Geopolymer Antimicrobial and Hydrophobic Modifications: A Review
Abstract
:1. Introduction
2. Geopolymer Hydrophobic Properties and Modification
3. Geopolymer Antimicrobial Additives
3.1. Inorganic Agents
3.1.1. Metal Ions
3.1.2. Metal Nanoparticles
3.1.3. Metal Microparticles
3.2. Organic Agents
4. Geopolymer Surface Protection
5. Potential Nanoparticle Leaching from Antimicrobial Geopolymers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davidovits, J. Geopolymers and geopolymeric materials. J. Therm. Anal. 1989, 35, 429–441. [Google Scholar] [CrossRef]
- Le, V.S.; Louda, P.; Tran, H.N.; Nguyen, P.D.; Bakalova, T.; Ewa Buczkowska, K.; Dufkova, I. Study on Temperature-Dependent Properties and Fire Resistance of Metakaolin-Based Geopolymer Foams. Polymers 2020, 12, 2994. [Google Scholar] [CrossRef] [PubMed]
- Ambrus, M.; Szabó, R.; Mucsi, G. Utilisation and quality management of power plant fly ash. Int. J. Eng. Manag. Sci. 2019, 4, 329–337. [Google Scholar]
- Trinh, Q.V.; Mucsi, G.; Dang, T.V.; Le, L.P.; Bui, V.H.; Nagy, S. The influence of process conditions on ground coal slag and blast furnace slag based geopolymer properties. Rud.-Geol.-Naft. Zb. 2020, 35, 15–20. [Google Scholar] [CrossRef]
- Nguyen, V.V.; Le, V.S.; Louda, P.; Szczypiński, M.M.; Ercoli, R.; Růžek, V.; Łoś, P.; Prałat, K.; Plaskota, P.; Pacyniak, T.; et al. Low-Density Geopolymer Composites for the Construction Industry. Polymers 2022, 14, 304. [Google Scholar] [CrossRef]
- Gailitis, R.; Korniejenko, K.; Sprince, A.; Pakranstins, L. Comparison of the long-term properties of foamed concrete and geopolymer concrete in compression. AIP Conf. Proc. 2020, 2239, 020012. [Google Scholar] [CrossRef]
- Boros, A.; Korim, T. Development of Geopolymer Foams for Multifunctional Applications. Crystals 2022, 12, 386. [Google Scholar] [CrossRef]
- Abdullah’, S.; Ming, L.; Abdullah, M.M.A.B.; Yong, H.; Zulkifly, K. Mechanical Properties and Thermal Conductivity of Lightweight Foamed Geopolymer Concretes. IOP Conf. Ser. Mater. Sci. Eng. 2019, 551, 012089. [Google Scholar] [CrossRef] [Green Version]
- McLellan, B.C.; Williams, R.P.; Lay, J.; Van Riessen, A.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Adeleke, B.O.; Kinuthia, J.M.; Oti, J.; Ebailila, M. Physico-Mechanical Evaluation of Geopolymer Concrete Activated by Sodium Hydroxide and Silica Fume-Synthesised Sodium Silicate Solution. Materials 2023, 16, 2400. [Google Scholar] [CrossRef]
- Baziak, A.; Pławecka, K.; Hager, I.; Castel, A.; Korniejenko, K. Development and Characterization of Lightweight Geopolymer Composite Reinforced with Hybrid Carbon and Steel Fibers. Materials 2021, 14, 5741. [Google Scholar] [CrossRef] [PubMed]
- Le, C.H.; Louda, P.; Ewa Buczkowska, K.; Dufkova, I. Investigation on Flexural Behavior of Geopolymer-Based Carbon Textile/Basalt Fiber Hybrid Composite. Polymers 2021, 13, 751. [Google Scholar] [CrossRef] [PubMed]
- Gailitis, R.; Sprince, A.; Kozlovskis, T.; Radina, L.; Pakrastins, L.; Vatin, N. Long-Term Properties of Different Fiber Reinforcement Effect on Fly Ash-Based Geopolymer Composite. Crystals 2021, 11, 760. [Google Scholar] [CrossRef]
- Kozub, B.; Bazan, P.; Gailitis, R.; Korniejenko, K.; Mierzwiński, D. Foamed Geopolymer Composites with the Addition of Glass Wool Waste. Materials 2021, 14, 4978. [Google Scholar] [CrossRef]
- Pławecka, K.; Przybyła, J.; Korniejenko, K.; Lin, W.-T.; Cheng, A.; Łach, M. Recycling of Mechanically Ground Wind Turbine Blades as Filler in Geopolymer Composite. Materials 2021, 14, 6539. [Google Scholar] [CrossRef]
- Mucsi, G.; Szenczi, Á.; Nagy, S. Fiber reinforced geopolymer from synergetic utilization of fly ash and waste tire. J. Clean. Prod. 2018, 178, 429–440. [Google Scholar] [CrossRef]
