Development of Lightweight Geopolymer Composites by Combining Various CDW Streams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Geopolymer Preparation
2.3. Mechanical Properties
2.4. Analytical Characterizations
2.5. Durability Tests
3. Results and Discussion
3.1. Curing Conditions Optimization
3.2. Lightweight BW Geopolymers
3.3. Fiber Reinforcement
3.4. Microstructure
3.5. Durability Performance
3.5.1. Sorptivity Tests
3.5.2. Long-Term Stability Tests
4. Conclusions
- Intense curing conditions (T = 80 °C and t = 72 h) are required to deliver a robust binding matrix from CDW brick (UCS = 42.5 MPa and FS = 3.6 MPa) that can be used as a basis for the incorporation of low-density aggregates and short plastic fibers. These curing conditions limit the application of the developed lightweight composites to the precast industry.
- EPS and PU wastes can be valorized in the synthesis of CDW-based geopolymers as artificial lightweight aggregates for reducing the total weight of the products. However, EPS achieved a better combination of density and mechanical strength, mainly due to its lower compressibility. Indeed, the maximum EPS content (3% wt.) achieved a density and UCS decrease of 52 and 84%, respectively, while the corresponding PU content (6% wt.) decreased the density and UCS by 25 and 75%, respectively. A control in the EPS content can lead to the development of geopolymeric materials for construction (≤0.5% wt.) or nonconstruction (>0.5% wt.) applications.
- The use of short PE fibers developed from CDWs can effectively reinforce lightweight BW geopolymers, enhancing their bending performance by up to 24%. The lightweight product containing 1.5% wt. EPS and 2.0% v/v PE fibers held the best combination of properties: UCS = 13.1 MPa, FS = 3.2 MPa, density = 1.4 g/cm3, and Young’s modulus = 1.3 GPa.
- The durability testing of the CDW-based geopolymers showed that the incorporation of lightweight aggregates and fibers (1.5% wt. EPS and 2.0% wt. PE fibers) into the geopolymer matrix modified their performance. Indeed, the freezing performance of the lightweight geopolymer composite containing 1.5% wt. EPS and 2.0% v/v PE fibers was greatly improved in relation to the reference sample. The sorptivity of the aforementioned sample (0.179 mm/min0.5) lay within the accepted range of cementitious materials, even though it was slightly higher than that of the reference sample.
- The developed geopolymer composites incorporated a high percent of CDW materials (higher than 70% on a solid precursor basis), revealing the high potential of geopolymer technology in the field of the circular economy.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ajayebi, A.; Hopkinson, P.; Zhou, K.; Lam, D.; Chen, H.M.; Wang, Y. Spatiotemporal Model to Quantify Stocks of Building Structural Products for a Prospective Circular Economy. Resour. Conserv. Recycl. 2020, 162, 105026. [Google Scholar] [CrossRef]
- Allam, A.S.; Nik-Bakht, M. From Demolition to Deconstruction of the Built Environment: A Synthesis of the Literature. J. Build. Eng. 2023, 64, 105679. [Google Scholar] [CrossRef]
- Eurostat—Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Main_Page (accessed on 15 January 2023).
- European Union. First Circular Economy Action Plan. 2015. Available online: https://ec.europa.eu/environment/circular-economy/first_circular_economy_action_plan.html#:~:text=In%202015%2C%20the%20European%20Commission,growth%20and%20generate%20new%20jobs (accessed on 18 January 2023).
- Marzouk, M.; Azab, S. Environmental and Economic Impact Assessment of Construction and Demolition Waste Disposal Using System Dynamics. Resour. Conserv. Recycl. 2014, 82, 41–49. [Google Scholar] [CrossRef]
- European Environment Agency Directive (EU). 2018/851 Amending Directive 2008/98/EC on Waste. Available online: https://www.eea.europa.eu/policy-documents/directive-eu-2018-851-of (accessed on 18 January 2023).
