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Abstract: The ceramic Sr(NiNb)0.5O3, incorporating silver doping in the A site, was synthesized
using a sol–gel route and subjected to comprehensive analysis through various experimental tech-
niques. X-ray diffraction data analysis indicates a rhombohedral crystal structure. Scanning electron
microscopy (SEM) examination reveals densely packed grains with minimal surface porosity. A thor-
ough investigation of electrical properties, encompassing dielectric constant, loss tangent, electrical
impedance, modulus, conductivity, etc., was conducted across a wide frequency range (103–106 Hz)
and temperature range (260–340 K). This analysis provided valuable insights into structure–property
relationships and conduction mechanisms. The discussion highlights the significance of interface ef-
fects, space charge polarization, and Maxwell–Wagner dielectric relaxation in achieving the material’s
high dielectric constant at low frequencies and elevated temperatures. Examination of temperature
dependence through Nyquist plots elucidates the contributions of grain behavior to the material’s
resistive and capacitive properties. The dielectric permittivity, dissipation of energy, and electrical
characteristics like impedance, modulus and conductivity are notably influenced by the frequency
of the applied electric field and temperature. Overall, the material exhibits promising potential for
industrial applications such as energy storage, given its intriguing properties.

Keywords: sol–gel; perovskite; ceramic; activation energy; impedance spectroscopy; relaxation

1. Introduction

Electrical equipment plays a pivotal role in the storage of electrical energy. These
materials find applications in various devices, such as capacitors, resonators, and switches,
which are essential components in virtually all electrical devices [1,2]. The critical factors
for designing compact and efficient devices are a high dielectric constant and a minimal
dielectric loss (tan δ) [3]. Achieving these properties is a challenging endeavor, particularly
in ensuring the consistency of performance across a wide range of operational conditions [4].
Among the materials garnering global recognition for their significance in advancing green
technologies are perovskite nanoparticles [5]. Researchers worldwide have embraced
them as a key breakthrough in scientific studies. Furthermore, numerous other perovskite
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materials have been introduced and investigated to enhance their fundamental properties
or even introduce novel ones. Perovskite materials have found applications in diverse
fields, serving as electrolytes or electrode materials in solid oxide fuel cells (SOFCs) [5,6],
which are highly efficient devices for clean energy conversion. They also play a role in
oxygen sensors and exhibit promise as catalysts for various chemical reactions [7]. Their
unique electronic properties render them attractive for catalytic processes in the chemical
industry [8–12]. In recent years, perovskite oxides have garnered significant attention due
to their extraordinary properties and their wide range of potential applications in the field
of materials science and technology [13,14]. One such notable perovskite is Strontium
Niobate (SrNbO3), renowned for its intriguing electrical conductivity characteristics and
distinctive behavior in impedance spectroscopy.

Furthermore, SrNbO3 is a complex oxide characterized by its perovskite structure,
showcasing intriguing electrical properties. The electrical conductivity of this material
is intricately linked to its stoichiometry, crystal structure, and defect concentration. It is
recognized as a mixed ionic and electronic conductor (MIEC) with the capacity to transport
both oxygen ions and electrons. This dual conduction mechanism allows for precise tuning
of its electrical conductivity through various methods, including doping with different
elements, adjusting the oxygen partial pressure, or modifying the crystal structure. Such
versatility positions SrNbO3 as a highly promising candidate for a multitude of applications,
particularly in solid oxide fuel cells (SOFCs), oxygen sensors, and other electrochemical
devices [15–22]. Impedance spectroscopy emerges as a potent technique for delving into
the electrical properties of materials. When applied to SrNbO3, impedance spectroscopy
grants valuable insights into its electrical and ionic conductivity, elucidates charge transfer
processes, and unveils the nature of defects within the material. By scrutinizing impedance
spectra, researchers can deepen their comprehension of how the material behaves under
varying operational conditions. Such knowledge is pivotal for optimizing the performance
of devices based on SrNbO3, such as solid oxide fuel cells, and for customizing the material
to suit specific industrial applications. In this study, (Sr0.75Ag0.25)(NiNb)0.5O3 was meticu-
lously prepared, and a comprehensive analysis of its structure, dielectric properties, and
electrical behavior was undertaken. This investigation serves to enhance our understanding
of the behavior of perovskite nanoparticles and paves the way for future applications in a
multitude of relevant fields.