- Taye, E.A.; Roether, J.A.; Schubert, D.W.; Redda, D.T.; Boccaccini, A.R. Hemp Fiber Reinforced Red Mud/Fly Ash Geopolymer Composite Materials: Effect of Fiber Content on Mechanical Strength. Materials 2021, 14, 511. [Google Scholar] [CrossRef]
- Bazan, P.; Kozub, B.; Korniejenko, K.; Gailitis, R.; Sprince, A. Tribo-mechanical behavior of geopolymer composites with wasted flax fibers. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1190, 012030. [Google Scholar] [CrossRef]
- Łach, M.; Pławecka, K.; Bąk, A.; Adamczyk, M.; Bazan, P.; Kozub, B.; Korniejenko, K.; Lin, W.-T. Review of Solutions for the Use of Phase Change Materials in Geopolymers. Materials 2021, 14, 6044. [Google Scholar] [CrossRef]
- Ziejewska, C.; Grela, A.; Hebda, M. Influence of Waste Glass Particle Size on the Physico-Mechanical Properties and Porosity of Foamed Geopolymer Composites Based on Coal Fly Ash. Materials 2023, 16, 2044. [Google Scholar] [CrossRef]
- Łach, M.; Mierzwiński, D.; Korniejenko, K.; Mikuła, J. Geopolymer foam as a passive fire protection. MATEC Web Conf. 2018, 247, 31. [Google Scholar] [CrossRef] [Green Version]
- Hýsek, Š.; Frydrych, M.; Herclík, M.; Louda, P.; Fridrichová, L.; Le Van, S.; Le Chi, H. Fire-Resistant Sandwich-Structured Composite Material Based on Alternative Materials and Its Physical and Mechanical Properties. Materials 2019, 12, 1432. [Google Scholar] [CrossRef] [Green Version]
- Le, V.S.; Nguyen, V.V.; Sharko, A.; Ercoli, R.; Nguyen, T.X.; Tran, D.H.; Łoś, P.; Buczkowska, K.E.; Mitura, S.; Špirek, T.; et al. Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards. Polymers 2022, 14, 1945. [Google Scholar] [CrossRef] [PubMed]
- Le, V.S.; Louda, P. Research of Curing Time and Temperature-Dependent Strengths and Fire Resistance of Geopolymer Foam Coated on an Aluminum Plate. Coatings 2021, 11, 87. [Google Scholar] [CrossRef]
- Elsayed, H.; Gobbin, F.; Picicco, M.; Italiano, A.; Colombo, A. Additive manufacturing of inorganic components using a geopolymer and binder jetting. Addit. Manuf. 2022, 56, 102909. [Google Scholar] [CrossRef]
- Ziejewska, C.; Marczyk, J.; Korniejenko, K.; Bednarz, S.; Sroczyk, P.; Łach, M.; Mikuła, J.; Figiela, B.; Szechyńska-Hebda, M.; Hebda, M. 3D Printing of Concrete-Geopolymer Hybrids. Materials 2022, 15, 2819. [Google Scholar] [CrossRef]
- Wei, S.; Zhenglong, J.; Liu, H.; Zhou, D.; Sanchez-Silva, M. Microbiologically Induced Deterioration of Concrete—A Review. Braz. J. Microbiol. 2013, 44, 1001–1007. [Google Scholar] [CrossRef]
- Barbosa, V.F.; MacKenzie, K.J.; Thaumaturgo, C. Synthesis and characterization of materials based on inorganic polymers of alumina and silica: Sodium polysialate polymers. Int. J. Inorg. Mater. 2000, 2, 309–317. [Google Scholar] [CrossRef]
- Allahverdi, A.; Škvára, F. Sulfuric acid attack on hardened paste of geopolymer cements Part 1. Mechanism of corrosion at relatively high concentrations. Ceramics–Silikaty 2005, 49, 225–229. [Google Scholar]
- Wasserbauer, R.; Zadák, Z.; Novotný, J. Nitrifying bacteria on the asbestos-cement roofs of stable buildings. Int. Biodeterior. 1988, 24, 153–165. [Google Scholar] [CrossRef]
- Jayakumar, S.; Manakula, S. Effect of macro algae Ulva fasciata on concrete structures. Int. J. Phys. Sci. 2012, 7, 805–821. [Google Scholar] [CrossRef]
- Jayakumar, S.; Saravene, R. Biodeterioration of coastal concrete structures by Macro algae—Chaetomorpha antennina. Mater. Res. 2009, 12, 465–472. [Google Scholar] [CrossRef]
- Gu, J.; Ford, T.; Berke, N.; Mitchell, R. Biodeterioration of concrete by the fungus Fusarium. Int. Biodeterior. Biodegrad. 1998, 41, 101–109. [Google Scholar] [CrossRef]