- Tam, V.W.Y.; Soomro, M.; Evangelista, A.C.J. A Review of Recycled Aggregate in Concrete Applications (2000–2017). Constr. Build. Mater. 2018, 172, 272–292. [Google Scholar] [CrossRef]
- Yu, Z.; Wu, L.; Zhang, C.; Bangi, T. Influence of Eco-Friendly Fine Aggregate on Macroscopic Properties, Microstructure and Durability of Ultra-High Performance Concrete: A Review. J. Build. Eng. 2023, 65, 105783. [Google Scholar] [CrossRef]
- Sryh, L.; Forth, J. Long-Term Flexural Behaviour of Cracked Reinforced Concrete Beams with Recycled Aggregate. Int. J. Concr. Struct. Mater. 2022, 16, 19. [Google Scholar] [CrossRef]
- Sun, B.; Zeng, Q.; Wang, D.; Zhao, W. Sustainable 3D Printed Mortar with CO2 Pretreated Recycled Fine Aggregates. Cem. Concr. Compos. 2022, 134, 104800. [Google Scholar] [CrossRef]
- Cantero, B.; Sáez del Bosque, I.F.; Sánchez de Rojas, M.I.; Matías, A.; Medina, C. Durability of Concretes Bearing Construction and Demolition Waste as Cement and Coarse Aggregate Substitutes. Cem. Concr. Compos. 2022, 134, 104722. [Google Scholar] [CrossRef]
- Bravo, M.; de Brito, J.; Pontes, J.; Evangelista, L. Mechanical Performance of Concrete Made with Aggregates from Construction and Demolition Waste Recycling Plants. J. Clean. Prod. 2015, 99, 59–74. [Google Scholar] [CrossRef]
- Yang, J.; Du, Q.; Bao, Y. Concrete with Recycled Concrete Aggregate and Crushed Clay Bricks. Constr. Build. Mater. 2011, 25, 1935–1945. [Google Scholar] [CrossRef]
- De Brito, J.; Pereira, A.S.; Correia, J.R. Mechanical Behaviour of Non-Structural Concrete Made with Recycled Ceramic Aggregates. Cem. Concr. Compos. 2005, 27, 429–433. [Google Scholar] [CrossRef]
- Kanagaraj, B.; Lubloy, E.; Anand, N.; Hlavicka, V.; Kiran, T. Investigation of Physical, Chemical, Mechanical, and Microstructural Properties of Cement-Less Concrete—State-of-the-Art Review. Constr. Build. Mater. 2023, 365, 130020. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer Technology: The Current State of the Art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Singh, B.; Ishwarya, G.; Gupta, M.; Bhattacharyya, S.K. Geopolymer Concrete: A Review of Some Recent Developments. Constr. Build. Mater. 2015, 85, 78–90. [Google Scholar] [CrossRef]
- McLellan, B.C.; Williams, R.P.; Lay, J.; van Riessen, A.; Corder, G.D. Costs and Carbon Emissions for Geopolymer Pastes in Comparison to Ordinary Portland Cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Turner, L.K.; Collins, F.G. Carbon Dioxide Equivalent (CO2-e) Emissions: A Comparison between Geopolymer and OPC Cement Concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Tan, J.; Cai, J.; Li, J. Recycling of Unseparated Construction and Demolition Waste (UCDW) through Geopolymer Technology. Constr. Build. Mater. 2022, 341, 127771. [Google Scholar] [CrossRef]
- Alhawat, M.; Ashour, A.; Yildirim, G.; Aldemir, A.; Sahmaran, M. Properties of Geopolymers Sourced from Construction and Demolition Waste: A Review. J. Build. Eng. 2022, 50, 104104. [Google Scholar] [CrossRef]
