Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahn, Y.; Son, J.Y. Mixed grains and orientation-dependent piezoelectricity of polycrystalline Nd-substituted Bi4Ti3O12 thin films. Ceram. Int. 2016, 42, 13061–13064. [Google Scholar] [CrossRef]
- Roy, S.; Majumder, S. Recent advances in multiferroic thin films and composites. J. Alloy Compd. 2012, 538, 153–159. [Google Scholar] [CrossRef]
- Scott, J.F.; de Araujo, C.A.P. Ferroelectric Memories. Science 1989, 246, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Ouyang, J.; Zhang, Y.-X.; Ascienzo, D.; Li, Y.; Zhao, Y.-Y.; Ren, Y. Demonstration of ultra-high recyclable energy densities in domain-engineered ferroelectric films. Nat. Commun. 2017, 8, 1999. [Google Scholar] [CrossRef] [PubMed]
- Grinberg, I.; West, D.V.; Torres, M.; Gou, G.; Stein, D.M.; Wu, L.; Chen, G.; Gallo, E.M.; Akbashev, A.R.; Davies, P.K.; et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials. Nature 2013, 503, 509–512. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.-G.; Zheng, D.-Y.; Cheng, C.; Zhang, J.; Zhang, H. Effect of rare-earth addition on morphotropic phase boundary and relaxation behavior of the PNN-PZT ceramics. J. Alloy Compd. 2017, 693, 1250–1256. [Google Scholar] [CrossRef]
- Kumari, S.; Ortega, N.; Pradhan, D.K.; Kumar, A.; Scott, J.F.; Katiyar, R.S. Effect of thickness on dielectric, ferroelectric, and optical properties of Ni substituted Pb(Zr0.2Ti0.8)O3 thin films. J. Appl. Phys. 2015, 118, 184103. [Google Scholar] [CrossRef]
- Cho, S.W.; Lee, J.I.; Jeong, Y.H. Microstructure, ferroelectric and piezoelectric properties of Bi4Ti3O12 platelet incorporated 0.36BiScO3-0.64PbTiO3 thick films for high temperature piezoelectric device applications. Ceram. Int. 2021, 47, 23880–23887. [Google Scholar] [CrossRef]
- Du, X.; Huang, W.; He, S.; Kumar, T.S.; Hao, A.; Qin, N.; Bao, D. Dielectric, ferroelectric, and photoluminescent properties of Sm-doped Bi4Ti3O12 thin films synthesized by sol-gel method. Ceram. Int. 2018, 44, 19402–19407. [Google Scholar] [CrossRef]
- Ma, S.; Cheng, X.; Ma, Z.; Ali, T.; Xu, Z.; Chu, R. Effect of thickness and crystalline morphology on electrical properties of rf-magnetron sputtering deposited Bi4Ti3O12 thin films. Ceram. Int. 2018, 44, 20465–20471. [Google Scholar] [CrossRef]
- Park, B.H.; Kang, B.S.; Bu, S.D.; Noh, T.W.; Lee, J.; Jo, W. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 1999, 401, 682–684. [Google Scholar] [CrossRef]
- Subbarao, E. A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 1962, 23, 665–676. [Google Scholar] [CrossRef]
- Long, C.; Chang, Q.; Fan, H. Differences in nature of electrical conductions among Bi4Ti3O12-based ferroelectric polycrystalline ceramics. Sci. Rep. 2017, 7, 4193. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xie, S.; Wang, H.; Chen, Q.; Wang, Q.; Zhu, J.; Guan, Z. Dielectric abnormality and ferroelectric asymmetry in W/Cr co-doped Bi4Ti3O12 ceramics based on the effect of defect dipoles. J. Alloy Compd. 2017, 696, 746–753. [Google Scholar] [CrossRef]
- Roselin, A.A.; Karkuzhali, R.; Anandhan, N.; Gopu, G. Bismuth titanate (Bi4Ti3O12, BTO) sol–gel spin coated thin film for heavy metal ion detection. J. Mater. Sci. Mater. Electron. 2021, 32, 24801–24811. [Google Scholar] [CrossRef]
- Du, X.; Huang, W.; Thatikonda, S.K.; Qin, N.; Bao, D. Improved ferroelectric and dielectric properties of Sm, La co-doped Bi4Ti3O12 multifunctional thin films with orange-red emission. J. Mater. Sci. Mater. Electron. 2019, 30, 13158–13166. [Google Scholar] [CrossRef]
- Zhang, S.-T.; Chen, Z.; Zhang, C.; Yuan, G.-L. Temperature-dependent ferroelectric and dielectric properties of Bi3.25La0.75Ti3O12 thin films. Appl. Surf. Sci. 2010, 256, 2468–2473. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, Y.-B.; Zheng, X.-J. Nanoscale domain switching mechanism of Bi3.15Eu0.85Ti3O12 thin film under the different mechanical forces. Chin. Phys. B 2015, 24, 107702. [Google Scholar] [CrossRef]
- Zhou, H.; Wu, G.; Qin, N.; Bao, D. Dual enhancement of photoluminescence and ferroelectric polarization in Pr3+/La3+-codoped bismuth titanate thin films. J. Am. Ceram. Soc. 2010, 93, 2109–2112. [Google Scholar] [CrossRef]
- Wu, D.; Li, A.; Ming, N. Leakage current characteristics of Pt/Bi3.25La0.75Ti3O12/Pt thin-film capacitors. J. Appl. Phys. 2005, 97, 1915533. [Google Scholar] [CrossRef]