- Salvadori, O.; Casanova, A. The Role of Fungi and Lichens in the Biodeterioration of Stone Monuments. Open Conf. Proc. J. 2016, 7, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Dong, S.; Ashour, A.; Han, B. Antimicrobial Concrete for Smart and Durable Infrastructures: A Review. Constr. Build. Mater. 2020, 260, 120456. [Google Scholar] [CrossRef]
- Haile, T.; Nakhla, G.; Allouche, E.; Vaidya, S. Evaluation of the Bactericidal Characteristics of Nano-Copper Oxide or Functionalized Zeolite Coating for Bio-Corrosion Control in Concrete Sewer Pipes. Corros. Sci. 2010, 52, 45–53. [Google Scholar] [CrossRef]
- Sikora, P.; Augustyniak, A.; Cendrowski, K.; Nawrotek, P.; Mijowska, E. Antimicrobial Activity of Al2O3, CuO, Fe3O4, and ZnO Nanoparticles in Scope of Their Further Application in Cement-Based Building Materials. Nanomaterials 2018, 8, 212. [Google Scholar] [CrossRef] [Green Version]
- Cloete, T.E. Resistance Mechanisms of Bacteria to Antimicrobial Compounds. Int. Biodeterior. Biodegrad. 2003, 51, 277–282. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.; Fang, J.; Zhang, B. Effectiveness of Surface Coatings Against Intensified Sewage Corrosion of Concrete. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2019, 34, 1177–1186. [Google Scholar] [CrossRef]
- Berndt, M.L. Evaluation of Coatings, Mortars and Mix Design for Protection of Concrete against Sulphur Oxidising Bacteria. Constr. Build. Mater. 2011, 25, 3893–3902. [Google Scholar] [CrossRef]
- Goncharenko, D.; Aleinikova, A.; Kabus, O.; Kolomiiets, Y. Study of the Efficiency of Epoxy Coating Protection of Concrete Surfaces from Sulfuric Acid Corrosion. IOP Conf. Ser. Mater. Sci. Eng. 2019, 708, 012081. [Google Scholar] [CrossRef]
- Scopus—Analyze Search Results | Signed In. Available online: https://www.scopus.com/term/analyzer.uri?sid=363e4d9152868061bd7c11bd5eb8f0ab&origin=resultslist&src=s&s=%28TITLE-ABS-KEY%28geopolymer%29+AND+TITLE-ABS-KEY%28antimicrobial%29%29&sort=plf-f&sdt=b&sot=b&sl=60&count=14&analyzeResults=Analyze+results&txGid=a759aad08b84f610d97c96ace6915cb3 (accessed on 29 May 2023).
- Scopus—Analyze Search Results | Signed In. Available online: https://www.scopus.com/term/analyzer.uri?sid=2cf6042ce652129bce6b4307f9d30c3f&origin=resultslist&src=s&s=%28TITLE-ABS-KEY%28antimicrobial%29+AND+TITLE-ABS-KEY%28concrete%29%29&sort=plf-f&sdt=b&sot=b&sl=58&count=235&analyzeResults=Analyze+results&txGid=3035c263084765d5452426ede863179f (accessed on 29 May 2023).
- Ahmad Zaidi, F.; Ahmad, R.; Abdullah, M.M.A.B.; Mohd Tahir, M.F.; Yahya, Z.; Ibrahim, W.M.W.; Sauffi, A. Performance of Geopolymer Concrete When Exposed to Marine Environment. IOP Conf. Ser. Mater. Sci. Eng. 2019, 551, 012092. [Google Scholar] [CrossRef]
- Abdullah, M.M.A.B.; Kamarudin, H.; Binhussain, M.; Nizar, K.; Razak, R.; Yahya, Z. Comparison of Geopolymer Fly Ash and Ordinary Portland Cement to the Strength of Concrete. Adv. Sci. Lett. 2013, 19, 3592–3595. [Google Scholar] [CrossRef]
- Růžek, V.; Louda, P.; Buczkowska, K.; Just, P.; Prałat, K.; Ciemnicka, J.; Plaskota, P. Modifying Geopolymer Wettability by Plasma Treatment and High-Carbon Fly Ash. Front. Built Environ. 2022, 8, 991496. [Google Scholar] [CrossRef]
- Ly, O.; Yoris-Nobile, A.I.; Sebaibi, N.; Blanco-Fernandez, E.; Boutouil, M.; Castro-Fresno, D.; Hall, A.E.; Herbert, R.J.H.; Deboucha, W.; Reis, B.; et al. Optimisation of 3D Printed Concrete for Artificial Reefs: Biofouling and Mechanical Analysis. Constr. Build. Mater. 2021, 272, 121649. [Google Scholar] [CrossRef]
- Marine Archives. Available online: https://earthfriendlyconcrete.com/category/marine/ (accessed on 21 June 2023).