- Komnitsas, K.; Zaharaki, D.; Vlachou, A.; Bartzas, G.; Galetakis, M. Effect of Synthesis Parameters on the Quality of Construction and Demolition Wastes (CDW) Geopolymers. Adv. Powder Technol. 2015, 26, 368–376. [Google Scholar] [CrossRef] [Green Version]
- Vásquez, A.; Cárdenas, V.; Robayo, R.A.; de Gutiérrez, R.M. Geopolymer Based on Concrete Demolition Waste. Adv. Powder Technol. 2016, 27, 1173–1179. [Google Scholar] [CrossRef]
- Dadsetan, S.; Siad, H.; Lachemi, M.; Sahmaran, M. Construction and Demolition Waste in Geopolymer Concrete Technology: A Review. Mag. Concr. Res. 2019, 71, 1232–1252. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.; Valencia-Saavedra, W.; de Gutiérrez, R. Reuse of Powders and Recycled Aggregates from Mixed Construction and Demolition Waste in Alkali-Activated Materials and Precast Concrete Units. Sustainability 2022, 14, 9685. [Google Scholar] [CrossRef]
- Kioupis Dimitris; AggelikiSkaropoulou; Tsivilis Sotiris; GlikeriaKakali Alkali Leaching Control of Construction and Demolition Waste Based. MATEC Web Conf. 2018, 149, 1064. [CrossRef]
- Tan, J.; Cai, J.; Li, X.; Pan, J.; Li, J. Development of Eco-Friendly Geopolymers with Ground Mixed Recycled Aggregates and Slag. J. Clean. Prod. 2020, 256, 120369. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yehualaw, M.D.; Vo, D.H.; Huynh, T.P.; Largo, A. Performance Evaluation of Alkali Activated Mortar Containing High Volume of Waste Brick Powder Blended with Ground Granulated Blast Furnace Slag Cured at Ambient Temperature. Constr. Build. Mater. 2019, 223, 657–667. [Google Scholar] [CrossRef]
- Mahmoodi, O.; Siad, H.; Lachemi, M.; Dadsetan, S.; Sahmaran, M. Development of Ceramic Tile Waste Geopolymer Binders Based on Pre-Targeted Chemical Ratios and Ambient Curing. Constr. Build. Mater. 2020, 258, 120297. [Google Scholar] [CrossRef]
- Zawrah, M.F.; Gado, R.A.; Feltin, N.; Ducourtieux, S.; Devoille, L. Recycling and Utilization Assessment of Waste Fired Clay Bricks (Grog) with Granulated Blast-Furnace Slag for Geopolymer Production. Process Saf. Environ. Prot. 2016, 103, 237–251. [Google Scholar] [CrossRef]
- Zaharaki, D.; Galetakis, M.; Komnitsas, K. Valorization of Construction and Demolition (C&D) and Industrial Wastes through Alkali Activation. Constr. Build. Mater. 2016, 121, 686–693. [Google Scholar] [CrossRef]
- Villaquirán-Caicedo, M.A.; Mejía de Gutiérrez, R. Comparison of Different Activators for Alkaline Activation of Construction and Demolition Wastes. Constr. Build. Mater. 2021, 281, 122599. [Google Scholar] [CrossRef]
- Robayo-Salazar, R.A.; Rivera, J.F.; Mejía de Gutiérrez, R. Alkali-Activated Building Materials Made with Recycled Construction and Demolition Wastes. Constr. Build. Mater. 2017, 149, 130–138. [Google Scholar] [CrossRef]
- Robayo, R.A.; Mulford, A.; Munera, J.; Mejía de Gutiérrez, R. Alternative Cements Based on Alkali-Activated Red Clay Brick Waste. Constr. Build. Mater. 2016, 128, 163–169. [Google Scholar] [CrossRef]
- Yang, Z.X.; Ha, N.R.; Jang, M.S.; Hwang, K.H. Geopolymer Concrete Fabricated by Waste Concrete Sludge with Silica Fume. Mater. Sci. Forum 2009, 620–622, 791–794. [Google Scholar] [CrossRef]