- Kao, M.-C.; Chen, H.-Z.; Young, S.-L. The microstructure and ferroelectric properties of Sm and Ta-doped bismuth titanate ferroelectric thin films. Thin Solid Films 2013, 529, 143–146. [Google Scholar] [CrossRef]
- Su, L.; Lu, X.; Chen, L.; Wang, Y.; Yuan, G.; Liu, J.-M. Flexible, Fatigue-Free, and Large-Scale Bi3.25La0.75Ti3O12 Ferroelectric Memories. ACS Appl. Mater. Interfaces 2018, 10, 21428–21433. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Cheng, X.; Ma, Z.; Xu, Z.; Chu, R. Characterization of highly (117)-oriented Bi3.25La0.75Ti3O12 thin films prepared by rf-magnetron sputtering technique. Solid State Commun. 2018, 278, 31–35. [Google Scholar] [CrossRef]
- Xue, K.-H.; de Araujo, C.A.P.; Celinska, J. A comparative study on Bi4Ti3O12 and Bi3.25La0.75Ti3O12 ferroelectric thin films derived by metal organic decomposition. J. Appl. Phys. 2010, 107, 3428968. [Google Scholar] [CrossRef]
- Wu, A.; Soares, M.R.; Salvado, I.M.M.; Vilarinho, P.M. Sol–gel synthesis and electrical characterization of Bi3.25La0.75Ti3O12 thin films. Mater. Res. Bull. 2012, 47, 3819–3824. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, W.; Wang, Y.; Sun, H.; Li, F.; Yan, Z.; Du, J.; Zhao, Q. Impact of Pt bottom electrode on the properties of ferroelectric Bi3.25La0.75Ti3O12 capacitors. Mater. Lett. 2007, 61, 1933–1936. [Google Scholar] [CrossRef]
- Sun, S.; Yuan, J.; Guo, W.; Duan, X.; Jia, D.; Lin, H. Thickness effects on the sinterability, microstructure, and nanohardness of SiC-based ceramics consolidated by spark plasma sintering. J. Am. Ceram. Soc. 2023, 107, 777–784. [Google Scholar] [CrossRef]
- Zhang, W.L.; Tang, M.H.; Xiong, Y.; Wang, K.; Wang, Z.P.; Xiao, Y.G.; Yan, S.A.; Li, Z.; He, J. Influence of the annealing temperature of the Bi4Ti3O12 seeding layer on the structural and electrical properties of Bi3.15Nd0.85Ti2.99Mn0.01O12 thin films. RSC Adv. 2016, 6, 88668–88673. [Google Scholar] [CrossRef]
- Yang, B.B.; Guo, M.Y.; Song, D.P.; Tang, X.W.; Wei, R.H.; Hu, L.; Yang, J.; Song, W.H.; Dai, J.M.; Lou, X.J.; et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 2017, 111, 183903. [Google Scholar] [CrossRef]
- Schwartz, R.W.; Voigt, J.A.; Tuttle, B.A.; Payne, D.A.; Reichert, T.L.; DaSalla, R.S. Comments on the effects of solution precursor characteristics and thermal processing conditions on the crystallization behavior of sol-gel derived lead zirconate titanate thin films. J. Mater. Res. 1997, 12, 444–456. [Google Scholar] [CrossRef]
- Iljinas, A.; Stankus, V. Influence of deposition temperature on structural and ferroelectric properties of Bi4Ti3O12 thin films. Appl. Surf. Sci. 2016, 381, 2–5. [Google Scholar] [CrossRef]
- Fan, Q.; Liu, M.; Ma, C.; Wang, L.; Ren, S.; Lu, L.; Lou, X.; Jia, C.-L. Significantly enhanced energy storage density with superior thermal stability by optimizing Ba(Zr0.15Ti0.85)O3/Ba(Zr0.35Ti0.65)O3 multilayer structure. Nano Energy 2018, 51, 539–545. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, Y.; Kang, L.; Yuan, M.; Yang, Q.; Cheng, H.; Pan, W.; Ouyang, J. Space-charge dominated epitaxial BaTiO3 heterostructures. Acta Mater. 2015, 85, 207–215. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Jiang, Y.-P.; Tang, X.-G.; Liu, Q.-X.; Li, W.-H.; Tang, Z.-H. Excellent Bipolar Resistive Switching Characteristics of Bi4Ti3O12 Thin Films Prepared via Sol-Gel Process. Nanomaterials 2021, 11, 2705. [Google Scholar] [CrossRef]
- Bu, Y.; Xu, T.; Geng, S.; Fan, S.; Li, Q.; Su, J. Ferroelectrics-Electret Synergetic Organic Artificial Synapses with Single-Polarity Driven Dynamic Reconfigurable Modulation. Adv. Funct. Mater. 2023, 33, 2213741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, W.; Cai, Y.; Guo, Q.; Wang, D.; Jia, T. Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films. Ceramics 2024, 7, 29-38. https://doi.org/10.3390/ceramics7010003
Yue W, Cai Y, Guo Q, Wang D, Jia T. Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films. Ceramics. 2024; 7(1):29-38. https://doi.org/10.3390/ceramics7010003
Chicago/Turabian StyleYue, Wenfeng, Yali Cai, Quansheng Guo, Dawei Wang, and Tingting Jia. 2024. "Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films" Ceramics 7, no. 1: 29-38. https://doi.org/10.3390/ceramics7010003
APA StyleYue, W., Cai, Y., Guo, Q., Wang, D., & Jia, T. (2024). Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films. Ceramics, 7(1), 29-38. https://doi.org/10.3390/ceramics7010003