Hafnium-Zirconium Carbonitride (Hf,Zr)(C,N) by One Step Mechanically Induced Self-Sustaining Reaction: Powder Synthesis and Spark Plasma Sintering
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Talmy, I.G.; Zaykoski, J.A.; Opeka, M.M. High-Temperature Chemistry and Oxidation of ZrB2Ceramics Containing SiC, Si3N4, Ta5Si3, and TaSi2. J. Am. Ceram. Soc. 2008, 91, 2250–2257. [Google Scholar] [CrossRef]
- Sciti, D.; Medri, V.; Silvestroni, L. Oxidation behaviour of HfB2–15 vol.% TaSi2 at low, intermediate and high temperatures. Scr. Mater. 2010, 63, 601–604. [Google Scholar] [CrossRef]
- Balaceanu, M.; Petreus, T.; Braic, V.; Zoita, C.N.; Vladescu, A.; Cotrutz, C.E.; Braic, M. Characterization of Zr-based hard coatings for medical implant applications. Surf. Coat. Technol. 2010, 204, 2046–2050. [Google Scholar] [CrossRef]
- Fahrenholtz, W.G.; Hilmas, G.E.; Talmy, I.G.; Zaykoski, J.A. Refractory Diborides of Zirconium and Hafnium. J. Am. Ceram. Soc. 2007, 90, 1347–1364. [Google Scholar] [CrossRef]
- Marschall, J.; Pejaković, D.A.; Fahrenholtz, W.G.; Hilmas, G.E.; Zhu, S.; Ridge, J.; Fletcher, D.G.; Asma, C.O.; Thoemel, J. Oxidation of ZrB2-SiC Ultrahigh-Temperature Ceramic Composites in Dissociated Air. J. Thermophys. Heat Transf. 2009, 23, 267–278. [Google Scholar] [CrossRef]
- Kurbatkina, V.V.; Patsera, E.I.; Levashov, E.A.; Vorotilo, S. SHS Processing and Consolidation of Ta–Ti–C, Ta–Zr–C, and Ta–Hf–C Carbides for Ultra-High-Temperatures Application. Adv. Eng. Mater. 2018, 20, 1701075. [Google Scholar] [CrossRef]
- Vogel, F.; Ngai, S.; Smith, C.J.; Holler, R.; Thompson, G.B. Complex evaporation behavior of a transition metal carbo-nitride (Hf(C,N)) studied by atom probe tomography. Ultramicroscopy 2018, 194, 154–166. [Google Scholar] [CrossRef]
- Yang, L.; Xiong, J.; Chen, X.; Li, X.; Deng, C.; Zhang, D.; Yi, L. Study on the growth and wear characters of CVD coating deposited on Ti(C, N)-based cermets with adding different C/N ratios of Ti(C, N) powders. Ceram. Int. 2023, 49, 18023–18034. [Google Scholar] [CrossRef]
- Harrison, R.; Ridd, O.; Jayaseelan, D.D.; Lee, W.E. Thermophysical characterisation of ZrCxNy ceramics fabricated via carbothermic reduction–nitridation. J. Nucl. Mater. 2014, 454, 46–53. [Google Scholar] [CrossRef]
- Liang, L.; Wei, B.; Wang, D.; Fang, W.; Chen, L.; Wang, Y. Densification, microstructures, and mechanical properties of (Zr, Ti)(C, N) ceramics fabricated by spark plasma sintering. J. Eur. Ceram. Soc. 2022, 42, 6445–6456. [Google Scholar] [CrossRef]
- Braic, M.; Balaceanu, M.; Vladescu, A.; Zoita, C.N.; Braic, V. Study of (Zr,Ti)CN, (Zr,Hf)CN and (Zr,Nb)CN films prepared by reactive magnetron sputtering. Thin Solid. Films 2011, 519, 4092–4096. [Google Scholar] [CrossRef]
