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Abstract: Materials known as Nd:YAG are crystalline materials of the cubic system made from the
neodymium-doped yttrium aluminum garnet, which, among others, have excellent optical properties.
Nd:YAG four-level laser devices are frequently used in both the health and industrial sectors. In
this study, a simple and inexpensive alternative to manufacturing Nd:YAG materials through solid
state reactions following powder processing routes was proposed. For this, an intense mixture of the
precursor materials (Al2O3 and Y2O3) was carried out, followed by the addition of neodymium atoms
to improve the optical properties of the resulting material. High-energy mechanical mixing of the
precursor powders resulted in submicron particles with good size distributions of the powders. The
advance of YAG formation was monitored by intermediate phase formation during heat treatment
through interrupted tests at different temperatures and analysis by X-ray diffraction. From this
analysis, it was found that reaction for the formation of the desired YAG is completed at 1500 ◦C.
Fourier transform infrared spectroscopy analyses determined the presence of functional groups
corresponding to the YAG. Finally, the study employing optical emission spectroscopy showed
wavelengths in agreement with those of the electronic structure of the elements of the synthesized
Nd:YAG.

Keywords: Nd-YAG; laser; optical characterization

1. Introduction

Materials known as neodymium-doped yttrium aluminum garnet (Nd:YAG) are
crystalline materials of the cubic system made from neodymium-doped yttrium aluminum
garnet. These materials have excellent physical, chemical, thermal, mechanical, and optical
properties [1–7]. One of the applications of this type of material is its widespread use
in white-light emitter manufacturing. However, the development of lasers has always
been conditioned by the availability of suitable materials for their use. In 1995, Ikesue
et al. demonstrated that transparent Nd:YAG ceramics could be produced using ceramic
fabrication techniques such as dry pressing and sintering [2]. Therefore, sintering of active
media by ceramic methods has become an alternative for solid-state laser active media
manufacturing. The addition of dopants during the processing of ceramic materials favors
the generation of concentration gradients that successfully modify the characteristics of
the materials [3].

There are different synthesis routes for Nd:YAG, including the solid-state reaction, the
solvothermal synthesis and a lot of wet chemical methods. As an example, the Nd-YAG
has been synthesized by means of Colloidal suspension of primary oxides (i.e., Y2O3,
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Al2O3, Nd2O3, and SiO2) used as sintering aid and posterior sintered by vacuum sin-
tering, followed by post-sintering treatment by Hot Isostatic Pressing (HIP) [8]; by the
slip casting method of a slurry prepared with the Al2O3 and Y2O3 commercial pow-
ders and a series of organics additives [9]; from a bulk crystal using femtosecond laser-
induced preferential etching [10]. YAG:Ce3+ phosphor was also prepared by a series of
amine-assisted co-precipitation methods [11]. In addition, the fabrication of highly-doped
Nd3+:YAG transparent by reactive SPS has been reported [12]. Finally, Al2O3–Ce:YAG and
Al2O3–Ce:(Y,Gd)AG composite ceramic phosphors were produced by reactive vacuum
sintering [13]. The Nd:YAG phosphor obtained by all these methods presents similar prop-
erties to the commercial lasers. However, there exists a major drawback, namely that all
these methodologies are costly, difficult to implement and not very productive. Therefore,
the synthesis of YAG by means of solid-state reactions is of interest due to the simplicity
and low cost of this process.

In optical applications such as lasers, it is suggested that the materials to be worked
with must have a series of characteristics such as homogeneity, i.e., the absence of second
phases with different refractive indexes, and isotropy; the main limitation of ceramic
materials is related to the scattering of light due to residual porosity [14]. Chemical
structures, compositions, and crystalline contents influence the transparency of ceramic
materials. It has been shown that the transparency and therefore laser efficiency are
rapidly reduced with the presence of pores [15]. This is the reason that has prompted the
development of transparent optical materials focusing on materials with a cubic structure.