- Rovnaník, P.; Rovnaníková, P.; Vyšvařil, M.; Grzeszczyk, S.; Janowska-Renkas, E. Rheological Properties and Microstructure of Binary Waste Red Brick Powder/Metakaolin Geopolymer. Constr. Build. Mater. 2018, 188, 924–933. [Google Scholar] [CrossRef]
- Khater, H.M. Effect of Calcium on Geopolymerization of Aluminosilicate Wastes. J. Mater. Civ. Eng. 2012, 24, 92–101. [Google Scholar] [CrossRef]
- Lampris, C.; Lupo, R.; Cheeseman, C.R. Geopolymerisation of Silt Generated from Construction and Demolition Waste Washing Plants. Waste Manag. 2009, 29, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Naenudon, S.; Vilaivong, A.; Zaetang, Y.; Tangchirapat, W.; Wongsa, A.; Sata, V.; Chindaprasirt, P. High Flexural Strength Lightweight Fly Ash Geopolymer Mortar Containing Waste FIber Cement. Case Stud. Constr. Mater. 2022, 16, e01121. [Google Scholar] [CrossRef]
- Rovnaník, P.; Řezník, B.; Rovnaníková, P. Blended Alkali-Activated Fly Ash / Brick Powder Materials. Procedia Eng. 2016, 151, 108–113. [Google Scholar] [CrossRef] [Green Version]
- Ahmari, S.; Ren, X.; Toufigh, V.; Zhang, L. Production of Geopolymeric Binder from Blended Waste Concrete Powder and Fly Ash. Constr. Build. Mater. 2012, 35, 718–729. [Google Scholar] [CrossRef]
- Wong, C.L.; Mo, K.H.; Alengaram, U.J.; Yap, S.P. Mechanical Strength and Permeation Properties of High Calcium Fly Ash-Based Geopolymer Containing Recycled Brick Powder. J. Build. Eng. 2020, 32, 101655. [Google Scholar] [CrossRef]
- Chen, W.; Zhu, Z. Utilization of Fly Ash to Enhance Ground Waste Concrete-Based Geopolymer. Adv. Mater. Sci. Eng. 2018, 2018, 4793917. [Google Scholar] [CrossRef] [Green Version]
- Ulugöl, H.; Kul, A.; Yıldırım, G.; Şahmaran, M.; Aldemir, A.; Figueira, D.; Ashour, A. Mechanical and Microstructural Characterization of Geopolymers from Assorted Construction and Demolition Waste-Based Masonry and Glass. J. Clean. Prod. 2021, 280, 124358. [Google Scholar] [CrossRef]
- Huo, W.; Zhu, Z.; Chen, W.; Zhang, J.; Kang, Z.; Pu, S.; Wan, Y. Effect of Synthesis Parameters on the Development of Unconfined Compressive Strength of Recycled Waste Concrete Powder-Based Geopolymers. Constr. Build. Mater. 2021, 292, 123264. [Google Scholar] [CrossRef]
- Tuyan, M.; Andiç-Çakir, Ö.; Ramyar, K. Effect of Alkali Activator Concentration and Curing Condition on Strength and Microstructure of Waste Clay Brick Powder-Based Geopolymer. Compos. B Eng. 2018, 135, 242–252. [Google Scholar] [CrossRef]
- Reig, L.; Tashima, M.M.; Soriano, L.; Borrachero, M.V.; Monzó, J.; Payá, J. Alkaline Activation of Ceramic Waste Materials. Waste Biomass Valorization 2013, 4, 729–736. [Google Scholar] [CrossRef] [Green Version]
- Reig, L.; Sanz, M.A.; Borrachero, M.V.; Monzó, J.; Soriano, L.; Payá, J. Compressive Strength and Microstructure of Alkali-Activated Mortars with High Ceramic Waste Content. Ceram. Int. 2017, 43, 13622–13634. [Google Scholar] [CrossRef]