- Miao, Q.; Fu, Y.; Chen, H.; Zhang, J.; Zhao, J.; Zhang, Y. Simultaneous enhancement of mechanical and ablation properties of C/C composites modified by (Hf-Ta-Zr)C solid solution ceramics. J. Eur. Ceram. Soc. 2023, 43, 3182–3190. [Google Scholar] [CrossRef]
- Wu, K.-H.; Jiang, Y.; Jiao, S.-Q.; Chou, K.-C.; Zhang, G.-H. Preparations of titanium nitride, titanium carbonitride and titanium carbide via a two-step carbothermic reduction method. J. Solid. State Chem. 2019, 277, 793–803. [Google Scholar] [CrossRef]
- Yudin, S.N.; Kasimtsev, A.V.; Volodko, S.S.; Alimov, I.A.; Markova, G.V.; Sviridova, T.A.; Tabachkova, N.Y.; Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O. Low-temperature synthesis of ultra-high-temperature HfC and HfCN nanoparticles. Materialia 2022, 22, 101415. [Google Scholar] [CrossRef]
- Vasanthakumar, K.; Ghosh, S.; Koundinya, N.T.B.N.; Ramaprabhu, S.; Bakshi, S.R. Synthesis and mechanical properties of TiCx and Ti(C,N) reinforced Titanium matrix in situ composites by reactive spark plasma sintering. Mater. Sci. Eng. A 2019, 759, 30–39. [Google Scholar] [CrossRef]
- Li, Y.; Zeng, M.Q.; Liu, J.W.; Lu, Z.C. Evolution of metal nitriding and hydriding reactions during ammonia plasma-assisted ball milling. Ceram. Int. 2018, 44, 18329–18336. [Google Scholar] [CrossRef]
- Aisyah, I.S.; Wyszomirska, M.; Calka, A.; Wexler, D. Nitrogenation of hafnium carbide powders in AC and DC plasma by Electrical Discharge Assisted Mechanical Milling. J. Alloys Compd. 2017, 715, 192–198. [Google Scholar] [CrossRef]
- Nepapushev, A.A.; Buinevich, V.S.; Gallington, L.C.; Pauls, J.M.; Orlova, T.; Miloserdova, O.M.; Chapysheva, N.V.; Rogachev, A.S.; Mukasyan, A.S. Kinetics and mechanism of mechanochemical synthesis of hafnium nitride ceramics in a planetary ball mill. Ceram. Int. 2019, 45, 24818–24826. [Google Scholar] [CrossRef]
- Chicardi, E.; Gotor, F.J.; Alcalá, M.D.; Córdoba, J.M. Effects of additives on the synthesis of TiC N by a solid-gas mechanically induced self-sustaining reaction. Ceram. Int. 2018, 44, 7605–7610. [Google Scholar] [CrossRef]
- Córdoba, J.M.; Avilés, M.A.; Sayagués, M.J.; Alcalá, M.D.; Gotor, F.J. Synthesis of complex carbonitride powders TiyMT1−yCxN1−x (MT: Zr, V, Ta, Hf) via a mechanically induced self-sustaining reaction. J. Alloys Compd. 2009, 482, 349–355. [Google Scholar] [CrossRef]
- Oghenevweta, J.E.; Wexler, D.; Calka, A. Early stages of phase formation before the ignition peak during mechanically induced self-propagating reactions (MSRs) of titanium and graphite. Scr. Mater. 2016, 122, 93–97. [Google Scholar] [CrossRef]
- Córdoba, J.M.; Sayagués, M.J.; Alcalá, M.D.; Gotor, F.J. Monophasic TiyNb1−yCxN1−x nanopowders obtained at room temperature by MSR. J. Mater. Chem. 2006, 17, 650–653. [Google Scholar] [CrossRef]
- Lutterotti, L.; Chateigner, D.; Ferrari, S.; Ricote, J. Texture, residual stress and structural analysis of thin films using a combined X-ray analysis. Thin Solid. Films 2004, 450, 34–41. [Google Scholar] [CrossRef]