- Polydimethylsiloxane. Available online: https://www.acs.org/molecule-of-the-week/archive/p/polydimethylsiloxane.html (accessed on 22 June 2023).
- Zhang, D.; Zhu, H.; Wu, Q.; Yang, T.; Yin, Z.; Tian, L. Investigation of the Hydrophobicity and Microstructure of Fly Ash-Slag Geopolymer Modified by Polydimethylsiloxane. Constr. Build. Mater. 2023, 369, 130540. [Google Scholar] [CrossRef]
- Zhong, W.L.; Zhang, Y.H.; Fan, L.F.; Li, P.F. Effect of PDMS Content on Waterproofing and Mechanical Properties of Geopolymer Composites. Ceram. Int. 2022, 48, 26248–26257. [Google Scholar] [CrossRef]
- Ruan, S.; Yan, D.; Chen, S.; Jiang, F.; Shi, W. Process and Mechanisms of Multi-Stage Water Sorptivity in Hydrophobic Geopolymers Incorporating Polydimethylsiloxane. Cem. Concr. Compos. 2022, 128, 104460. [Google Scholar] [CrossRef]
- Ruan, S.; Chen, S.; Liu, Y.; Yan, D.; Sun, Z. Investigation on the Effect of Fiber Wettability on Water Absorption Kinetics of Geopolymer Composites. Ceram. Int. 2022, 48, 36678–36689. [Google Scholar] [CrossRef]
- Dong, C.; Shao, N.; Yan, F.; Ji, R.; Wei, X.; Zhang, Z. A Novel Integration Strategy for the Foaming and Hydrophobization of Geopolymer Foams. Cem. Concr. Res. 2022, 160, 106919. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Jitsangiam, P.; Rattanasak, U. Hydrophobicity and Efflorescence of Lightweight Fly Ash Geopolymer Incorporated with Calcium Stearate. J. Clean. Prod. 2022, 364, 132449. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W. A Novel Waterproof, Fast Setting and High Early Strength Repair Material Derived from Metakaolin Geopolymer. Constr. Build. Mater. 2016, 124, 69–73. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Luo, W.; Zhou, W. A Novel Surface Waterproof Geopolymer Derived from Metakaolin by Hydrophobic Modification. Mater. Lett. 2016, 164, 172–175. [Google Scholar] [CrossRef]
- Iqbal, H.W.; Hamcumpai, K.; Nuaklong, P.; Jongvivatsakul, P.; Likitlersuang, S.; Chintanapakdee, C.; Wijeyewickrema, A.C. Effect of Graphene Nanoplatelets on Engineering Properties of Fly Ash-Based Geopolymer Concrete Containing Crumb Rubber and Its Optimization Using Response Surface Methodology. J. Build. Eng. 2023, 75, 107024. [Google Scholar] [CrossRef]
- Tang, Z.Q.; Sui, H.; de Souza, F.B.; Sagoe-Crentsil, K.; Duan, W. Silane-Modified Graphene Oxide in Geopolymer: Reaction Kinetics, Microstructure, and Mechanical Performance. Cem. Concr. Compos. 2023, 139, 104997. [Google Scholar] [CrossRef]
- Tay, P.; Mazlan, N. Mechanical Strength of Graphene Reinforced Geopolymer Nanocomposites: A Review. Front. Mater. 2021, 8, 661013. [Google Scholar] [CrossRef]
- Wu, B.; Ma, X.; Xiang, Y.; Li, Y.; Zhang, Z. Lowering Efflorescence Potential of Fly Ash-Based Geopolymers by Incorporating Butyl Stearate. J. Build. Eng. 2023, 73, 106819. [Google Scholar] [CrossRef]
- Pasupathy, K.; Ramakrishnan, S.; Sanjayan, J. Effect of Hydrophobic Surface-Modified Fine Aggregates on Efflorescence Control in Geopolymer. Cem. Concr. Compos. 2022, 126, 104337. [Google Scholar] [CrossRef]
- Liang, G.; Zhu, H.; Zhang, Z.; Wu, Q.; Du, J. Investigation of the Waterproof Property of Alkali-Activated Metakaolin Geopolymer Added with Rice Husk Ash. J. Clean. Prod. 2019, 230, 603–612. [Google Scholar] [CrossRef]
- Zhu, H.; Liang, G.; Xu, J.; Wu, Q.; Zhai, M. Influence of Rice Husk Ash on the Waterproof Properties of Ultrafine Fly Ash Based Geopolymer. Constr. Build. Mater. 2019, 208, 394–401. [Google Scholar] [CrossRef]
- Husni, H.; Nazari, M.R.; Yee, H.M.; Rohim, R.; Yusuff, A.; Mohd Ariff, M.A.; Ahmad, N.N.R.; Leo, C.P.; Junaidi, M.U.M. Superhydrophobic Rice Husk Ash Coating on Concrete. Constr. Build. Mater. 2017, 144, 385–391. [Google Scholar] [CrossRef]
- Růžek, V.; Bakalova, T.; Ryvolova, M. Hydrophobic Protection of Geopolymers and Sandstone. 2022. Available online: https://www.researchgate.net/publication/369561361_Hydrophobic_protection_of_geopolymers_and_sandstone (accessed on 1 June 2023).
