Synthesis and Dielectric Relaxation Studies of KxFeyTi8-yO16 (x = 1.4–1.8 and y = 1.4–1.6) Ceramics with Hollandite Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheary, R.W. An analysis of the structural characteristics of hollandite compounds. Acta Crystallogr. Sect. B Struct. Sci. 1986, 42, 229–236. [Google Scholar] [CrossRef]
- Aubin-Chevaldonnet, V.; Caurant, D.; Dannoux, A.; Gourier, D.; Charpentier, T.; Mazerolles, L.; Advocat, T. Preparation and characterization of (Ba, Cs)(M, Ti)8O16 (M = Al3+, Fe3+, Ga3+, Cr3+, Sc3+, Mg2+) hollandite ceramics developed for radioactive cesium immobilization. J. Nucl. Mater. 2007, 366, 137–160. [Google Scholar] [CrossRef]
- Carter, M.L.; Withers, R.L. A universally applicable composite modulated structure approach to ordered BaxMyTi8−yO16 hollandite-type solid solutions. J. Solid State Chem. 2005, 178, 1903–1914. [Google Scholar] [CrossRef]
- Amoroso, J.; Marra, J.; Conradson, S.D.; Tang, M.; Brinkman, K. Melt processed single phase hollandite waste forms for nuclear waste immobilization: Ba1.0Cs0.3A2.3Ti5.7O16; A = Cr, Fe, Al. J. Alloys Compd. 2014, 584, 590–599. [Google Scholar] [CrossRef]
- Fang, Z.; Xu, X.; Yang, X.; Xie, H.; Zhao, X.; Wang, B.; Yang, Y. Structural stability and aqueous durability of Cs incorporation into BaAl2Ti6O16 hollandite. J. Nucl. Sci. Technol. 2022, 565, 153716. [Google Scholar] [CrossRef]
- Ma, J.; Fang, Z.; Yang, X.; Wang, B.; Luo, F.; Zhao, X.; Yang, Y. Investigating hollandite–perovskite composite ceramics as a potential waste form for immobilization of radioactive cesium and strontium. J. Mater. Sci. 2021, 56, 9644–9654. [Google Scholar] [CrossRef]
- Bailey, D.J.; Stennett, M.C.; Hyatt, N.C. Ba1.2-xCsxM1.2-x/2Ti6.8+ x/2O16 (M = Ni, Zn) hollandites for the immobilisation of radiocaesium. MRS Adv. 2020, 5, 55–64. [Google Scholar] [CrossRef]
- Weng, D.; Duan, H.; Hou, Y.; Huo, J.; Chen, L.; Zhang, F.; Wang, J. Introduction of manganese based lithium-ion Sieve-A review. Prog. Nat. Sci. 2020, 30, 139–152. [Google Scholar] [CrossRef]
- Sabaté, F.; Sabater, M.J. Recent Manganese Oxide Octahedral Molecular Sieves (OMS–2) with Isomorphically Substituted Cationic Dopants and Their Catalytic Applications. Catalysts 2021, 11, 1147. [Google Scholar] [CrossRef]
- Sabaté, F.; Jordà, J.L.; Sabater, M.J. Ruthenium isomorphic substitution into manganese oxide octahedral molecular sieve OMS-2: Comparative physic-chemical and catalytic studies of Ru versus abundant metal cationic dopants. Catal. Today 2022, 394, 414–424. [Google Scholar] [CrossRef]
- Jo, J.H.; Kim, H.J.; Yaqoob, N.; Ihm, K.; Guillon, O.; Sohn, K.S.; Myung, S.T. Hollandite-type potassium titanium oxide with exceptionally stable cycling performance as a new cathode material for potassium-ion batteries. Energy Stor. Mater. 2023, 54, 680–688. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Grigoriev, V.V.; Alekseeva, A.M.; Ryazantsev, S.V.; Tyablikov, O.A.; Chernyshov, D.; Abakumov, A.M.; Antipov, E.V. Phase Transformations and Charge Ordering during Li+ Intercalation into Hollandite-Type TiO2 Studied by Operando Synchrotron X-ray Powder Diffraction. Eur. J. Inorg. Chem. 2020, 2020, 743–748. [Google Scholar] [CrossRef]
- Dai, J.; Li, S.F.; Siow, K.S.; Gao, Z. Synthesis and characterization of the hollandite-type MnO2 as a cathode material in lithium batteries. Electrochim. Acta 2000, 45, 2211–2217. [Google Scholar] [CrossRef]
