Metal Halide Perovskite Light-Emitting Transistor with Tunable Emission Based on Electrically Doped Semiconductor Nanocrystal-Based Microcavities
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Genco, A.; Mariano, F.; Carallo, S.; Guerra, V.L.P.; Gambino, S.; Simeone, D.; Listorti, A.; Colella, S.; Gigli, G.; Mazzeo, M. Fully Vapor-Deposited Heterostructured Light-Emitting Diode Based on Organo-Metal Halide Perovskite. Adv. Electron. Mater. 2016, 2, 1500325. [Google Scholar] [CrossRef]
- Stranks, S.D.; Snaith, H.J. Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nat. Nanotechnol. 2015, 10, 391–402. [Google Scholar] [CrossRef]
- Elkhouly, K.; Gehlhaar, R.; Genoe, J.; Heremans, P.; Qiu, W. Perovskite Light Emitting Diode Characteristics: The Effects of Electroluminescence Transient and Hysteresis. Adv. Opt. Mater. 2020, 8, 2000941. [Google Scholar] [CrossRef]
- Liu, A.; Bi, C.; Guo, R.; Zhang, M.; Qu, X.; Tian, J. Electroluminescence Principle and Performance Improvement of Metal Halide Perovskite Light-Emitting Diodes. Adv. Opt. Mater. 2021, 9, 2002167. [Google Scholar] [CrossRef]
- Park, M.-H. 3D and 2D Metal Halide Perovskites for Blue Light-Emitting Diodes. Materials 2022, 15, 4571. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.-W.; Petrozza, A. Defect Tolerance and Intolerance in Metal-Halide Perovskites. Adv. Energy Mater. 2020, 10, 2001959. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.-W.; Jung, H.S.; Shin, H.; Park, N.-G. High-Efficiency Perovskite Solar Cells. Chem. Rev. 2020, 120, 7867–7918. [Google Scholar] [CrossRef]
- Jeong, M.; Choi, I.W.; Go, E.M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H.W.; Lee, J.; et al. Stable Perovskite Solar Cells with Efficiency Exceeding 24.8% and 0.3-V Voltage Loss. Science 2020, 369, 1615–1620. [Google Scholar] [CrossRef]
- Wu, X.; Li, B.; Zhu, Z.; Chueh, C.-C.; Jen, A.K.-Y. Designs from Single Junctions, Heterojunctions to Multijunctions for High-Performance Perovskite Solar Cells. Chem. Soc. Rev. 2021, 50, 13090–13128. [Google Scholar] [CrossRef]
- Jacobsson, T.J.; Hultqvist, A.; García-Fernández, A.; Anand, A.; Al-Ashouri, A.; Hagfeldt, A.; Crovetto, A.; Abate, A.; Ricciardulli, A.G.; Vijayan, A.; et al. An Open-Access Database and Analysis Tool for Perovskite Solar Cells Based on the FAIR Data Principles. Nat. Energy 2022, 7, 107–115. [Google Scholar] [CrossRef]
- Fakharuddin, A.; Gangishetty, M.K.; Abdi-Jalebi, M.; Chin, S.-H.; bin Mohd Yusoff, A.R.; Congreve, D.N.; Tress, W.; Deschler, F.; Vasilopoulou, M.; Bolink, H.J. Perovskite Light-Emitting Diodes. Nat. Electron. 2022, 5, 203–216. [Google Scholar] [CrossRef]
- Li, H.; Lin, H.; Ouyang, D.; Yao, C.; Li, C.; Sun, J.; Song, Y.; Wang, Y.; Yan, Y.; Wang, Y.; et al. Efficient and Stable Red Perovskite Light-Emitting Diodes with Operational Stability >300 h. Adv. Mater. 2021, 33, 2008820. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Lai, R.; Jiang, S.; Zhou, L.; Ren, Z.; Lian, Y.; Li, P.; Cao, X.; Xing, S.; Wang, Y.; et al. Ultrastable Near-Infrared Perovskite Light-Emitting Diodes. Nat. Photon. 2022, 16, 637–643. [Google Scholar] [CrossRef]
- Chin, X.Y.; Cortecchia, D.; Yin, J.; Bruno, A.; Soci, C. Lead Iodide Perovskite Light-Emitting Field-Effect Transistor. Nat. Commun. 2015, 6, 7383. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-H.; Pattanasattayavong, P.; Anthopoulos, T.D. Metal-Halide Perovskite Transistors for Printed Electronics: Challenges and Opportunities. Adv. Mater. 2017, 29, 1702838. [Google Scholar] [CrossRef] [PubMed]