- Dyshlyuk, L.; Babich, O.; Ivanova, S.; Vasilchenco, N.; Atuchin, V.; Korolkov, I.; Russakov, D.; Prosekov, A. Antimicrobial Potential of ZnO, TiO2 and SiO2 Nanoparticles in Protecting Building Materials from Biodegradation. Int. Biodeterior. Biodegrad. 2020, 146, 104821. [Google Scholar] [CrossRef]
- Hashimoto, S.; Machino, T.; Takeda, H.; Daiko, Y.; Honda, S.; Iwamoto, Y. Antimicrobial Activity of Geopolymers Ion-Exchanged with Copper Ions. Ceram. Int. 2015, 41, 13788–13792. [Google Scholar] [CrossRef]
- Luukkonen, T.; Yliniemi, J.; Sreenivasan, H.; Ohenoja, K.; Finnilä, M.; Franchin, G.; Colombo, P. Ag- or Cu-Modified Geopolymer Filters for Water Treatment Manufactured by 3D Printing, Direct Foaming, or Granulation. Sci. Rep. 2020, 10, 7233. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Popovich, J.; Iannuzo, N.; Haydel, S.; Seo, D.-K. Silver Ion-Exchanged Nanostructured Zeolite X as Antibacterial Agent with Superior Ion Release Kinetics and Efficacy Against Methicillin-Resistant Staphylococcus aureus. ACS Appl. Mater. Interfaces 2017, 9, 39271–39282. [Google Scholar] [CrossRef]
- Chen, S.; Popovich, J.; Zhang, W.; Ganser, C.; Haydel, S.; Seo, D.-K. Superior Ion Release Properties and Antibacterial Efficacy of Nanostructured Zeolites Ion-Exchanged with Zinc, Copper, and Iron. RSC Adv. 2018, 8, 37949–37957. [Google Scholar] [CrossRef] [Green Version]
- Beyth, N.; Houri-Haddad, Y.; Domb, A.; Khan, W.; Hazan, R. Alternative Antimicrobial Approach: Nano-Antimicrobial Materials. Evid.-Based Complement. Altern. Med. 2015, 2015, 246012. [Google Scholar] [CrossRef] [Green Version]
- Vimbela, G.; Sang, N.; Fraze, C.; Yang, L.; Stout, D. Antibacterial Properties and Toxicity from Metallic Nanomaterials. Int. J. Nanomed. 2017, 12, 3941–3965. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.; Kalaichelvan, P.T. Ecotoxicity of Nanoparticles. ISRN Toxicol. 2013, 2013, 574648. [Google Scholar] [CrossRef] [Green Version]
- Luukkonen, T.; Bhuyan, M.; Hokajärvi, A.-M.; Pitkänen, T.; Miettinen, I.T. Water Disinfection with Geopolymer–Bentonite Composite Foam Containing Silver Nanoparticles. Mater. Lett. 2022, 311, 131636. [Google Scholar] [CrossRef]
- Adak, D.; Sarkar, M.; Maiti, M.; Tamang, A.; Mandal, S.; Chattopadhyay, B. Anti-Microbial Efficiency of Nano Silver–Silica Modified Geopolymer Mortar for Eco-Friendly Green Construction Technology. RSC Adv. 2015, 5, 64037–64045. [Google Scholar] [CrossRef]
- Jiang, L.; Jia, Z.; Xu, X.; Chen, Y.; Peng, W.; Zhang, J.; Wang, H.; Li, S.; Wen, J. Preparation of Antimicrobial Activated Carbon Fiber by Loading with Silver Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2022, 633, 127868. [Google Scholar] [CrossRef]
- Růžek, V.; Dostayeva, A.M.; Walter, J.; Grab, T.; Korniejenko, K. Carbon Fiber-Reinforced Geopolymer Composites: A Review. Fibers 2023, 11, 17. [Google Scholar] [CrossRef]
- Amariei, G.; Valenzuela, L.; Iglesias-Juez, A.; Rosal, R.; Visa, M. ZnO-Functionalized Fly-Ash Based Zeolite for Ciprofloxacin Antibiotic Degradation and Pathogen Inactivation. J. Environ. Chem. Eng. 2022, 10, 107603. [Google Scholar] [CrossRef]
- Sarkar, M.; Maiti, M.; Maiti, S.; Xu, S.; Li, Q. ZnO-SiO2 Nanohybrid Decorated Sustainable Geopolymer Retaining Anti-Biodeterioration Activity with Improved Durability. Mater. Sci. Eng. C 2018, 92, 663–672. [Google Scholar] [CrossRef]
- Tuntachon, S.; Kamwilaisak, K.; Somdee, T.; Mongkoltanaruk, W.; Sata, V.; Boonserm, K.; Wongsa, A.; Chindaprasirt, P. Resistance to Algae and Fungi Formation of High Calcium Fly Ash Geopolymer Paste Containing TiO2. J. Build. Eng. 2019, 25, 100817. [Google Scholar] [CrossRef]
