Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanoparticle Surface Modification
2.2. Nanolubricant Preparation
2.3. Methods of Oil Sample Inspection
2.4. Methods of Nanoparticle Inspection
2.5. Methods of Tribological Inspection
3. Results
3.1. Silica Particle Size Measurement
3.2. ATR-FTIR Spectroscopic Examinations
3.3. Tribological Experiments
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikolov, A.; Lee, J.; Wasan, D. DLVO surface forces in liquid films and statistical mechanics of colloidal oscillatory structural forces in dispersion stability. Adv. Colloid Interface Sci. 2023, 313, 102847. [Google Scholar] [CrossRef] [PubMed]
- Rubio-Hernández, F.J. Is DLVO Theory Valid for Non-Aqueous Suspensions? J. Non-Equilib. Thermodyn. 1999, 24, 75–79. [Google Scholar] [CrossRef]
- Rylski, A.; Siczek, K. The Effect of Addition of Nanoparticles, Especially ZrO2-Based, on Tribological Behavior of Lubricants. Lubricants 2020, 8, 23. [Google Scholar] [CrossRef] [Green Version]
- Peña-Parás, L.; Gao, H.; Maldonado-Cortés, D.; Vellore, A.; García-Pineda, P.; Montemayor, O.E.; Nava, K.L.; Martini, A. Effects of substrate surface roughness and nano/micro particle additive size on friction and wear in lubricated sliding. Tribol. Int. 2018, 119, 88–98. [Google Scholar] [CrossRef]
- Bagwe, R.P.; Hillard, L.R.; Tan, W. Surface Modification of Silica Nanoparticles to Reduce Aggregation and Nonspecific Binding. Langmuir 2006, 22, 4357–4362. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.; Gao, W.; Liu, Y.; Kang, W.; Yang, H. Effects of surface modification Nano-SiO2 and its combination with surfactant on interfacial tension and emulsion stability. Colloids Surf. A 2020, 595, 124682. [Google Scholar] [CrossRef]
- Sui, T.; Song, B.; Wen, Y.; Zhang, F. Bifunctional hairy silica nanoparticles as high-performance additives for lubricant. Sci. Rep. 2016, 6, 22696. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Renner, P.; Liang, H. Dispersion of Nanoparticles in Lubricating Oil: A Critical Review. Lubricants 2019, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Nakashima, Y.; Fukushima, M.; Hyuga, H. Surface modification of silica powder by mild ball milling. Colloids Surf. A 2022, 652, 129828. [Google Scholar] [CrossRef]
- Wang, F.; Yin, C.; Wei, X.; Wang, Q.; Cui, L.; Wang, Y.; Li, T.; Li, J. Synthesis and Characterization of Superparamagnetic Fe3O4 Nanoparticles Modified with Oleic Acid. Integr. Ferroelectr. 2014, 153, 92–101. [Google Scholar] [CrossRef]
- Alves, S.M.; Mello, V.S.; Faria, E.A.; Camargo, A.P.P. Nanolubricants developed from tiny CuO nanoparticles. Tribol. Int. 2016, 100, 263–271. [Google Scholar] [CrossRef]
- Peng, D.X.; Kang, Y.; Hwang, R.M.; Shyr, S.S.; Chang, Y.P. Tribological properties of diamond and SiO2 nanoparticles added in paraffin. Tribol. Int. 2009, 42, 911–917. [Google Scholar] [CrossRef]
- Peng, D.X.; Chen, C.H.; Kang, Y.; Chang, Y.P.; Chang, S.Y. Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Ind. Lubr. Tribol. 2014, 62, 111–120. [Google Scholar] [CrossRef]
- Peng, D.X.; Kang, Y. Preparation of SiO2 nanoparticles and investigation of its tribological behavior as additive in liquid paraffin. Ind. Lubr. Tribol. 2014, 66, 662–670. [Google Scholar] [CrossRef]
- Jazaa, Y.; Lan, T.; Padalkar, S.; Sundararajan, S. The Effect of Agglomeration Reduction on the Tribological Behavior of WS2 and MoS2 Nanoparticle Additives in the Boundary Lubrication Regime. Lubricants 2018, 6, 106. [Google Scholar] [CrossRef] [Green Version]
