Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations
Abstract
:1. Introduction
- The combination of temperature and equilibrium values of oxygen partial pressure should be sufficient to provide a complete conversion in a fuel reactor and fast oxygen saturation of OCs under oxidation.
- The reaction in the fuel reactor should be exothermic, providing some temperature increase, which promotes the release rate of gas-phase oxygen.
- Rather high oxygen capacity (>3%).
- Thermodynamic stability under reducing atmospheres specifically for the fuel reactor.
- Elevated kinetic parameters of oxygen exchange with ambient gas.
2. Materials and Methods
2.1. Materials and Sample Preparation
2.2. Characterization
3. Results and Discussion
3.1. Synthesis and High-Temperature Redox Behavior of Ba2CuWO6−δ
3.2. Synthesis and High-Temperature Redox Behavior of SrCu0.5Ta0.5O3−δ
3.3. Some Properties of Cu-Based Perovskites
4. Conclusions
- The rock-salt ordered double perovskites A2CuWO6−δ (A = Sr, Ba) with the I4/m space group and disordered perovskites SrCu0.5M0.5O3−δ (M = Nb, Ta) with a Pm3m space group were synthesized via a solid-state reaction route.
- The structural predictors for the synthesized Cu-based perovskites were calculated and the cell parameters were refined via the Rietveld method.
- Redox behavior of Ba2CuWO6 was studied at 900 °C and a step was found within reoxidation which should contribute to the presence of Cu(I).
- Ba2CuWO6 decomposes after 900 °C with the formation of copper oxide and barium tungstanate; the suggested mechanism was approved via EDX analysis.
- The value of the measured Ba2CuWO6 band gap was 2.59 eV.
- The disordered perovskite SrCu0.5M0.5O3−δ (M = Nb, Ta) forms within the reaction of the liquid complex strontium-copper oxide and strontium niobate (tantalate) at temperatures in the range 900–1150 °C.
- The copper-based perovskite compounds with M5+ have to consist of Cu3+ according to the oxygen content.
- Thermal properties of SrCu0.5Ta0.5O3−δ were investigated: average TEC value at 1000 °C 11.6·10−6 K−1 and a low thermal conductivity 1.28 W·m−1·K−1 in the temperature range 25–400 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fergus, J.W. Perovskite Oxides for Semiconductor-Based Gas Sensors. Sens. Actuators B Chem. 2007, 123, 1169–1179. [Google Scholar] [CrossRef]
- Idris, A.M.; Liu, T.; Shah, J.H.; Zhang, X.; Ma, C.; Malik, A.S.; Jin, A.; Rasheed, S.; Sun, Y.; Li, C.; et al. A Novel Double Perovskite Oxide Semiconductor Sr2CoWO6 as Bifunctional Photocatalyst for Photocatalytic Oxygen and Hydrogen Evolution Reactions from Water under Visible Light Irradiation. Sol. RRL 2020, 4, 1900456. [Google Scholar] [CrossRef]
- Zhou, W.; Zhang, S.; Zeng, H. Perovskite Oxides as a 2D Dielectric. Nat. Electron. 2022, 5, 199–200. [Google Scholar] [CrossRef]
- Berri, S.; Bouarissa, N. Probable Thermoelectric Materials for Promising Candidate of Optoelectronics for Ba-Based Complex Perovskite Compounds. Int. J. Energy Res. 2022, 46, 9968–9984. [Google Scholar] [CrossRef]
- Liu, Y.; Cooper, V.R.; Wang, B.; Xiang, H.; Li, Q.; Gao, Y.; Yang, J.; Zhou, Y.; Liu, B. Discovery of ABO3 Perovskites as Thermal Barrier Coatings through High-Throughput First Principles Calculations. Mater. Res. Lett. 2019, 7, 145–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Huang, Y.; Heydari, E.; Yang, X.; Xu, S.; Bai, G. Dual-Mode Optical Ratiometric Thermometer Based on Rare Earth Ions Doped Perovskite Oxides with Tunable Luminescence. Ceram. Int. 2022, 48, 12578–12584. [Google Scholar] [CrossRef]