Technological advances in the synthesis, shaping, and sintering of ceramic powders
have made it possible to adapt the microstructural, mechanical, and optical property
relationships in the case of this type of materials [16]. Emphasizing the optical properties,
the general condition sought in improving them is their homogeneity with respect to their
dielectric properties through solid-state sintering. In order to optimize the reactive solid-
state sintering process, Vorona et al. studied the phase composition, microstructure and
optical properties of YAG ceramics doped with 0÷ 0.15% by weight of MgO; after analyzing
the characteristics of Mg2+ ions, the authors concluded that the optimal concentration range
of MgO sintering contributes to achieving transparent YAG ceramics [17]. Along the same
line of research, Wentao Jia studied the quantitative relationship between microstructure
and mechanical and optical properties in transparent Nd:YAG ceramics. In his study,
W. Jia applied stereology and fractals to identify the quantitative relationship between
them and mechanical properties of transparent Nd:YAG ceramics sintered at 1750 ◦C for
8–50 h [18]. The improvement of laser performance in transparent Nd:YAG ceramics has
been investigated by Yuelong Fu, et al. with preparations of 2% Nd:YAG ceramics using a
solid-state reactive sintering method [13]. The sintered samples were annealed at different
temperatures for different times, obtaining ceramics with high density and homogeneous
structure with an average grain size of 15 µm. They concluded that at 1450 ◦C and 5 h of
retention, the concentration of color centers in the sample is relatively low and the efficiency
of the laser slope is the highest.

In addition to the study of the different types of properties and the way they are
linked to each other and how they end up affecting the performance of lasers due to their
optical properties, there are authors who pay special attention to the behavior and nature
of carbon contaminations in their studies, dispersed in the matrix of yttrium aluminum
garnet. Kosyanov et al., showed that an increase in applied pressure from 30 to 70 MPa
changed the color of the ceramic; the samples darkened and became dark brown, affecting
the optical properties of the material [19,20]. To the best of our knowledge, there is no
genuine interest in developing improvements in the optical properties by starting from
the solid-state sintering of powders and emphasizing the economic and methodological
advantages that this type of treatment presents, so the work to be conducted is promising
in this area. In addition, the grinding parameters are usually not as long as those previously
mentioned, so that the grinding time represents another advantage for its realization.
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2. Materials and Methods

For the present study, the Y3Al5O12 perovskite was synthesized. For this purpose, a
mixture in stoichiometric amounts according to Reaction 1 was prepared.

3Y2O3 + 5Al2O3 → 2Y3Al5O12. (1)

Powders of Y2O3 and Al2O3 (Sigma-Aldrich, St. Louis, MO, USA, 99.9% purity and 1
µm size) were ground in a planetary mill (Retsch PM 100, Duesseldorf, Germany) for 3 h at
a rotation speed of 300 rpm. In addition, a stainless steel container with zirconia grinding
elements, 0.3 cm in diameter, was utilized, as well as a powder weight/ball weight ratio of
1:12. After milling, the particle size distribution and specific surface area were determined
using the Mastersizer 2000 equipment of English origin. This equipment uses the technique
of laser diffraction to measure the particle size and particle size distribution of materials. It
achieves this by measuring the intensity of light scattered as a laser beam passes through
a dispersed particulate sample. The powder mixtures resulting from the milling step
were subjected to thermal treatment at 900, 1100, 1300, and 1500 ◦C in order to follow the
advance of Reaction 1. Thermal treatment was carried out in an electric resistance furnace
(Carbolite RHF17/3E, Mánchester, UK) for 1 h; the heating speed was 25 ◦C/min. To avoid
oxidation of the neodymium, a nitrogen atmosphere was used inside the furnace chamber.
The advance of the chemical reaction was followed by X-ray diffraction analysis (Siemens,
D-5000, Munich, Germany). Once the formation temperature of compound Y3Al5O12 was
determined (Reaction 1 complete), mixtures were prepared with the two initial components
with additions of neodymium (0, 0.25, 0.5 and 1 atomic %). These mixtures were carried
out in the planetary mill; the powders were mixed under the same conditions mentioned at
the beginning of this methodology. With the powders resulting from the second grinding
stage, cylindrical tablets, 1 cm in diameter and 0.3 cm thickness, were obtained by uniaxial
compaction at 250 MPa using a press (Porter-30T, México City, Mexico). They were then
subjected to sintering treatments for 2 h at 1500 ◦C in an electric furnace. The density of the
sintered samples was evaluated through the Archimedean principle using the standards
established in the ASTM C20-00 standard [21]. To determine the functional groups present
in the formed compound, FTIR analysis was performed (Rayleight WQF-510A, Beijing,
China). The pump source used to obtain the emission spectra was a laser diode that
operated at 806 nm with an optical power of 80 mW; the laser light was collimated by a
microscope objective of 10×. The absorption spectra of the pills were measured using a
Cary 5000 UV-Vis-NIR spectrophotometer, in which the sample was placed so that the
waveguides were perpendicular to the incident light beam and a range of 300–900 nm
so that it could cover the main absorption bands of the material. Finally, observations of
microstructure of sintered samples were performed by optical microscopy (Nikon Eclipse
Ma200, Tokyo, Japan).