- Maddalena, F.; Chin, X.Y.; Cortecchia, D.; Bruno, A.; Soci, C. Brightness Enhancement in Pulsed-Operated Perovskite Light-Emitting Transistors. ACS Appl. Mater. Interfaces 2018, 10, 37316–37325. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Chen, P.-A.; Hu, Y. Recent Developments in Fabrication and Performance of Metal Halide Perovskite Field-Effect Transistors. J. Mater. Chem. C 2020, 8, 16691–16715. [Google Scholar] [CrossRef]
- Klein, M.; Li, J.; Bruno, A.; Soci, C. Co-Evaporated Perovskite Light-Emitting Transistor Operating at Room Temperature. Adv. Electron. Mater. 2021, 7, 2100403. [Google Scholar] [CrossRef]
- Klein, M.; Wang, Y.; Tian, J.; Ha, S.T.; Paniagua-Domínguez, R.; Kuznetsov, A.I.; Adamo, G.; Soci, C. Polarization-Tunable Perovskite Light-Emitting Metatransistor. Adv. Mater. 2023, 35, 2207317. [Google Scholar] [CrossRef]
- Namdas, E.B.; Hsu, B.B.Y.; Yuen, J.D.; Samuel, I.D.W.; Heeger, A.J. Optoelectronic Gate Dielectrics for High Brightness and High-Efficiency Light-Emitting Transistors. Adv. Mater. 2011, 23, 2353–2356. [Google Scholar] [CrossRef]
- Soldano, C. Engineering Dielectric Materials for High-Performance Organic Light Emitting Transistors (OLETs). Materials 2021, 14, 3756. [Google Scholar] [CrossRef] [PubMed]
- Scotognella, F. Microcavities Integrated in Metal Halide Perovskite Light-Emitting Field-Effect Transistors. Res. Phys. 2022, 44, 106168. [Google Scholar] [CrossRef]
- Luther, J.M.; Jain, P.K.; Ewers, T.; Alivisatos, A.P. Localized Surface Plasmon Resonances Arising from Free Carriers in Doped Quantum Dots. Nat. Mater. 2011, 10, 361–366. [Google Scholar] [CrossRef]
- Kriegel, I.; Scotognella, F.; Manna, L. Plasmonic Doped Semiconductor Nanocrystals: Properties, Fabrication, Applications and Perspectives. Phys. Rep. 2017, 674, 1–52. [Google Scholar] [CrossRef]
- Agrawal, A.; Johns, R.W.; Milliron, D.J. Control of Localized Surface Plasmon Resonances in Metal Oxide Nanocrystals. Ann. Rev. Mater. Res. 2017, 47, 1–31. [Google Scholar] [CrossRef]
- Paternò, G.M.; Moscardi, L.; Kriegel, I.; Scotognella, F.; Lanzani, G. Electro-Optic and Magneto-Optic Photonic Devices Based on Multilayer Photonic Structures. J. Photon. Energy 2018, 8, 032201. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E.; Bhatia, A.B.; Clemmow, P.C.; Gabor, D.; Stokes, A.R.; Taylor, A.M.; Wayman, P.A.; Wilcock, W.L. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed.; Cambridge University Press: Cambridge, MA, USA, 1999; ISBN 978-0-521-64222-4. [Google Scholar]
- Xiao, X.; Wenjun, W.; Shuhong, L.; Wanquan, Z.; Dong, Z.; Qianqian, D.; Xuexi, G.; Bingyuan, Z. Investigation of Defect Modes with Al2O3 and TiO2 in One-Dimensional Photonic Crystals. Optik 2016, 127, 135–138. [Google Scholar] [CrossRef]
- Lova, P.; Manfredi, G.; Comoretto, D. Advances in Functional Solution Processed Planar 1D Photonic Crystals. Adv. Opt. Mater. 2018, 6, 1800730. [Google Scholar] [CrossRef]
- Nayak, C.; Bezerra, C.G.; Costa, C.H. Photonic Transmission Spectra in Graphene-Based Gaussian Random Multilayers. Opt. Mater. 2020, 104, 109838. [Google Scholar] [CrossRef]
- Malitson, I.H. Interspecimen Comparison of the Refractive Index of Fused Silica. J. Opt. Soc. Am. JOSA 1965, 55, 1205–1209. [Google Scholar] [CrossRef]
- RefractiveIndex.INFO—Refractive Index Database. Available online: https://refractiveindex.info/ (accessed on 15 November 2019).