- Gutiérrez, R.M.-d.; Villaquirán-Caicedo, M.; Ramírez-Benavides, S.; Astudillo, M.; Mejía, D. Evaluation of the Antibacterial Activity of a Geopolymer Mortar Based on Metakaolin Supplemented with TiO2 and CuO Particles Using Glass Waste as Fine Aggregate. Coatings 2020, 10, 157. [Google Scholar] [CrossRef] [Green Version]
- Kishore, K.; Pandey, A.; Wagri, N.K.; Saxena, A.; Patel, J.; Al-Fakih, A. Technological Challenges in Nanoparticle-Modified Geopolymer Concrete: A Comprehensive Review on Nanomaterial Dispersion, Characterization Techniques and Its Mechanical Properties. Case Stud. Constr. Mater. 2023, 19, e02265. [Google Scholar] [CrossRef]
- Růžek, V.; Svobodová, L.; Bakalova, T.; Ryvolová, M. Antimicrobial activity of geopolymers with metal microparticle additive. In Proceedings of the 14th International Conference on Nanomaterials—Research & Application, Brno, Czech Republic, 19–21 October 2022; pp. 97–102. [Google Scholar] [CrossRef]
- Lira, B.C.; Dellosa, S.; Toh, C.; Quintero, A.; Nidoy, A.; Dela Cerna, K.; Yu, D.; Janairo, J.I.; Promentilla, M.A. Coal Fly Ash-Based Geopolymer Spheres Coated with Amoxicillin and Nanosilver for Potential Antibacterial Applications. ASEAN J. Chem. Eng. 2019, 19, 25. [Google Scholar] [CrossRef]
- Polianciuc, S.; Gurzău, A.; Kiss, B.; Ștefan, M.-G.; Loghin, F. Antibiotics in the Environment: Causes and Consequences. Med. Pharm. Rep. 2020, 93, 231. [Google Scholar] [CrossRef]
- Rubio-Avalos, E.; Rubio-Avalos, J.-C. 15—Antimicrobial Alkali-Activated Materials. In Alkali-Activated Materials in Environmental Technology Applications; Luukkonen, T., Ed.; Woodhead Publishing: Sawston, UK, 2022; pp. 333–353. ISBN 978-0-323-88438-9. [Google Scholar]
- Kumar, S.; Paul, T.; Shukla, S.P.; Kumar, K.; Karmakar, S.; Bera, K.K. Biomarkers-Based Assessment of Triclosan Toxicity in Aquatic Environment: A Mechanistic Review. Environ. Pollut. 2021, 286, 117569. [Google Scholar] [CrossRef]
- Welsch, T.; Gillock, E. Triclosan-Resistant Bacteria Isolated from Feedlot and Residential Soils. J. Environ. Sci. Health Part A 2011, 46, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Rathinam, K.; Kanagarajan, V.; Banu, S. Evaluation of protective coatings for geopolymer mortar under aggressive environment. Adv. Mater. Res. 2020, 9, 219–231. [Google Scholar]
- Łach, M.; Róg, G.; Ochman, K.; Pławecka, K.; Bąk, A.; Korniejenko, K. Assessment of Adhesion of Geopolymer and Varnished Coatings by the Pull-Off Method. Eng 2022, 3, 42–59. [Google Scholar] [CrossRef]
- Mares, J.; Mamon, F.; Jaskevič, M.; Novotny, J. Adhesion of Various Geopolymers Coatings on Metal Substrates. Manuf. Technol. 2023, 23, 81–87. [Google Scholar] [CrossRef]
- Temuujin, J.; Minjigmaa, A.; Rickard, W.; Lee, M.; Williams, I.; van Riessen, A. Preparation of Metakaolin Based Geopolymer Coatings on Metal Substrates as Thermal Barriers. Appl. Clay Sci. 2009, 46, 265–270. [Google Scholar] [CrossRef]
- Yang, N.; Das, C.S.; Xue, X.; Li, W.; Dai, J.-G. Geopolymer Coating Modified with Reduced Graphene Oxide for Improving Steel Corrosion Resistance. Constr. Build. Mater. 2022, 342, 127942. [Google Scholar] [CrossRef]
- Singh Tomar, A.; Gupta, R.; Singh, A.; Thankaraj Salammal, S.; Akram Khan, M.; Mishra, D. Evaluation of Corrosion Protective Properties of Fly Ash-Red Mud Based Geopolymer Coating Material for Mild Steel. Mater. Today Proc. 2022, 68, 181–186. [Google Scholar] [CrossRef]