3. Results
3.1. Density

Figure 1 shows the apparent density achieved by the sintered samples as a function
of the Nd content. What is shown in this figure is that as the Nd content increases, the
density of the samples tends to decrease. This is probably because the melting point of Nd
is 1024 ◦C. If the samples were sintered at 1500 ◦C, the Nd at that temperature must have
been in liquid phase and, due to its low wettability, could not move within the mixture to
occupy the porosity of the mixture which caused the porosity not to close during sintering.
The final density of all samples is relatively low due to the fact that Nd-YAG has density
values of approximately 4.5 gr/cm3. It is considered that better densities were not achieved
during processing due to the following cause: during heating for sintering, two phenomena
occurred that are significantly contradictory. The first one was the diffusion of atoms to
achieve the consolidation of the samples. The second one was the occurrence of Reaction
1 for the formation of YAG garnet. The controlling stage of the process was the atomic
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diffusion stage which was not high enough to achieve a better densification of the samples.
This could be corrected by increasing the sintering temperature to favor atom mobility.
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Figure 1. Apparent density of sintered Y3Al5O12 as a function of the Nd content in it.

3.2. Particle Size

Figure 2 shows the results of the particle size distribution analysis for each of the study
samples. The figure shows that the particle sizes vary from less than 1 micron to several
microns; the sample with a 0.5 at. % Nd exhibits the largest size distribution, with sizes
ranging from 0.2 microns to 9 microns. On the other hand, the sample with 1 at. %Nd is
the one with the smallest size distribution, since the particle sizes range between 0.2 and
2.5 microns. The sample with 0.25 at. % Nd also shows sizes below 1 micron and maximum
sizes of approximately five microns. In comparison, the sample without Nd addition
presents sizes between two and five microns. The strong size variation, especially due to
the large particle sizes in the sample with a 0.5 at. %Nd, is what causes the densification in
this sample to be not so good since during the compaction of the powders in this sample
there must have been empty spaces (pores) difficult to close with sintering. According to
these results, the samples without Nd and with low Nd content (0.25% Nd) are the ones
that densified better. Therefore, the size distribution of these samples is the one that favors
the porosity closure during sintering. As mentioned before, the presence of Nd hinders the
sintering of the compounds due to the liquid state in which it is present at the temperature
(1500 ◦C) of formation of the compound (Y3Al5O12), which corresponds to the sintering
temperature. During sample consolidation, there are two desirable factors, one is the small
size of the powder so that diffusion can occur without problem because atoms can only
move across small distances. The other desirable phenomenon is a multimodal particle
distribution, i.e., a good variety of sizes, because this favors the increase in the number of
contacts between particles and thus the diffusion of atoms and consequent consolidation of
the sample. In the case of the sample with a 1% Nd, although the particle size is small, the
size distribution is low, which causes this sample not to consolidate properly.
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3.3. Crystalline Structure

Figure 3 shows the diffraction patterns of the Y2O3 + Al2O3 powder mixture that was
subjected to interrupted tests at different temperatures to observe the progress of reaction
1 and to determine the formation of the Y3Al5O12 compound. In this figure, it can be
seen that at 900 ◦C, Reaction 1 did not start. This can be affirmed because the crystalline
phases present here correspond to the two original components of sample Y2O3 + Al2O3.
At 1100 ◦C, the first traces of the desired garnet formation begin to appear, becoming
more abundant at 1300 ◦C. At 1500 ◦C, the predominant crystalline phase in the sample
corresponds to that of yttrium aluminum garnet (Y3Al5O12), although some traces of the
alumina phase are still observed in the corresponding spectrum. The minimal width of the
peaks and their intensity indicate the strong crystallinity of the compound formed. From
these spectra, it can be summarized that Reaction 1 starts to occur at approximately 1100 ◦C
and is almost completed at 1500 ◦C. To eliminate the remaining traces of alumina and yttria
at 1500 ◦C, the samples could be sintered at a higher temperature, e.g., 1550 or 1600 ◦C.

Diffractions in the resulting spectrum at 1500 ◦C correspond to Nd-YAG in agree-
ments with JCPDS 79-1892. The unit cell of Nd-YAG was calculated by the least squares
method using all reflections of Nd-YAG in the spectrum at 1500 ◦C of Figure 3. The cal-
culated result reveals that the crystals have a body-centered cubic crystalline structure
with space group Ia3d. The lattice parameters for YAG with different additions of Nd are
presented in Table 1.

Table 1. Lattice parameters of the Nd:YAG crystalline cubic structure as a function of Nd in the composition.

Nd Atomic % Lattice Parameter

0 11.9604

0.25 11.9712

0.5 11.9771

1 11.9814
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ferent temperatures to determine the formation temperature of yttrium aluminum garnet (Y3Al5O12).