- Scotognella, F.; Chiasera, A.; Criante, L.; Aluicio-Sarduy, E.; Varas, S.; Pelli, S.; Łukowiak, A.; Righini, G.C.; Ramponi, R.; Ferrari, M. Metal Oxide One Dimensional Photonic Crystals Made by RF Sputtering and Spin Coating. Ceram. Int. 2015, 41, 8655–8659. [Google Scholar] [CrossRef]
- Phillips, L.J.; Rashed, A.M.; Treharne, R.E.; Kay, J.; Yates, P.; Mitrovic, I.Z.; Weerakkody, A.; Hall, S.; Durose, K. Dispersion Relation Data for Methylammonium Lead Triiodide Perovskite Deposited on a (100) Silicon Wafer Using a Two-Step Vapour-Phase Reaction Process. Data Brief 2015, 5, 926–928. [Google Scholar] [CrossRef] [PubMed]
- Phillips, L.J.; Rashed, A.M.; Treharne, R.E.; Kay, J.; Yates, P.; Mitrovic, I.Z.; Weerakkody, A.; Hall, S.; Durose, K. Maximizing the Optical Performance of Planar CH3NH3PbI3 Hybrid Perovskite Heterojunction Stacks. Sol. Energy Mater. Sol. Cells 2016, 147, 327–333. [Google Scholar] [CrossRef]
- Paternò, G.M.; Iseppon, C.; D’Altri, A.; Fasanotti, C.; Merati, G.; Randi, M.; Desii, A.; Pogna, E.A.A.; Viola, D.; Cerullo, G.; et al. Solution Processable and Optically Switchable 1D Photonic Structures. Sci. Rep. 2018, 8, 3517. [Google Scholar] [CrossRef] [PubMed]
- Kriegel, I.; Urso, C.; Viola, D.; De Trizio, L.; Scotognella, F.; Cerullo, G.; Manna, L. Ultrafast Photodoping and Plasmon Dynamics in Fluorine–Indium Codoped Cadmium Oxide Nanocrystals for All-Optical Signal Manipulation at Optical Communication Wavelengths. J. Phys. Chem. Lett. 2016, 7, 3873–3881. [Google Scholar] [CrossRef]
- Moscardi, L.; Paternò, G.M.; Chiasera, A.; Sorrentino, R.; Marangi, F.; Kriegel, I.; Lanzani, G.; Scotognella, F. Electro-Responsivity in Electrolyte-Free and Solution Processed Bragg Stacks. J. Mater. Chem. C 2020, 8, 13019–13024. [Google Scholar] [CrossRef]
- Jacak, W.A. Quantum Nano-Plasmonics, 1st ed.; Cambridge University Press: Cambridge, MA, USA, 2020; ISBN 978-1-108-77769-8. [Google Scholar]
- Laska, M.; Krzemińska, Z.; Kluczyk-Korch, K.; Schaadt, D.; Popko, E.; Jacak, W.A.; Jacak, J.E. Metallization of Solar Cells, Exciton Channel of Plasmon Photovoltaic Effect in Perovskite Cells. Nano Energy 2020, 75, 104751. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scotognella, F. Metal Halide Perovskite Light-Emitting Transistor with Tunable Emission Based on Electrically Doped Semiconductor Nanocrystal-Based Microcavities. Ceramics 2023, 6, 1894-1899. https://doi.org/10.3390/ceramics6030116
Scotognella F. Metal Halide Perovskite Light-Emitting Transistor with Tunable Emission Based on Electrically Doped Semiconductor Nanocrystal-Based Microcavities. Ceramics. 2023; 6(3):1894-1899. https://doi.org/10.3390/ceramics6030116
Chicago/Turabian StyleScotognella, Francesco. 2023. "Metal Halide Perovskite Light-Emitting Transistor with Tunable Emission Based on Electrically Doped Semiconductor Nanocrystal-Based Microcavities" Ceramics 6, no. 3: 1894-1899. https://doi.org/10.3390/ceramics6030116
APA StyleScotognella, F. (2023). Metal Halide Perovskite Light-Emitting Transistor with Tunable Emission Based on Electrically Doped Semiconductor Nanocrystal-Based Microcavities. Ceramics, 6(3), 1894-1899. https://doi.org/10.3390/ceramics6030116