- Barbato, S.; Gautier, J.L. Hollandite cathodes for lithium ion batteries. 2. Thermodynamic and kinetics studies of lithium insertion into BaMMn7O16 (M = Mg, Mn, Fe, Ni). Electrochim. Acta 2001, 46, 2767–2776. [Google Scholar] [CrossRef]
- Yoshikado, S.; Michiue, Y.; Onoda, Y.; Watanabe, M. Ion conduction in single crystals of the hollandite-type one-dimensional superionic conductor NaxCrxTi8−xO16 (x = 1.7). Solid State Ion. 2000, 136, 371–374. [Google Scholar] [CrossRef]
- He, Y.; Sun, Y.; Lu, X.; Gao, J.; Li, H.; Li, H. First-principles prediction of fast migration channels of potassium ions in KAlSi3O8 hollandite: Implications for high conductivity anomalies in subduction zones. Geophys. Res. Lett. 2016, 43, 6228–6233. [Google Scholar] [CrossRef]
- Takahashi, T.; Kuwabara, K. Ionic conductivities of hollandites. Electrochim. Acta 1978, 23, 375–379. [Google Scholar] [CrossRef]
- Rahimi, N.; Pax, R.A.; Gray, E.M. Review of functional titanium oxides. I: TiO2 and its modifications. Prog. Solid State Chem. 2016, 44, 86–105. [Google Scholar] [CrossRef]
- Whittle, K.R.; Ashbrook, S.E.; Lumpkin, G.R.; Farnan, I.; Smith, R.I.; Redfern, S.A. The effect of caesium on barium hollandites studied by neutron diffraction and magic-angle spinning (MAS) nuclear magnetic resonance. J. Mater. Sci. 2007, 42, 9379–9391. [Google Scholar] [CrossRef]
- Kesson, S.E.; White, T.J. [BaxCsy][(Ti,Al)3+2x+yTi4+8-2x-y]O16 Synroc-Type Hollandites. I. Phase Chemistry. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1986, 405, 73–101. [Google Scholar]
- Kesson, S.E.; White, T.J. [BaxCsy][(Ti,Al)3+2x+yTi4+8-2x-y]O16 Synroc-Type Hollandites. II. Structural Chemistry. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1986, 408, 295–319. [Google Scholar]
- Cheary, R.W. Structural Analysis of Hollandite BaxTi3+2xTi4+8-2xO16 with x = 1.07 and 1.31 from 5 to 500 K. Acta Crystallogr. 1990, 46, 599–609. [Google Scholar] [CrossRef]
- Cheary, R.W. Caesium Substitution in the Titanate Hollandites BaxCsy(Ti3+y+2xTi4+8-2x-y)O16 from 5 to 400 K. Acta Crystallogr. 1991, 47, 325–333. [Google Scholar] [CrossRef]
- Kesson, S.; White, T. Radius ratio tolerance factors and the stability of hollandites. J. Solid State Chem. 1986, 63, 122–125. [Google Scholar] [CrossRef]
- Hassan, Q.U.; Yang, D.; Zhou, J.P.; Lei, Y.X.; Wang, J.Z.; Awan, S.U. Novel single-crystal hollandite K1.46Fe0.8Ti7.2O16 microrods: Synthesis, double absorption, and magnetism. Inorg. Chem. 2018, 57, 15187–15197. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, F.; Furui, K.; Shiiba, H.; Yubuta, K.; Sudare, T.; Terashima, C.; Teshima, K. Flux growth of single-crystalline hollandite-type potassium ferrotitanate microrods from KCl flux. Front. Chem. 2020, 8, 714. [Google Scholar] [CrossRef] [PubMed]
- Gorshkov, N.V.; Goffman, V.G.; Vikulova, M.A.; Kovaleva, D.S.; Tretyachenko, E.V.; Gorokhovsky, A.V. Temperature-dependence of electrical properties for the ceramic composites based on potassium polytitanates of different chemical composition. J. Electroceram. 2018, 40, 306–315. [Google Scholar] [CrossRef]
- Carter, M.L. Tetragonal to monoclinic phase transformation at room temperature in BaxFe2xTi8− 2xO16 hollandite due to increased Ba occupancy. Mater. Res. Bull. 2004, 39, 1075–1081. [Google Scholar] [CrossRef]
- Ebinumoliseh, I.; Grosvenor, A.P. Effect of Synthetic Method and Annealing Temperature on the Structure of Hollandite-Type Oxides. Inorg. Chem. 2018, 57, 14353–14361. [Google Scholar] [CrossRef]