- Makarov, A.A.; Mitrova, T.A.; Kalugin, V.A. World and Russian Energy Development Forecast 2019; Energy Research Institute of the Russian Academy of Sciences Energy Center of the Moscow School of Management SKOLKOVO: Moscow, Russia, 2019; ISBN 9785914380288. [Google Scholar]
- Cozzi, L.; Gould, T. World Energy Outlook 2022; International Energy Agency: Paris, France, 2022. [Google Scholar]
- Mattisson, T. Materials for Chemical-Looping with Oxygen Uncoupling. ISRN Chem. Eng. 2013, 2013, 526375. [Google Scholar] [CrossRef] [Green Version]
- Adánez-Rubio, I.; Nilsson, A.; Izquierdo, M.T.; Mendiara, T.; Abad, A.; Adánez, J. Cu-Mn Oxygen Carrier with Improved Mechanical Resistance: Analyzing Performance under CLC and CLOU Environments. Fuel Process. Technol. 2021, 217, 106819. [Google Scholar] [CrossRef]
- Adánez-Rubio, I.; Bautista, H.; Izquierdo, M.T.; Gayán, P.; Abad, A.; Adánez, J. Development of a Magnetic Cu-Based Oxygen Carrier for the Chemical Looping with Oxygen Uncoupling (CLOU) Process. Fuel Process. Technol. 2021, 218, 106836. [Google Scholar] [CrossRef]
- Shishkin, R.A.; Suntsov, A.Y. La2CuO4 as a Promising Oxygen Carrier for CLOU Process. AIP Conf. Proc. 2020, 2313, 060024. [Google Scholar] [CrossRef]
- Ksepko, E.; Lysowski, R.; Zhang, X.; Meng, X. Extremely Stable and Durable Mixed Fe–Mn Oxides Supported on ZrO2 for Practical Utilization in CLOU and CLC Processes. Catalysts 2021, 11, 1285. [Google Scholar] [CrossRef]
- Abdalla, A.; Mohamedali, M.; Mahinpey, N. CuO/ZrO2 Modified by WO3 Oxygen Carriers for Chemical Looping with Oxygen Uncoupling. Fuel 2022, 310, 122288. [Google Scholar] [CrossRef]
- Ma, J.; Tian, X.; Zhao, H.; Ma, J.; Zheng, C. Effect of Coal Ash on the Performance of CuO@TiO2-Al2O3 in Chemical Looping with Oxygen Uncoupling. Fuel Process. Technol. 2021, 221, 106935. [Google Scholar] [CrossRef]
- Cheong, S.W.; Thompson, J.D.; Fisk, Z. Properties of La2CuO4 and Related Compounds. Phys. C Supercond. 1989, 158, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Uchida, S.I.; Takagi, H.; Yanagisawa, H.; Kishio, K.; Kitazawa, K.; Fueki, K.; Tanaka, S. Electric and Magnetic Properties of La2CuO4. Jpn. J. Appl. Phys. 1987, 26, L445. [Google Scholar] [CrossRef]
- Ahmad, A.; Al Mamun, M.A.; Al-Mamun, M.; Huque, S.; Ismail, M. LFO Perovskites as Oxygen Carriers for Chemical Looping Oxygen Uncoupling (CLOU). J. Therm. Anal. Calorim. 2022, 147, 6605–6613. [Google Scholar] [CrossRef]
- Bulfin, B.; Buttsworth, L.; Lidor, A.; Steinfeld, A. High-Purity Nitrogen Production from Air by Pressure Swing Adsorption Combined with SrFeO3 Redox Chemical Looping. Chem. Eng. J. 2021, 421, 127734. [Google Scholar] [CrossRef]
- Larring, Y.; Pishahang, M.; Tolchard, J.; Lind, A.M.; Sunding, M.F.; Stensrød, R.E.; Jacobs, M.; Snijkers, F.; van der Kolk, T.; Albertsen, K. Fabrication Process Parameters Significantly Affect the Perovskite Oxygen Carriers Materials (OCM) Performance in Chemical Looping with Oxygen Uncoupling (CLOU). J. Therm. Anal. Calorim. 2020, 140, 577–589. [Google Scholar] [CrossRef] [Green Version]