The lattice parameter values increase with increasing neodymium in the Y3Al5O12
compound due to the slightly larger atomic radius of neodymium (1.82 Å) with respect to yt-
trium (1.80 Å). However, these values are similar to those reported in the literature [7,22,23].

3.4. Fourier Transform Infrared Spectroscopy

Figure 4 shows the absorbance spectrum obtained by Fourier transform infrared
spectroscopy of the sample sintered at 1500 ◦C. This spectrum shows two peaks at 591 and
1034 cm−1 which have been associated with the Al-O functional group of alumina. On
the other hand, at wavenumbers of 1411 and 1510 cm−1, two other peaks were observed,
corresponding to the Y-O functional group matching the yttria. Finally, at 3300 cm−1, one
more peak was observed, which was associated with the H-O bond corresponding to water.
The presence of this chemical bond is explained by the absorption of water by the sample
after it was sintered. From this spectrum, it can be confirmed that the functional groups
composing the mixture are those corresponding to the elements of compound Y3Al5O12.

3.5. Absorption Spectrum

Absorption studies were performed for the samples with additions of Nd in atomic
percentages of 0.25%, 0.5% and 1%. Figure 5 shows the comparative absorption spectra for
each of the samples. Predominant absorption bands can be better observed from the 1%
Nd sample at around 750 and 810 nm, corresponding to transitions from the 4I9/2 ground
level to 4F7/2:4S3/2 and 4F5/2:4H9/2 levels, respectively. In addition, peaks at 520, 590 and
880 nm are also present. It can be seen that the bandwidth and the peak shape are the same
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for the samples with neodymium content; however, as the concentration increases, the peak
absorbance becomes greater.
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3.6. Emission Spectrum

Emission studies were carried out at wavelengths from 930 to 1370 nm for the three
samples doped with Nd. Figure 6 shows the comparative emission spectra for each of
the samples. As can be seen, the peak intensity increases as neodymium concentration
increases. Still, the shape of the peaks and the bandwidth are maintained in all cases, which
is important in laser emission applications. The emission spectra are presented in the three
predominant regions due to radiative decay from the 4F3/2 state to the 4I9/2, 4I11/2 and
4I13/2 states, which can be seen in the figure. The energy levels of Nd:YAG are determined
by the neodymium (Nd) ions in the YAG; the predominant radiative transition at 1064 nm
occurs between the upper stark level of the 4F3/2 state and one of the 4I11/2 states. The
synthesized materials could have potential application in the development of a laser that
emits in the near infrared region. As depicted in Figure 6, the spectrum shows a broad
emission range that could be used for tunable lasers. For example, Okhapkin et al. [24]
reported a tunable Nd:YAG laser with an operating range between 945 and 946 nm. In
comparison, Figure 6a shows that at the 4F3/2 to 4I9/2 transition, two emissions could be
utilized in laser tuning from 937 to 939 nm and from 946 to 948 nm. The primary emission
shown in Figure 6b corresponding to 1064 nm could be used in double frequency lasers
at 532 nm for medical procedures [25,26]. In addition, other emissions observed in the
same transition with corresponding peaks ranging from 1052 to 1078 nm could be used for
similar purposes. Regarding the third transition from 4F3/2 to 4I13/2 shown in Figure 6c,
the emission peaks are similar to laser wavelengths reported recently by Zhu et al. [27] but
with the advantage of an additional emission at 1336 nm.
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Figure 6. Emission spectra of Nd:YAG for (a) transition 4F3/2→ 4I9/2, (b) transition 4F3/2→ 4I11/2 and
(c) transition 4F3/2→ 4I13/2.

The values in the luminescent properties, particularly the optical-to-optical, of output
laser energy at 1064 nm of the Nd:YAG obtained in this work are similar to both those of
the commercial lasers and the lasers obtained by the different methodologies mentioned in
the introduction section of this work.