- Shoaei, P.; Musaeei, H.R.; Mirlohi, F.; Narimani Zamanabadi, S.; Ameri, F.; Bahrami, N. Waste Ceramic Powder-Based Geopolymer Mortars: Effect of Curing Temperature and Alkaline Solution-to-Binder Ratio. Constr. Build. Mater. 2019, 227, 116686. [Google Scholar] [CrossRef]
- Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Valorization of Brick and Glass CDWs for the Development of Geopolymers Containing More Than 80% of Wastes. Minerals 2020, 10, 672. [Google Scholar] [CrossRef]
- Akduman, Ş.; Kocaer, O.; Aldemir, A.; Şahmaran, M.; Yıldırım, G.; Almahmood, H.; Ashour, A. Experimental Investigations on the Structural Behaviour of Reinforced Geopolymer Beams Produced from Recycled Construction Materials. J. Build. Eng. 2021, 41, 102776. [Google Scholar] [CrossRef]
- Rihan Maaze, M.; Shrivastava, S. Design Development of Sustainable Brick-Waste Geopolymer Brick Using Full Factorial Design Methodology. Constr. Build. Mater. 2023, 370, 130655. [Google Scholar] [CrossRef]
- Fraga-De Cal, B.; Garrido-Marijuan, A.; Eguiarte, O.; Arregi, B.; Romero-Amorrortu, A.; Mezzasalma, G.; Ferrarini, G.; Bernardi, A. Energy Performance Assessment of Innovative Building Solutions Coming from Construction and Demolition Waste Materials. Materials 2021, 14, 1226. [Google Scholar] [CrossRef]
- Mir, N.; Khan, S.A.; Kul, A.; Sahin, O.; Ozcelikci, E.; Sahmaran, M.; Koc, M. Construction and Demolition Waste-Based Self-Healing Geopolymer Composites for the Built Environment: An Environmental Profile Assessment and Optimization. Constr. Build. Mater. 2023, 369, 130520. [Google Scholar] [CrossRef]
- Demiral, N.C.; Ozkan Ekinci, M.; Sahin, O.; Ilcan, H.; Kul, A.; Yildirim, G.; Sahmaran, M. Mechanical Anisotropy Evaluation and Bonding Properties of 3D-Printable Construction and Demolition Waste-Based Geopolymer Mortars. Cem. Concr. Compos. 2022, 134, 104814. [Google Scholar] [CrossRef]
- Castañeda, D.; Silva, G.; Salirrosas, J.; Kim, S.; Bertolotti, B.; Nakamatsu, J.; Aguilar, R. Production of a Lightweight Masonry Block Using Alkaline Activated Natural Pozzolana and Natural Fibers. Constr. Build. Mater. 2020, 253, 119143. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, Q.; Deng, Y.; Lin, J. Reinforcement Effects of Multi-Scale Hybrid Fiber on Flexural and Fracture Behaviors of Ultra-Low-Weight Foamed Cement-Based Composites. Cem. Concr. Compos. 2020, 108, 103509. [Google Scholar] [CrossRef]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between Circular Economy and Climate Change Mitigation in the Built Environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar] [CrossRef]
- Colangelo, F.; Roviello, G.; Ricciotti, L.; Ferrándiz-Mas, V.; Messina, F.; Ferone, C.; Tarallo, O.; Cioffi, R.; Cheeseman, C.R. Mechanical and Thermal Properties of Lightweight Geopolymer Composites. Cem. Concr. Compos. 2018, 86, 266–272. [Google Scholar] [CrossRef]
- Albitar, M.; Mohamed Ali, M.S.; Visintin, P.; Drechsler, M. Durability Evaluation of Geopolymer and Conventional Concretes. Constr. Build. Mater. 2017, 136, 374–385. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W.; Luo, W.; Shen, C. An Investigation of the Microstructure and Durability of a Fluidized Bed Fly Ash–Metakaolin Geopolymer after Heat and Acid Exposure. Mater. Des. 2015, 74, 125–137. [Google Scholar] [CrossRef]