- Misbah, B.; Sedaghat, A.; Rashidi, M.; Sabati, M.; Vaidyan, K.; Ali, N.; Omar, M.A.A.; Dehshiri, S.S.H. Friction reduction of Al2O3, SiO2, and TiO2 nanoparticles added to non-Newtonian water based mud in a rotating medium. J. Pet. Sci. Eng. 2022, 217, 110927. [Google Scholar] [CrossRef]
- Li, L.; Ding, M.; Lin, B.; Zhang, B.; Zhang, Y.; Sui, T. Influence of silica nanoparticles on running-in performance of aqueous lubricated Si3N4 ceramics. Tribol. Int. 2021, 159, 106968. [Google Scholar] [CrossRef]
- Mahara, M.; Singh, Y. Tribological analysis of the neem oil during the addition of SiO2 nanoparticles at different loads. Mater. Today Proc. 2020, 28, 1412–1415. [Google Scholar] [CrossRef]
- Shen, Y.; Lei, W.; Tang, W.; Ouyang, T.; Liang, L.; Tian, Z.Q.; Shen, P.K. Synergistic friction-reduction and wear-resistance mechanism of 3D graphene and SiO2 nanoblend at harsh friction interface. Wear 2022, 488–489, 204175. [Google Scholar] [CrossRef]
- Sankar, E.; Duraivelu, K. The effect of SiO2-Al2O3-TiO2 nanoparticle additives on lubrication performance: Evaluation of wear and coefficient of friction. Mater. Today Proc. 2022, 68, 2387–2392. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; He, J.; Xia, X.; Pan, F. Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribol. Int. 2016, 93, 63–70. [Google Scholar] [CrossRef]
- Seymour, B.T.; Fu, W.; Wright, R.A.E.; Luo, H.; Qu, J.; Dai, S.; Zhao, B. Improved Lubricating Performance by Combining Oil-Soluble Hairy Silica Nanoparticles and an Ionic Liquid as an Additive for a Synthetic Base Oil. ACS Appl. Mater. Interfaces 2018, 10, 15129–15139. [Google Scholar] [CrossRef]
- Xie, H.; Jiang, B.; Hu, X.; Peng, C.; Guo, H.; Pan, F. Synergistic Effect of MoS2 and SiO2 Nanoparticles as Lubricant Additives for Magnesium Alloy–Steel Contacts. Nanomaterials 2017, 7, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, D.; Rincon, C.; Wei, R.; Benamara, M.; Zou, M. Polydopamine + SiO2 nanoparticle underlayer for improving DLC coating adhesion and durability. Surf. Coat. Technol. 2022, 429, 127964. [Google Scholar] [CrossRef]
- Heymans, G.; Muñoz, A.I.; Mischler, S. Tribological behaviour of galvanic gold coatings reinforced with silica nanoparticles. Wear 2020, 462–463, 203512. [Google Scholar] [CrossRef]
- Li, H.; Branicio, P.S. Ultralow friction of graphene-coated silica nanoparticle film. Comput. Mater. Sci. 2022, 204, 111184. [Google Scholar] [CrossRef]
- Zheng, J.; Liu, Q.; Wei, W.; Lu, Y.; Wang, S.; Chen, H.; Zhou, Y. Roughness surface of raspberry-shaped silica nanoparticles effect on shear thickening colloidal suspensions. Appl. Surf. Sci. 2022, 606, 154917. [Google Scholar] [CrossRef]
- Li, X.; Cao, Z.; Zhang, Z.; Dang, H. Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 2006, 252, 7856–7861. [Google Scholar] [CrossRef]
- Sui, T.; Song, B.; Zhang, F.; Yang, Q. Effects of functional groups on the tribological properties of hairy silica nanoparticles as an additive to polyalphaolefin. RSC Adv. 2016, 6, 392–402. [Google Scholar] [CrossRef]
- Sui, T.; Song, B.; Zhang, F.; Yang, Q. Effect of Particle Size and Ligand on the Tribological Properties of Amino Functionalized Hairy Silica Nanoparticles as an Additive to Polyalphaolefin. J. Nanomater. 2015, 16, 427. [Google Scholar] [CrossRef] [Green Version]
- Seymour, B.T.; Wright, R.A.E.; Parrott, A.C.; Gao, H.; Martini, A.; Qu, J.; Dai, S.; Zhao, B. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property. ACS Appl. Mater. Interfaces 2017, 9, 25038–25048. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Archer, L.A. Nanoscale Organic-Inorganic Hybrid Lubricants. Langmuir 2011, 27, 3083–3094. [Google Scholar] [CrossRef] [PubMed]