3.7. Microstructure

The microstructures of synthesized Nd:YAG obtained from the optical microscope are
shown in Figure 7. In general, the microstructure is very fine, made up of irregular grains
of different sizes and morphologies (angular, rounded, etc.). Due to the fine microstructure,
the porosity of the samples cannot be distinguished. In fact, finer particles are obtained
for intermediate Nd contents (0.25 at. % and 0.5 at. %). However, the sample with a
0.5 at. % Nd cracked. According to density measurements, the higher the amount of Nd
in the garnet, the lower the bulk density, a situation difficult to observe in these images.
However, the very fine size present in these composites due to the type of processing
carried out to manufacture them positively influences the optical properties of the com-
posites, as already observed above. This suggests that if the processing conditions of these
composites can be better controlled to obtain denser bodies, the optical properties will be
further improved.
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The general microstructure of sintered Nd:YAG samples observed with scanning
electron microscopy (SEM) is depicted in Figure 8a–d. In these pictures, it is possible to
observe that the microstructure in all samples is composed of irregular grains of varied
sizes and particle shapes. The samples exhibited a wide distribution of particle sizes with
a multimodal behavior. Their micro-structure is composed of larger grains with different
contrasts (brighter zones) and various morphological features. These bright grains with
different neodymium concentrations are associated with compounds formed during the
YAG processing, as detected by SEM-EDS (Figure 9).
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Figure 9. EDS analysis performed in the YAG-3% at Nd sintered sample.

4. Conclusions

Through intense mixing of the Al2O3 and Y2O3 ceramics in a high-energy mill and
subsequent heat treatment at elevated temperature to induce solid-state chemical reac-
tions between the two initial components, the synthesis of the Y3Al5O12 compound doped
with different percentages of neodymium was feasible. From the characterizations per-
formed on the obtained products, the following results were recorded: X-ray diffraction
patterns indicate that the formation of the Y3Al5O12 compound by solid-state reaction
starts at approximately 1100 ◦C and is completed at 1500 ◦C; likewise, the newly formed
compound has a cubic crystalline structure. The spectra obtained by Fourier transform
infrared spectroscopy show the presence of the two functional groups (Al-O and Y-O) of
the Y3Al5O12 compound. The analysis by optical absorption and emission spectroscopy
indicates wavelength bands in agreement with the electronic structure of Nd ions in YAG.
The microstructure of the manufactured composite is very fine, presenting equiaxial grains
with sizes of less than one micron. This explains the good optical characteristics of the
manufactured compound. The results are promising for the development of a light source
based on a ceramic material obtained by the solid-state reaction method.

Author Contributions: Conceptualization, G.V.V., E.R.-R. and C.A.C.-A.; methodology, O.A.E.-R.,
J.A.C.-R. and J.L.-H.; validation, J.A.C.-R., J.L.-H. and W.J.P.-R.; formal analysis, O.A.E.-R., G.V.V.,
E.R.-R. and C.A.C.-A.; investigation, O.A.E.-R., J.A.C.-R. and J.L.-H.; resources, G.V.V., J.A.C.-R., J.L.-
H., C.A.C.-A., W.J.P.-R. and E.R.-R.; data curation, O.A.E.-R., G.V.V., J.A.C.-R., J.L.-H. and J.A.C.-R.;
writing—original draft preparation, O.A.E.-R., G.V.V., C.A.C.-A. and E.R.-R.; writing—review and editing,
G.V.V. and C.A.C.-A.; visualization, G.V.V., C.A.C.-A. and E.R.-R.; supervision, G.V.V., C.A.C.-A. and
E.R.-R.; project administration, E.R.-R. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study does not require ethical approval.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.



Ceramics 2023, 6 1665

Acknowledgments: OAER thanks the national council of science and technology for the scholarship
granted for the completion of her master’s studies. all authors agree with this acknowledgement.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nakai, S.; Mima, K. Laser driven inertial fusion energy: Present and prospective. Rep. Prog. Phys. 2004, 67, 321–349. [CrossRef]
2. Ikesue, A.; Aung, Y.L.; Taira, T.; Kamimura, T.; Yoshida, K.; Messing, G.L. Progress in ceramic lasers. Annu. Rev. Mater. Res. 2006,

36, 397–429. [CrossRef]
3. Ikesue, A.; Aung, Y.L. Ceramic laser materials. Nat. Photon. 2008, 2, 721–727. [CrossRef]
4. Li, C.-Q.; Zuo, H.-B.; Zhang, M.-F.; Han, J.-C.; Meng, S.-H. Fabrication of transparent YAG ceramics by traditional solid-state-

reaction method. Trans. Nonferrous Met. Soc. China 2007, 17, 148–153. [CrossRef]
5. Park, J.; Joo, J.; Kwon, S.G.; Jang, Y.; Hyeon, T. Synthesis of Monodisperse Spherical Nanocrystals. Angew. Chem. Int. Ed. 2007, 46,

4630–4660. [CrossRef]
6. Boulesteix, R.; Maître, A.; Baumard, J.-F.; Sallé, C.; Rabinovitch, Y. Mechanism of the liquid-phase sintering for Nd:YAG ceramics.

Opt. Mater. 2009, 31, 711–715. [CrossRef]
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