- Bringley, J.F.; Scott, B.A.; la Placa, S.J.; Boehme, R.F.; Shaw, T.M.; McElfresh, M.W.; Trail, S.S.; Cox, D.E. Synthesis of the Defect Perovskite Series LaCuO3-d with Copper Valence Varying from 2+ to 3+. Lett. Nat. 1990, 347, 263–265. [Google Scholar] [CrossRef]
- Karppinen, M.; Yamauchi, H.; Suematsu, H.; Isawa, K.; Nagano, M.; Itti, R.; Fukunaga, O. Control on the Copper Valence and Properties by Oxygen Content Adjustment in the LaCuO3-y System (0 ≤ y ≤ 0.5). J. Solid State Chem. 1997, 130, 213–222. [Google Scholar] [CrossRef]
- Politov, B.V.; Shishkin, R.A.; Markov, A.A.; Shein, I.R.; Suntsov, A.Y. Defect Formation Peculiarities and Redox Properties of Novel Oxygen Carrier Material LaCu0.5Ti0.5O3±δ at Elevated Temperatures. Solid State Sci. 2020, 110, 106480. [Google Scholar] [CrossRef]
- Filip, M.R.; Giustino, F. The Geometric Blueprint of Perovskites. Proc. Natl. Acad. Sci. USA 2018, 115, 5397–5402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartel, C.J.; Sutton, C.; Goldsmith, B.R.; Ouyang, R.; Musgrave, C.B.; Ghiringhelli, L.M.; Scheffler, M. New Tolerance Factor to Predict the Stability of Perovskite Oxides and Halides. Sci. Adv. 2019, 5, eaav0693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thoppil, G.S.; Alankar, A. Predicting the Formation and Stability of Oxide Perovskites by Extracting Underlying Mechanisms Using Machine Learning. Comput. Mater. Sci. 2022, 211, 111506. [Google Scholar] [CrossRef]
- Boeyens, J.C.A. The Periodic Electronegativity Table. Z. Für Nat. B 2008, 63, 199–209. [Google Scholar] [CrossRef]
- Dong, X.; Oganov, A.R.; Cui, H.; Zhou, X.F.; Wang, H.T. Electronegativity and Chemical Hardness of Elements under Pressure. Proc. Natl. Acad. Sci. USA 2022, 119, e2117416119. [Google Scholar] [CrossRef]
- Shishkin, R.A. Investigation of Thermal Greases with Hybrid Fillers and Its Operational Bench Test. J. Electron. Mater. 2022, 51, 1189–1201. [Google Scholar] [CrossRef]
- Schlichting, K.W.; Padture, N.P.; Klemens, P.G. Thermal Conductivity of Dense and Porous Yttria-Stabilized Zirconia. J. Mater. Sci. 2001, 36, 3003–3010. [Google Scholar] [CrossRef]
- Barykina, Y.A.; Medvedeva, N.I.; Zubkov, V.G.; Kellerman, D.G. Luminescence of VO43− Centers in LiMgPO4 and LiMgVO4: Effect of [PO4]3−/[VO4]3− Substitution on the Structure and Optical Properties. J. Alloys Compd. 2017, 709, 1–7. [Google Scholar] [CrossRef]
- Liu, Y.P.; Fuh, H.R.; Wang, Y.K. Expansion Research on Half-Metallic Materials in Double Perovskites of Sr2BB′O6 (B = Co, Cu, and Ni; B′ = Mo, W, Tc, and Re; And BB′ = FeTc). Comput. Mater. Sci. 2014, 92, 63–68. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, S.; Qu, N.; Cui, Y.; Gao, Q.; Chen, R.; Wang, J.; Gao, F.; Hao, X. Comparative Description of Magnetic Interactions in Sr2CuTeO6 and Sr2CuWO6. J. Phys. Condens. Matter 2017, 29, 105801. [Google Scholar] [CrossRef]
- Todate, Y. Antiferromagnetism and Frustration in Ba2CuWO6. J. Phys. Soc. Jpn. 2001, 70, 337–340. [Google Scholar] [CrossRef]
- Bokhimi, B. Structure of the M2CuWO6 System, with M = Ba or Sr. Powder Diffr. 1992, 7, 228–230. [Google Scholar] [CrossRef]
- Herber, R.P.; Schneider, G.A. Surface Displacements and Surface Charges on Ba2CuWO6 and Ba2Cu0.5Zn0.5WO6 Ceramics Induced by Local Electric Fields Investigated with Scanning-Probe Microscopy. J. Mater. Res. 2007, 22, 193–200. [Google Scholar] [CrossRef]