- López, T.D.F.; González, A.F.; Reguero, Á.D.; Matos, M.; Díaz-García, M.E.; Badía-Laíño, R. Engineered silica nanoparticles as additives in lubricant oils. Sci. Technol. Adv. Mater. 2015, 16, 055005. [Google Scholar] [CrossRef]
- He, Q.; Li, A.; Guo, Y.; Liu, S.; Kong, L.-H. Effect of nanometer silicon dioxide on the frictional behavior of lubricating grease. Nanomater. Nanotechnol. 2017, 7, 1847980417725933. [Google Scholar] [CrossRef] [Green Version]
- Chen, J. Tribological Properties of Polytetrafluoroethylene, Nano-Titanium Dioxide, and Nano-Silicon Dioxide as Additives in Mixed Oil-Based Titanium Complex Grease. Tribol. Lett. 2010, 38, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Zheng, Y.; Yang, S.; Guo, Z.; Zhang, T.; Song, H.; Shao, Q. Esterification synthesis of ethyl oleate catalyzed by Brønsted acid–surfactant-combined ionic liquid. Green Chem. Lett. Rev. 2017, 10, 202–209. [Google Scholar] [CrossRef] [Green Version]
- Patzer, G.; Woydt, M. New Methodologies Indicating Adhesive Wear in Load Step Tests on the Translatory Oscillation Tribometer. Lubricants 2021, 9, 101. [Google Scholar] [CrossRef]
- ISO 19291:2016(E); Lubricants—Determination of Tribological Quantities for Oils and Greases—Tribological Test in the Translator Oscillation Apparatus. International Organization for Standardization: Geneva, Switzerland, 2016; Volume 1, pp. 1–13.
- Tóth, Á.D.; Paulovics, L.; Hanula, B.; Kopp, A.; Knaup, J. Development of testing methodology for tribological characterization of different engine lubricants. In Proceedings of the Reibung, Schmierung und Verschleiß—Forschung und Praktische Anwendung, Göttingen, Germany, 25–27 September 2017; Gesellshchaft für Tribologie e.V.: Aachen, Germany, 2017. [Google Scholar]
Specimen | Dimensions | Material | Heat Treatment | Hardness | Machining | Surface Roughness |
---|---|---|---|---|---|---|
Ball | Ø10 mm | 100Cr6 | - | 61 ± 1 HRC | polishing | Ra 0.025 ± 0.005 µm |
Disc | Ø24 mm × 7.9 mm | 100Cr6, vacuum arc melted | spherodized and annealed | 62 ± 1 HRC | lapping | 0.035 < Ra < 0.05 µm 0.5 < Rz < 0.65 µm |
Parameter | Stroke | Frequency | Specimen T | Oil T | Oil Flow Rate | Load | Time |
---|---|---|---|---|---|---|---|
Step 1 | 1 mm | 50 Hz | 100 °C | 100 °C | 225 mL/h | 50 N | 30 s |
Step 2 | 1 mm | 50 Hz | 100 °C | 100 °C | 225 mL/h | 100 N | 2 h |
Sample | Average PMV (nm) | SD (n > 3) |
---|---|---|
SM SiO2 | 5.0 | 0.87 |
SiO2 | 5.5 | 0.6 |
Group III base oil | 8.8 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tóth, Á.D.; Mike-Kaszás, N.; Bartus, G.; Hargitai, H.; Szabó, Á.I. Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests. Ceramics 2023, 6, 980-993. https://doi.org/10.3390/ceramics6020058
Tóth ÁD, Mike-Kaszás N, Bartus G, Hargitai H, Szabó ÁI. Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests. Ceramics. 2023; 6(2):980-993. https://doi.org/10.3390/ceramics6020058
Chicago/Turabian StyleTóth, Álmos Dávid, Nóra Mike-Kaszás, Gábor Bartus, Hajnalka Hargitai, and Ádám István Szabó. 2023. "Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests" Ceramics 6, no. 2: 980-993. https://doi.org/10.3390/ceramics6020058
APA StyleTóth, Á. D., Mike-Kaszás, N., Bartus, G., Hargitai, H., & Szabó, Á. I. (2023). Surface Modification of Silica Nanoparticles with Ethyl Oleate for the Purpose of Stabilizing Nanolubricants Used for Tribological Tests. Ceramics, 6(2), 980-993. https://doi.org/10.3390/ceramics6020058