- Alcamand, H.A.; Borges, P.H.R.; Silva, F.A.; Trindade, A.C.C. The Effect of Matrix Composition and Calcium Content on the Sulfate Durability of Metakaolin and Metakaolin/Slag Alkali-Activated Mortars. Ceram. Int. 2018, 44, 5037–5044. [Google Scholar] [CrossRef]
- de Oliveira, L.B.; de Azevedo, A.R.G.; Marvila, M.T.; Pereira, E.C.; Fediuk, R.; Vieira, C.M.F. Durability of Geopolymers with Industrial Waste. Case Stud. Constr. Mater. 2022, 16, e00839. [Google Scholar] [CrossRef]
- Yang, T.; Yao, X.; Zhang, Z. Quantification of Chloride Diffusion in Fly Ash–Slag-Based Geopolymers by X-Ray Fluorescence (XRF). Constr. Build. Mater. 2014, 69, 109–115. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A. Durability of Geopolymer Mortar Based on Waste-Glass Powder and Calcium Aluminate Cement in Acid Solutions. J. Mater. Civ. Eng. 2017, 29, 4017196. [Google Scholar] [CrossRef]
- Mermerdaş, K.; İpek, S.; Mahmood, Z. Visual Inspection and Mechanical Testing of Fly Ash-Based Fibrous Geopolymer Composites under Freeze-Thaw Cycles. Constr. Build. Mater. 2021, 283, 122756. [Google Scholar] [CrossRef]
- de Azevedo, A.R.G.; Marvila, M.T.; Ali, M.; Khan, M.I.; Masood, F.; Vieira, C.M.F. Effect of the Addition and Processing of Glass Polishing Waste on the Durability of Geopolymeric Mortars. Case Stud. Constr. Mater. 2021, 15, e00662. [Google Scholar] [CrossRef]
- Ozcelikci, E.; Kul, A.; Gunal, M.F.; Ozel, B.F.; Yildirim, G.; Ashour, A.; Sahmaran, M. A Comprehensive Study on the Compressive Strength, Durability-Related Parameters and Microstructure of Geopolymer Mortars Based on Mixed Construction and Demolition Waste. J. Clean. Prod. 2023, 396, 136522. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A.; Dong, P.; Bassim, N.; Mahinroosta, M. Resistance of Red Clay Brick Waste/Phosphorus Slag-Based Geopolymer Mortar to Acid Solutions of Mild Concentration. J. Build. Eng. 2021, 34, 102066. [Google Scholar] [CrossRef]
- Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Properties and Durability Performance of Lightweight Fly Ash Based Geopolymer Composites Incorporating Expanded Polystyrene and Expanded Perlite. Ceramics 2022, 5, 821–836. [Google Scholar] [CrossRef]
- Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Valorization of Various Construction and Demolition Waste Streams as Precursors or Additives of Construction Elements and Materials. In Proceedings of the 12th Panhellenic Conference in Chemical Engineering, Athens, Greece, 29–31 May 2019. [Google Scholar]
- Kastiukas, G.; Zhou, X. Green Integrated Structural Elements for Retrofitting and New Construction of Buildings. IOP Conf. Ser. Mater. Sci. Eng. 2019, 660, 012074. [Google Scholar] [CrossRef]
- Criado, M.; Palomo, A.; Fernández-Jiménez, A. Alkali Activation of Fly Ashes. Part 1: Effect of Curing Conditions on the Carbonation of the Reaction Products. Fuel 2005, 84, 2048–2054. [Google Scholar] [CrossRef]