- Besprozvannykh, N.V.; Sinel’shchikova, O.Y.; Morozov, N.A.; Kuchaeva, S.K.; Galankina, O.L. Combustion synthesis and electrophysical properties of hollandites of the system K2O–MeO–TiO2 (Me = Mg, Ni, Cu). Ceram. Int. 2022, 48, 24283–24289. [Google Scholar] [CrossRef]
- Cao, C.; Singh, K.; Kan, W.H.; Avdeev, M.; Thangadurai, V. Electrical Properties of Hollandite-Type Ba1.33Ga2.67Ti5.33O16, K1.33Ga1.33Ti6.67O16, and K1.54Mg0.77Ti7.23O16. Inorg. Chem. 2019, 58, 4782–4791. [Google Scholar] [CrossRef]
- Morozov, N.A.; Sinelshchikova, O.Y.; Besprozvannykh, N.V.; Ugolkov, V.L. Citrate-Nitrate Synthesis and the Electrophysical Properties of Ceramics in the K2O–TiO2–Fe2O3 System. Glass Phys. Chem. 2021, 47, 481–488. [Google Scholar] [CrossRef]
- Moetakef, P.; Larson, A.M.; Hodges, B.C.; Zavalij, P.; Gaskell, K.J.; Piccoli, P.M.; Rodriguez, E.E. Synthesis and crystal chemistry of microporous titanates Kx(Ti, M)8O16 where M = Sc – Ni. J. Solid State Chem. 2014, 220, 45–53. [Google Scholar] [CrossRef]
- Gorshkov, N.; Vikulova, M.; Gorbunov, M.; Mikhailova, D.; Burmistrov, I.; Kiselev, M.; Artyukhov, D.; Gorokhovsky, A. Synthesis of the hollandite-like copper doped potassium titanate high-k ceramics. Ceram. Int. 2021, 47, 5721–5729. [Google Scholar] [CrossRef]
- Gorokhovsky, A.V.; Tretyachenko, E.V.; Goffman, V.G.; Gorshkov, N.V.; Fedorov, F.S.; Sevryugin, A.V. Preparation and dielectric properties of ceramics based on mixed potassium titanates with the hollandite structure. Inorg. Mater. 2016, 52, 587–592. [Google Scholar] [CrossRef]
- Pearsall, F.; Farahmand, N.; Lombardi, J.; Dehipawala, S.; Gai, Z.; O’Brien, S. Structure–property trends in a hollandite multiferroic by Fe doping: Structural, magnetic and dielectric characterization of nanocrystalline BaMn3−xFexTi4O14+δ. J. Mater. Chem. C. 2020, 8, 7916–7927. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Bainyashev, A.; Goffman, V.; Gorokhovsky, A.; Gorshkov, N. Carbon Modification of K1.6Fe1.6Ti6.4O16 Nanoparticles to Optimize the Dielectric Properties of PTFE-Based Composites. Polymetrs 2022, 14, 4010. [Google Scholar] [CrossRef]
- Tsyganov, A.; Vikulova, M.; Artyukhov, D.; Bainyashev, A.; Goffman, V.; Gorokhovsky, A.; Gorshkov, N. Permittivity and Dielectric Loss Balance of PVDF/K1.6Fe1.6Ti6.4O16/MWCNT Three-Phase Composites. Polymetrs 2022, 14, 4609. [Google Scholar] [CrossRef]
- Charoonsuk, T.; Sriphan, S.; Pulphol, P.; Vittayakorn, W.; Vittayakorn, N.; Maluangnont, T. AC conductivity and dielectric properties of lepidocrocite-type alkali titanate tunable by interlayer cation and intralayer metal. Inorg. Chem. 2020, 59, 15813–15823. [Google Scholar] [CrossRef]
- Wang, M.; Li, L.; Zhang, K.; Xie, J. Colossal Permittivity Ti1–x(Eu0.5Ta0.5)xO2 Ceramics with Excellent Thermal Stability. ACS Appl. Electron. Mater. 2020, 2, 1700–1708. [Google Scholar] [CrossRef]
- Zhou, L.; Jiang, M.; Sun, Y.; Yang, D.; Xu, J.; Peng, Z.; Yang, Z. Good temperature stability and colossal permittivity in TiO2 ceramics doped with Cu2+ and W6+ ions. Ceram. Int. 2022, in press. [Google Scholar] [CrossRef]
- Kumar, R.; Zulfequar, M.; Senguttuvan, T.D. Molecular Kinetic Based Dielectric Polarization in Sol-gel Derived Nanocrystalline CaCu3Ti4O12. Adv. Mater. Res. 2013, 699, 387–391. [Google Scholar] [CrossRef]