- Anstis, G.R.; Chantikul, P.; Lawn, B.R.; Marshall, D.B. A Critical Evaluation,of Indentation Techniques for Measuring Fracture Toughness: I, direct crack measurements. J. Am. Ceram. Soc. 1981, 64, 533–538. [Google Scholar] [CrossRef]
- Merzhanov, A.G.; Rogachev, A.S. Structural Macrokinetics of SHS Processes. Pure Appl. Chem. 1992, 64, 941–953. [Google Scholar] [CrossRef]
- Deevi, S.C. Structure of the Combustion Wave in the Combustion Synthesis of Titanium Carbides. J. Mater. Sci. 1991, 26, 2662–2670. [Google Scholar] [CrossRef]
- Zhu, J.F.; Ye, L.; Tong, H.; Wang, F. Synthesis of Nanocrystalline TiC1−XNx by High Energy Milling. In Advanced Materials Research; Trans Tech Publications Ltd.: Stafa-zuerich, Switzerland, 2011; Volume 194, pp. 458–461. [Google Scholar]
- Chicardi, E.; Gotor, F.J.; Alcalá, M.D.; Córdoba, J.M. Influence of milling parameters on the solid-gas synthesis of TiCxN1−x by mechanically induced self-sustaining reaction. Powder Technol. 2017, 319, 12–18. [Google Scholar] [CrossRef]
- Chicardi, E.; García-Garrido, C.; Beltran, A.M.; Sayagués, M.J.; Gotor, F.J. Synthesis of a cubic Ti(BCN) advanced ceramic by a solid-gas mechanochemical reaction. Ceram. Int. 2018, 45, 3878–3885. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Li, Y.; Zhang, X.; Meng, Q. Microstructural evolution, mechanical and thermal properties of TiC-ZrC-Cr3C2 composites. Int. J. Refract. Met. Hard Mater. 2019, 80, 188–194. [Google Scholar] [CrossRef]
- Vorotilo, S.; Sidnov, K.; Sedegov, A.S.; Abedi, M.; Vorotilo, K.; Moskovskikh, D.O. Phase stability and mechanical properties of carbide solid solutions with 2–5 principal metals. Comput. Mater. Sci. 2021, 201, 110869. [Google Scholar] [CrossRef]
- Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Mukasyan, A.S. Mechanochemical synthesis and spark plasma sintering of hafnium carbonitride ceramics. Adv. Powder Technol. 2021, 32, 385–389. [Google Scholar] [CrossRef]
- Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Kuskov, K.V.; Yudin, S.N.; Mukasyan, A.S. Ultra-high-temperature tantalum-hafnium carbonitride ceramics fabricated by combustion synthesis and spark plasma sintering. Ceram. Int. 2021, 47, 30043–30050. [Google Scholar] [CrossRef]
- Jing, C.; Zhou, S.-J.; Zhang, W.; Ding, Z.-Y.; Liu, Z.-G.; Wang, Y.-J.; Ouyang, J.-H. Low temperature synthesis and densification of (Ti,V,Nb,Ta,Mo)(C,N) high-entropy carbonitride ceramics. J. Alloys Compd. 2022, 927, 167095. [Google Scholar] [CrossRef]
- Zhang, M.; Wei, B.; Wang, D.; Fang, W.; Chen, L.; Wang, Y. Novel (Zr, Ti)(C, N)–SiC ceramics via reactive hot-pressing at low temperature. Ceram. Int. 2022, 48, 29641–29651. [Google Scholar] [CrossRef]