- Singh Tomar, A.; Gupta, R.; Bijanu, A.; Tanwar, D.; Singh, A.; Thankaraj Salammal, S.; Dhand, C.; Mishra, D. TiO2-Geopolymer Based Novel Corrosion Protective Micro-Coatings to Emaciate Mild Steel Oxidation in Severe Environments. Constr. Build. Mater. 2023, 395, 132252. [Google Scholar] [CrossRef]
- Bian, W.; Wang, Z.; Zhang, M. Epoxy Resin’s Influence in Metakaolin-Based Geopolymer’s Antiseawater Corrosion Performance. Int. J. Corros. 2019, 2019, 5470646. [Google Scholar] [CrossRef] [Green Version]
- Singla, R.; Senna, M.; Mishra, T.; Alex, T.C.; Kumar, S. High Strength Metakaolin/Epoxy Hybrid Geopolymers: Synthesis, Characterization and Mechanical Properties. Appl. Clay Sci. 2022, 221, 106459. [Google Scholar] [CrossRef]
- Xiong, G.; Guo, X.; Zhang, H. Preparation of Epoxy Resin-Geopolymer (ERG) for Repairing and the Microstructures of the New-to-Old Interface. Compos. Part B Eng. 2023, 259, 110731. [Google Scholar] [CrossRef]
- Roviello, G.; Ricciotti, L.; Tarallo, O.; Ferone, C.; Colangelo, F.; Roviello, V.; Cioffi, R. Innovative Fly Ash Geopolymer-Epoxy Composites: Preparation, Microstructure and Mechanical Properties. Materials 2016, 9, 461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deb, P.S.; Nath, P.; Sarker, P.K. The Effects of Ground Granulated Blast-Furnace Slag Blending with Fly Ash and Activator Content on the Workability and Strength Properties of Geopolymer Concrete Cured at Ambient Temperature. Mater. Des. 2014, 62, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Bu, Y.; Shen, Z.; Hou, X.; Huang, C. Effects of Epoxy Resin on the Mechanical Performance and Thickening Properties of Geopolymer Cured at Low Temperature. Mater. Des. 2016, 109, 133–145. [Google Scholar] [CrossRef]
- Aguirre-Guerrero, A.M.; Robayo-Salazar, R.A.; de Gutiérrez, R.M. A Novel Geopolymer Application: Coatings to Protect Reinforced Concrete against Corrosion. Appl. Clay Sci. 2017, 135, 437–446. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, H.; Phalé Zeze, A.L.; Liu, X.; Tao, M. Coating Performance, Durability and Anti-Corrosion Mechanism of Organic Modified Geopolymer Composite for Marine Concrete Protection. Cem. Concr. Compos. 2022, 129, 104495. [Google Scholar] [CrossRef]
- Ahmed, H.U.; Mohammed, A.A.; Mohammed, A.S. The Role of Nanomaterials in Geopolymer Concrete Composites: A State-of-the-Art Review. J. Build. Eng. 2022, 49, 104062. [Google Scholar] [CrossRef]
- Tian, Q.; Bai, Y.; Pan, Y.; Chen, C.; Yao, S.; Sasaki, K.; Zhang, H. Application of Geopolymer in Stabilization/Solidification of Hazardous Pollutants: A Review. Molecules 2022, 27, 4570. [Google Scholar] [CrossRef]
- Khatib, K.; Loubna, L.; Mohamed, E. Synthesis, Characterization, and Application of Geopolymer/TiO2 Nanoparticles Composite for Efficient Removal of Cu(II) and Cd(II) Ions from Aqueous Media. Minerals 2022, 12, 1445. [Google Scholar] [CrossRef]
- He, P.Y.; Zhang, Y.J.; Chen, H.; Han, Z.C.; Liu, L.C. Low-Cost and Facile Synthesis of Geopolymer-Zeolite Composite Membrane for Chromium(VI) Separation from Aqueous Solution. J. Hazard. Mater. 2020, 392, 122359. [Google Scholar] [CrossRef] [PubMed]
- Waijarean, N.; MacKenzie, K.J.D.; Asavapisit, S.; Piyaphanuwat, R.; Jameson, G.N.L. Synthesis and Properties of Geopolymers Based on Water Treatment Residue and Their Immobilization of Some Heavy Metals. J. Mater. Sci. 2017, 52, 7345–7359. [Google Scholar] [CrossRef]
Type of Geopolymer | PDMS Content | Water Absorption Compared to Sample without PDMS | Contact Angle | Other Effects | Reference |