- Souza, T.B.; Lima, V.M.E.; Araújo, F.W.C.; Miranda, L.F.R.; Melo Neto, A.A. Alkali-Activated Slag Cellular Concrete with Expanded Polystyrene (EPS)—Physical, Mechanical, and Mineralogical Properties. J. Build. Eng. 2021, 44, 103387. [Google Scholar] [CrossRef]
- Traven, K.; Wisniewski, W.; Češnovar, M.; Ducman, V. Microstructural Characterization of Alkali-Activated Composites of Lightweight Aggregates (LWAs) Embedded in Alkali-Activated Foam (AAF) Matrices. Polymers 2022, 14, 1729. [Google Scholar] [CrossRef]
- Long, W.J.; Lin, C.; Tan, X.W.; Tao, J.L.; Ye, T.H.; Luo, Q.L. Structural Applications of Thermal Insulation Alkali Activated Materials with Reduced Graphene Oxide. Materials 2020, 13, 1052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kismi, M.; Poullain, P.; Mounanga, P. Transient Thermal Response of Lightweight Cementitious Composites Made with Polyurethane Foam Waste. Int. J. Thermophys. 2012, 33, 1239–1258. [Google Scholar] [CrossRef]
- Neville, A.M. Properties of Concrete, 5th ed.; Pearson Education Limited: Essex, UK, 2011. [Google Scholar]
- Guo, G.; Lv, C.; Liu, J.; Wang, L. Properties of Fiber-Reinforced One-Part Geopolymers: A Review. Polymers 2022, 14, 3333. [Google Scholar] [CrossRef]
- Shaikh, F.U.A.; Fairchild, A.; Zammar, R. Comparative Strain and Deflection Hardening Behaviour of Polyethylene Fibre Reinforced Ambient Air and Heat Cured Geopolymer Composites. Constr. Build. Mater. 2018, 163, 890–900. [Google Scholar] [CrossRef]
- Korniejenko, K.; Lin, W.-T.; Šimonová, H. Mechanical Properties of Short Polymer Fiber-Reinforced Geopolymer Composites. J. Compos. Sci. 2020, 4, 128. [Google Scholar] [CrossRef]
- Allos, A.E.; Martin, L.H. Factors Affecting Poisson’s Ratio for Concrete. Build. Environ. 1981, 16, 35–39. [Google Scholar] [CrossRef]
- Narayan Swamy, R. Dynamic Poisson’s Ratio of Portland Cement Paste, Mortar and Concrete. Cem. Concr. Res. 1971, 1, 559–583. [Google Scholar] [CrossRef]
- Shaikh, F.U.A. Tensile and Flexural Behaviour of Recycled Polyethylene Terephthalate (PET) Fibre Reinforced Geopolymer Composites. Constr. Build. Mater. 2020, 245, 118438. [Google Scholar] [CrossRef]
- Huang, Y.; Guo, F.; Zhang, H.; Yang, Z. An Efficient Computational Framework for Generating Realistic 3D Mesoscale Concrete Models Using Micro X-Ray Computed Tomography Images and Dynamic Physics Engine. Cem. Concr. Compos. 2022, 126, 104347. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, Z.; Ren, W.; Liu, G.; Zhang, C. 3D Meso-Scale Fracture Modelling and Validation of Concrete Based on in-Situ X-Ray Computed Tomography Images Using Damage Plasticity Model. Int. J. Solids Struct. 2015, 67–68, 340–352. [Google Scholar] [CrossRef]
- Shi, J.; Liu, B.; Liu, Y.; Wang, E.; He, Z.; Xu, H.; Ren, X. Preparation and Characterization of Lightweight Aggregate Foamed Geopolymer Concretes Aerated Using Hydrogen Peroxide. Constr. Build. Mater. 2020, 256, 119442. [Google Scholar] [CrossRef]
- Hall, C. Water Sorptivity of Mortars and Concretes: A Review. Mag. Concr. Res. 2015, 41, 51–61. [Google Scholar] [CrossRef]
