 0.595 | 0.530 |
0.185 | 0.757 | 0.589 | 0.766 | 0.185 | 0.766 | 0.476 | 0.574 | 0.502 | 0.467 | |
0.124 | 0.659 | 0.137 | 0.880 | 0.124 | 0.880 | 0.502 | 0.450 | 0.315 | 0.390 | |
GP.FA7 | 0.148 | 0.998 | 0.862 | 0.883 | 0.148 | 0.998 | 0.573 | 0.723 | 0.579 | 0.558 |
0.222 | 0.961 | 0.811 | 0.910 | 0.222 | 0.961 | 0.592 | 0.726 | 0.630 | 0.558 | |
0.124 | 0.784 | 0.548 | 1.000 | 0.124 | 1.000 | 0.562 | 0.614 | 0.480 | 0.495 | |
LaPlace | Vlad | Hurwitz | ||||||||
0.011 | 0.580 | 0.363 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharko, A.; Louda, P.; Nguyen, V.V.; Buczkowska, K.E.; Stepanchikov, D.; Ercoli, R.; Kascak, P.; Le, V.S. Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers. Ceramics 2023, 6, 525-537. https://doi.org/10.3390/ceramics6010031
Sharko A, Louda P, Nguyen VV, Buczkowska KE, Stepanchikov D, Ercoli R, Kascak P, Le VS. Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers. Ceramics. 2023; 6(1):525-537. https://doi.org/10.3390/ceramics6010031
Chicago/Turabian StyleSharko, Artem, Petr Louda, Van Vu Nguyen, Katarzyna Ewa Buczkowska, Dmitry Stepanchikov, Roberto Ercoli, Patrik Kascak, and Van Su Le. 2023. "Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers" Ceramics 6, no. 1: 525-537. https://doi.org/10.3390/ceramics6010031
APA StyleSharko, A., Louda, P., Nguyen, V. V., Buczkowska, K. E., Stepanchikov, D., Ercoli, R., Kascak, P., & Le, V. S. (2023). Multicriteria Assessment for Calculating the Optimal Content of Calcium-Rich Fly Ash in Metakaolin-Based Geopolymers. Ceramics, 6(1), 525-537. https://doi.org/10.3390/ceramics6010031