- Yun, S.-S.; Han, B.-D.; Park, D.-S.; Kim, H.-D.; Lim, D.-S. Friction and wear of pressureless sintered Ti(C,N)–WC ceramics. Wear 2003, 255, 682–685. [Google Scholar] [CrossRef]
Sample | HEBM | (111) | (200) | (220) | (311) | (222) | a, nm |
---|---|---|---|---|---|---|---|
Duration, min | |||||||
HfC (#39-1491) | - | 2.6776 | 2.3189 | 1.6401 | 1.3983 | 1.3389 | 0.4638 |
ZrC (#35-0784) | - | 2.7089 | 2.3459 | 1.6592 | 1.4149 | 1.3547 | 0.4693 |
HfN (#33-0592) | - | 2.6120 | 2.2620 | 1.6002 | 1.3641 | 1.3061 | 0.4525 |
ZrN (#02-0956) | - | 2.64 | 2.29 | 1.62 | 1.38 | 1.32 | 0.456 |
(Hf,Zr)(C,N) | 10 | 2.6342 | 2.2817 | 1.6273 | 1.3889 | 1.3296 | 0.4588 |
15 | 2.6332 | 2.2803 | 1.6268 | 1.3871 | 1.3289 | 0.4585 | |
20 | 2.6330 | 2.2801 | 1.6245 | 1.3863 | 1.3283 | 0.4583 | |
30 | 2.6328 | 2.2792 | 1.6225 | 1.3838 | 1.3268 | 0.4578 |
Sample | ρh, g/cm3 | ρp, g/cm3 | ρ, % | HV, GPa | Fracture Toughness K1C, MPa∙m1/2 | Young’s Modulus, GPa |
---|---|---|---|---|---|---|
(Hf,Zr)(C,N) | 10.9 | 11.3 | 97 ± 1 | 17.3 ± 0.5 (30 N) | 4.5 ± 0.4 | 450 ± 20 |
ZrC [30] | – | – | 98.2 | 16.4 ± 1.3 | 3.1 ± 0.7 | 210 ± 19 |
HfZrC2 [31] | – | – | – | 19 ± 1.6 (100 mN) | 3.82 | 466 ± 81 |
HfC0.5N0.2 [32] | – | – | 95.6 ± 1 | 20.8 ± 1 (10 N) | 3.5 ± 0.2 | ~460 |
(Ta,Hf)CN [33] | – | – | 98 ± 1 | 19.4 ± 0.2 (30 N) | 5.4 ± 0.4 | 591 |
(Ti,V,Nb,Ta,Mo)(C,N) [34] | – | – | 99.8 | 24.0 ± 0.7 (9.8 N) | 4.87 ± 0.25 | – |
(Zr,Ti)(C,N)–SiC [35] | – | – | 98.5 ± 1 | 17.7–22.4 (9.8 N) | 3.0–4.4 | – |
(Ti,W)(C,N) [36] | – | – | – | 15.9–17.8 (30 N) | 4.0–4.57 | 429–481 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadyrova, I.; Suvorova, V.; Nepapushev, A.; Suvorov, D.; Kuskov, K.; Moskovskikh, D. Hafnium-Zirconium Carbonitride (Hf,Zr)(C,N) by One Step Mechanically Induced Self-Sustaining Reaction: Powder Synthesis and Spark Plasma Sintering. Ceramics 2023, 6, 1129-1138. https://doi.org/10.3390/ceramics6020067
Khadyrova I, Suvorova V, Nepapushev A, Suvorov D, Kuskov K, Moskovskikh D. Hafnium-Zirconium Carbonitride (Hf,Zr)(C,N) by One Step Mechanically Induced Self-Sustaining Reaction: Powder Synthesis and Spark Plasma Sintering. Ceramics. 2023; 6(2):1129-1138. https://doi.org/10.3390/ceramics6020067
Chicago/Turabian StyleKhadyrova, Irina, Veronika Suvorova, Andrey Nepapushev, Dmitrii Suvorov, Kirill Kuskov, and Dmitry Moskovskikh. 2023. "Hafnium-Zirconium Carbonitride (Hf,Zr)(C,N) by One Step Mechanically Induced Self-Sustaining Reaction: Powder Synthesis and Spark Plasma Sintering" Ceramics 6, no. 2: 1129-1138. https://doi.org/10.3390/ceramics6020067
APA StyleKhadyrova, I., Suvorova, V., Nepapushev, A., Suvorov, D., Kuskov, K., & Moskovskikh, D. (2023). Hafnium-Zirconium Carbonitride (Hf,Zr)(C,N) by One Step Mechanically Induced Self-Sustaining Reaction: Powder Synthesis and Spark Plasma Sintering. Ceramics, 6(2), 1129-1138. https://doi.org/10.3390/ceramics6020067