- Vasala, S.; Saadaoui, H.; Morenzoni, E.; Chmaissem, O.; Chan, T.S.; Chen, J.M.; Hsu, Y.Y.; Yamauchi, H.; Karppinen, M. Characterization of Magnetic Properties of Sr2CuWO6 and Sr2CuMoO6. Phys. Rev. B Condens. Matter Mater. Phys. 2014, 89, 134419. [Google Scholar] [CrossRef] [Green Version]
- Shannon, R.D.; Prewitt, C.T. Revised Values of Effective Ionic Radii. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 1970, 26, 1046–1048. [Google Scholar] [CrossRef]
- Wong-Ng, W.; Cook, L.P.; Greenwood, W. Melting of Sr14Cu24O41 at Oxygen Pressures of 0.0075, 0.021 and 0.1 MPa. Phys. C Supercond. 1998, 299, 9–14. [Google Scholar] [CrossRef]
- Grivel, J.C. Subsolidus Phase Relations of the SrO–Ta2O5–CuO System at 900 °C in Air. J. Alloys Compd. 2009, 486, 293–298. [Google Scholar] [CrossRef]
- Vasala, S.; Karppinen, M. A2B′B″O6 Perovskites: A Review. Prog. Solid State Chem. 2015, 43, 1–36. [Google Scholar] [CrossRef]
- Sun, Z.; Chen, X.H.; Fan, R.; Luo, X.G.; Li, L. Structure and Magnetic Properties of Perovskite Sr2CuNbO6−δ. J. Phys. Chem. Solids 2003, 64, 59–62. [Google Scholar] [CrossRef]
- Tarasova, N.; Colomban, P.; Animitsa, I. Crystal Structure, Chemical Stability and Electrical Properties of Sr2MnNbO6−δ, Sr2Cr0.5Mn0.5NbO6−δ and Sr2CuNbO6−δ Perovskites. J. Solid State Electrochem. 2017, 21, 3179–3187. [Google Scholar] [CrossRef]
- Hua, E.; Jin, S.; Ni, S.; Xu, X. Double Perovskite Compounds A2CuWO6 (A = Sr and Ba) with p-Type Semiconductivity for Photocatalytic Water Oxidation under Visible Light Illumination. Inorg. Chem. Front. 2019, 6, 2096–2103. [Google Scholar] [CrossRef]
Ba2CuWO6 | Sr2CuWO6 | SrCu0.5Ta0.5O3−δ | SrCu0.5Nb0.5O3−δ | |
---|---|---|---|---|
a ± 0.03, Å | 5.562 | 5.433 | 3.976 | 3.978 |
c ± 0.03, Å | 8.630 | 8.382 | - | - |
t | 1.039 | 0.979 | 0.969 | 0.969 |
µ | 0.493 | 0.493 | 0.507 | 0.507 |
Δµ | 0.048 | 0.048 | 0.033 | 0.033 |
τ | 3.636 | 3.506 | 3.630 | 3.630 |
Δχ (Pauling) | 0.46 | 0.46 | 0.4 | 0.3 |
Δχ (Mulliken) | 0.3 | 0.3 | 0.2 | 0.5 |
Δχ (Allen) | 0.38 | 0.38 | 0.51 | 0.44 |
Δ (Chemical hardness) | 0.2 | 0.2 | 0.7 | 0.5 |
N | Sr, at. % | Cu, at. % | Ta, at. % |
---|---|---|---|
001 | 47.66 | 30.73 | 21.61 |
002 | 47.03 | 29.58 | 23.39 |
003 | 45.76 | 32.03 | 22.21 |
004 | 46.1 | 32.31 | 21.59 |
005 | 48.7 | 28.66 | 22.64 |
006 | 52.66 | 40.59 | 6.75 |
007 | 64.1 | 25.37 | 10.53 |
008 | 45.71 | 41.01 | 13.27 |
009 | 55.8 | 29.27 | 14.94 |
010 | 45.47 | 44.54 | 9.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shishkin, R.A.; Suntsov, A.Y.; Kalinkin, M.O. Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations. Ceramics 2023, 6, 968-979. https://doi.org/10.3390/ceramics6020057
Shishkin RA, Suntsov AY, Kalinkin MO. Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations. Ceramics. 2023; 6(2):968-979. https://doi.org/10.3390/ceramics6020057
Chicago/Turabian StyleShishkin, Roman A., Alexey Yu. Suntsov, and Mikhael O. Kalinkin. 2023. "Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations" Ceramics 6, no. 2: 968-979. https://doi.org/10.3390/ceramics6020057
APA StyleShishkin, R. A., Suntsov, A. Y., & Kalinkin, M. O. (2023). Phase Instability, Oxygen Desorption and Related Properties in Cu-Based Perovskites Modified by Highly Charged Cations. Ceramics, 6(2), 968-979. https://doi.org/10.3390/ceramics6020057