- Huseien, G.F.; Sam, A.R.M.; Shah, K.W.; Mirza, J.; Tahir, M.M. Evaluation of Alkali-Activated Mortars Containing High Volume Waste Ceramic Powder and Fly Ash Replacing GBFS. Constr. Build. Mater. 2019, 210, 78–92. [Google Scholar] [CrossRef]
Source | SiO2 | Al2O3 | Fe2O3 | CaO | MgO | K2O | Na2O | SO3 | TiO2 | P2O5 | Cl | LOI |
---|---|---|---|---|---|---|---|---|---|---|---|---|
BW | 61.02 | 18.85 | 7.87 | 1.73 | 3.03 | 3.40 | 1.27 | 0.26 | 0.89 | 0.17 | 0.02 | 1.32 |
Aggregate | Density (g/cm3) | Water Absrption (%) | UCS (MPa) | λ (W/mK) | Particles with |
---|---|---|---|---|---|
d > 2 mm (%) | |||||
EPS | 0.038 | 1.0 | 0.46 | 0.035 | 97.0 |
PU | 0.051 | <2.0 | 0.21 | 0.025 | 78.6 |
Property | Value |
---|---|
Length (mm) | 6–12 |
Maximum diameter (μm) | 331 |
Minimum diameter (μm) | 114 |
Average diameter (μm) | 213 |
Diameter—standard deviation (μm) | 46 |
Density (g/cm3) | 0.97 |
Tensile modulus (MPa) | 258.60 |
Samples | EPS * (% wt.) | PU * (% wt.) | PE Fibers (% v/v) |
---|---|---|---|
GBW_REF | - | - | - |
GBW_0.5EPS | 0.5 | - | - |
GBW_1.0EPS | 1.0 | - | - |
GBW_1.5EPS | 1.5 | - | - |
GBW_2.0EPS | 2.0 | - | - |
GBW_2.5EPS | 2.5 | - | - |
GBW_3.0EPS | 3.0 | - | - |
GBW_1.0PU | - | 1.0 | - |
GBW_2.0PU | - | 2.0 | - |
GBW_3.0PU | - | 3.0 | - |
GBW_4.0PU | - | 4.0 | - |
GBW_5.0PU | - | 5.0 | - |
GBW_6.0PU | - | 6.0 | - |
GBW_REF_0.5PE | - | - | 0.5 |
GBW_REF_1.0PE | - | - | 1.0 |
GBW_REF_1.5PE | - | - | 1.5 |
GBW_REF_2.0PE | - | - | 2.0 |
GBW_1.5EPS_0.5PE | 1.5 | - | 0.5 |
GBW_1.5EPS_1.0PE | 1.5 | - | 1.0 |
GBW_1.5EPS_1.5PE | 1.5 | - | 1.5 |
GBW_1.5EPS_2.0PE | 1.5 | - | 2.0 |
GBW_2.0EPS_0.5PE | 2.0 | - | 0.5 |
GBW_2.0EPS_1.0PE | 2.0 | - | 1.0 |
GBW_2.0EPS_1.5PE | 2.0 | - | 1.5 |
GBW_2.0EPS_2.0PE | 2.0 | - | 2.0 |
Sample | Young Modulus (GPa) | Poisson Ratio |
---|---|---|
GBW_REF | 4.3 | 0.27 |
GBW_1.5EPS_2.0PE | 1.3 | 0.11 |
Samples | Sorptivity (mm/min0.5) | R2 (%) | Average S (mm/min0.5) |
---|---|---|---|
GBW_REF | 0.1295 | 97.9 | 0.1309 |
0.1271 | 96.8 | ||
0.1361 | 98.0 | ||
GBW_1.5EPS_2.0PE | 0.1840 | 98.6 | 0.1790 |
0.1974 | 98.4 | ||
0.1583 | 97.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kioupis, D.; Skaropoulou, A.; Tsivilis, S.; Kakali, G. Development of Lightweight Geopolymer Composites by Combining Various CDW Streams. Ceramics 2023, 6, 837-857. https://doi.org/10.3390/ceramics6020048
Kioupis D, Skaropoulou A, Tsivilis S, Kakali G. Development of Lightweight Geopolymer Composites by Combining Various CDW Streams. Ceramics. 2023; 6(2):837-857. https://doi.org/10.3390/ceramics6020048
Chicago/Turabian StyleKioupis, Dimitrios, Aggeliki Skaropoulou, Sotirios Tsivilis, and Glikeria Kakali. 2023. "Development of Lightweight Geopolymer Composites by Combining Various CDW Streams" Ceramics 6, no. 2: 837-857. https://doi.org/10.3390/ceramics6020048
APA StyleKioupis, D., Skaropoulou, A., Tsivilis, S., & Kakali, G. (2023). Development of Lightweight Geopolymer Composites by Combining Various CDW Streams. Ceramics, 6(2), 837-857. https://doi.org/10.3390/ceramics6020048