- Volkov, A.S.; Koposov, G.D.; Perfiliev, R.O. On the physical meaning of disperse parameters of frequency dependence of dielectric permittivity in the Havriliak–Negami model. Opt. Spectrosc. 2018, 125, 379–382. [Google Scholar] [CrossRef]
- Grosse, C. A program for the fitting of Debye, Cole–Cole, Cole–Davidson, and Havriliak–Negami dispersions to dielectric data. J. Colloid Interface Sci. 2014, 419, 102–106. [Google Scholar] [CrossRef] [PubMed]
- Grosse, C. A program for the fitting of up to three Havriliak–Negami dispersions to dielectric data. J. Colloid Interface Sci. 2021, 600, 318–323. [Google Scholar] [CrossRef] [PubMed]
Sample | Unit Cell Parameters | Molar Ratio K:Fe:Ti | Quantitative Phase Composition | Content of the Secondary Phases of Ceramics, wt. % | |
---|---|---|---|---|---|
a = b, Å | c, Å | ||||
KFTO-1 | 10.157413 | 2.969236 | 1:1.128:4.239 | K1.49Fe1.68Ti6.32O16 | TiO2–8.1 |
KFTO-2 | 10.158443 | 2.967388 | 1:0.762:3.292 | K2.64Fe1.86Ti6.14O16 TiO2—19.6 wt. % Fe2TiO5—3.7 wt. % | TiO2–17.2 Fe2TiO5–2.8 |
KFTO-3 | 10.159733 | 2.967588 | 1:0.903:4.119 | K1.59Fe1.44Ti6.56O16 | TiO2–18.2 Fe2TiO5–3.6 |
KFTO-4 | 10.153814 | 2.970212 | 1:1.005:3.287 | K1.86Fe1.87Ti6.13O16 | TiO2–14.4 |
KFTO-5 | 10.157861 | 2.967388 | 1:0.929:3.476 | K1.81Fe1.69Ti6.31O16 | TiO2–17.7 |
KFTO-1 | KFTO-2 | KFTO-3 | KFTO-4 | KFTO-5 | |
---|---|---|---|---|---|
Ρmeas., g/cm3 | 3.469 | 3.433 | 3.401 | 3.300 | 3.421 |
Ρtheor., g/cm3 | 3.854 | 3.855 | 3.855 | 3.856 | 3.856 |
Parameters | KFTO-1 | KFTO-2 | KFTO-3 | KFTO-4 | KFTO-5 | |||||
---|---|---|---|---|---|---|---|---|---|---|
EPDD | IBLC | EPDD | IBLC | EPDD | IBLC | EPDD | IBLC | EPDD | IBLC | |
∆ε | 451 | 1134 | 377 | 511 | 306 | 2119 | 403 | 2734 | 554 | 527 |
α | 0.37 | 1 | 0.51 | 0.88 | 0.41 | 1 | 0.31 | 0.92 | 0.58 | 1 |
β | 1 | 0.24 | 0.77 | 0.35 | 1 | 0.25 | 0.26 | 1 | 0.44 | 0.21 |
τ,s | 5.51 × 10−6 | 0.356 | 1.15 × 10−6 | 0.197 | 2.53 × 10−6 | 0.385 | 3.74 × 10−6 | 0.259 | 1.03 × 10−6 | 0.689 |
σDC, S·cm−1 | 1.63 × 10−10 | 0.82 × 10−10 | 1.89 × 10−10 | 52.9 × 10−10 | 0.34 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsyganov, A.; Artyukhov, D.; Vikulova, M.; Morozova, N.; Zotov, I.; Brudnik, S.; Asmolova, A.; Zheleznov, D.; Gorokhovsky, A.; Gorshkov, N. Synthesis and Dielectric Relaxation Studies of KxFeyTi8-yO16 (x = 1.4–1.8 and y = 1.4–1.6) Ceramics with Hollandite Structure. Ceramics 2023, 6, 619-629. https://doi.org/10.3390/ceramics6010037
Tsyganov A, Artyukhov D, Vikulova M, Morozova N, Zotov I, Brudnik S, Asmolova A, Zheleznov D, Gorokhovsky A, Gorshkov N. Synthesis and Dielectric Relaxation Studies of KxFeyTi8-yO16 (x = 1.4–1.8 and y = 1.4–1.6) Ceramics with Hollandite Structure. Ceramics. 2023; 6(1):619-629. https://doi.org/10.3390/ceramics6010037
Chicago/Turabian StyleTsyganov, Alexey, Denis Artyukhov, Maria Vikulova, Natalia Morozova, Ilya Zotov, Sergey Brudnik, Aleksandra Asmolova, Denis Zheleznov, Alexander Gorokhovsky, and Nikolay Gorshkov. 2023. "Synthesis and Dielectric Relaxation Studies of KxFeyTi8-yO16 (x = 1.4–1.8 and y = 1.4–1.6) Ceramics with Hollandite Structure" Ceramics 6, no. 1: 619-629. https://doi.org/10.3390/ceramics6010037
APA StyleTsyganov, A., Artyukhov, D., Vikulova, M., Morozova, N., Zotov, I., Brudnik, S., Asmolova, A., Zheleznov, D., Gorokhovsky, A., & Gorshkov, N. (2023). Synthesis and Dielectric Relaxation Studies of KxFeyTi8-yO16 (x = 1.4–1.8 and y = 1.4–1.6) Ceramics with Hollandite Structure. Ceramics, 6(1), 619-629. https://doi.org/10.3390/ceramics6010037