---|---|---|---|---|---|
Fly ash/slag | 0.5 wt.% | −49.5% | 106.52° (+86%) | Lower compressive Strength (−5.4%) | [50] |
Fly ash/slag | 3 wt.% | −76.9% | 127.64° (+123%) | Lower compressive Strength (−28.3%) | [50] |
Calcined clay/slag (+ PVA fibers) | 5 wt.% | −75% | 120° (+586%) | Higher compressive Strength (+35%) and Lower tensile strength (−17%) | [51] |
Metakaolin + Silane coupling agent | 5 wt.% | −25% | 127.5° (from near zero) | Absorption significantly slowed down for higher PDMS content | [52] |
Metakaolin + Quartz powder | 3.3 wt.% | −70.6% | 127.5° (from near zero) | Absorption further Slowed down by hydrophobic Fiber additives | [53] |
Type of Geopolymer | Nanoparticles Type and Content | Effect | Reference |
---|---|---|---|
Metakaolin geopolymer/ Bentonite composite Foamed with H2O2 | Silver, 0.05 wt.% | High inactivation efficiency Against E. coli and enterococci bacteria when used as water filter. Effect diminishes over time. | [69,75] |
Fly ash/sand geopolymer | Silver nanoparticles attached on silica nanoparticles, 6 wt.% in total | 99% reduction of E. coli and S. aureus populations in 8, resp. 6 h | [76] |
Fly ash hydrothermally synthetized zeolite | ZnO synthetized during composite preparation, 19.24 wt.% of Zinc | Complete inhibition of S. aureus, decrease of E. coli growth by 4 orders of magnitude and complete degradation of Ciprofloxacin under UVA irradiation | [79] |
Fly ash | ZnO nanorods with attached SiO2 nanoparticles, 6 wt.% in total | Strong antibacterial properties against E. coli and S. aureus and fungicidal properties against A. niger. Improved mechanical properties. | [80] |
Fly ash | TiO2, 5 wt.% | 54% lower algae formation, 24% lower fungi formation. | [81] |
Metakaolin + glass waste as aggregate | TiO2, 10 wt.% | High inhibition capacity for P. aeruginosa, E. coli and S. aureus bacteria | [82] |
Metakaolin + glass waste as aggregate | CuO, 5 wt.% | No inhibition zone formed for P. aeruginosa, E. coli and S. aureus bacteria | [82] |
Type of Geopolymer | Epoxy Resin Type/Content and Other Additives | Effect on Mechanical Properties | Reference |
---|---|---|---|
Metakaolin | DGEBA resin + DICY hardener, 20 wt.% | Compressive strength—50.6 MPa (+150%) Flexural strength—5.4 MPa (+108%) | [98] |
Fly ash/slag | Waterborne epoxy emulsion + waterborne hardener, 4 wt.% | Compressive strength—65.1 MPA (+8%) Flexural strength—7.7 MPa (+8%) | [99] |
Fly ash | Epojet® epoxy resin, 20 wt.% | Compressive strength—49 MPa (+63%) | [100] |
Metakaolin | Epojet® epoxy resin, 20 wt.% | Compressive strength—51 MPa (+21%) | [100] |
Metakaolin/slag | 12.5 wt.% (only 1 day curing time) | Compressive strength—16 MPa (−23%) | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Růžek, V.; Novosád, J.; Buczkowska, K.E. Geopolymer Antimicrobial and Hydrophobic Modifications: A Review. Ceramics 2023, 6, 1749-1764. https://doi.org/10.3390/ceramics6030107
Růžek V, Novosád J, Buczkowska KE. Geopolymer Antimicrobial and Hydrophobic Modifications: A Review. Ceramics. 2023; 6(3):1749-1764. https://doi.org/10.3390/ceramics6030107
Chicago/Turabian StyleRůžek, Vojtěch, Jan Novosád, and Katarzyna Ewa Buczkowska. 2023. "Geopolymer Antimicrobial and Hydrophobic Modifications: A Review" Ceramics 6, no. 3: 1749-1764. https://doi.org/10.3390/ceramics6030107
APA StyleRůžek, V., Novosád, J., & Buczkowska, K. E. (2023). Geopolymer Antimicrobial and Hydrophobic Modifications: A Review. Ceramics, 6(3), 1749-1764. https://doi.org/10.3390/ceramics6030107