2. Materials and Methods

The (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite nanoparticles were synthesized using the sol–
gel method, as depicted in Figure 1. Precisely measured quantities of high-purity strontium
nitrate (Sr(NO3)2) (Sigma-Aldrich, 99.9%), silver nitrate (AgNO3) (Merck, 99.8%), nickel
nitrate (Ni(NO3)2) (Alfa Aesar, 99.9%), and niobium nitrate (NbO(NO3)3) (Sigma-Aldrich,
99.99%) were combined in the specified molar ratios to match the molecular formula of
the prepared sample: 0.75 mol of Sr(NO3)2, 0.25 mol of AgNO3, 0.5 mol of Ni(NO3)2, and
0.5 mol of NbO(NO3)3. The raw materials were sourced as follows: strontium nitrate
(Sr(NO3)2) from Sigma-Aldrich, St. Louis, MO, USA; silver nitrate (AgNO3) from Merck,
Darmstadt, Germany; nickel nitrate (Ni(NO3)2) from Alfa Aesar, Haverhill, MA, USA; and
niobium nitrate (NbO(NO3)3) from Sigma-Aldrich, St. Louis, MO, USA. These nitrates were
dissolved in distilled water under thermal stirring at 80 ◦C, with the subsequent addition
of citric acid, serving as a complexation agent for the various metal cations. The pH of the
solution was carefully adjusted to approximately 7 by introducing ammonia. Following
this step, ethylene glycol was introduced as a polymerization agent. After about 5 h, the
formation of a viscous liquid gel became evident. This gel was then subjected to drying in
an oven at 300 ◦C for 4 h. The resulting precursor was subsequently processed through
several cycles of grinding, pelleting, and sintering. Finally, the well-defined structure of
the sample was achieved through heat treatment at 1100 ◦C for duration of 24 h. X-ray
diffraction (XRD) patterns were recorded utilizing the “Panalytical X’Pert Pro System, a
two-circle automatic diffractometer operating at a copper wavelength (λ = 1.5406 Å). A
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Nickel filter was employed to eliminate the Kβ ray. The measurements were conducted
in Bragg–Brentano geometry, with a divergent beam, employing a step size of 0.017◦ and
a counting time of 18 s per step within an angular range spanning from 10 to 70 degrees
(10 ≤ 2θ ≤ 80◦). Structural analysis was performed using the Rietveld method with the
FullProf software [23]. The sample’s morphology was examined in its pellet form using
scanning electron microscopy (SEM) through a Philips XL 30 microscope. This microscope
was equipped with an electron gun operating at an accelerating voltage of 15 kV. For
electrical characterizations, a sample in the shape of a disk, with a diameter of 11.3 mm and
a thickness of approximately 1.58 mm, was utilized. Measurements were conducted using
an N4L-NumetriQ analyzer (model PSM1735) across a range of different temperatures and
frequencies, spanning from 100 Hz to 1 MHz.
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The X-ray diffraction (XRD) pattern for (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite is shown 
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ovskite phase. For the Rietveld refinement analysis, the crystallographic data were pro-
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tional elements similar to those in our (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite, ensuring accu-
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cise determination and validation of the perovskite phase observed in the XRD pattern. 
The refinement process confirmed the structural integrity and composition of our syn-
thesized material, supporting its characterization for further study in advanced energy 
storage applications. The diffraction peaks of this perovskite were successfully identified 
and matched with the R3́C trigonal symmetry. The refined cell parameters for this crys-
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Figure 1. Synthesis process of (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite through the sol–gel method. SEM,
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3. Results and Discussion
3.1. Phase Structure and Microstructure

The X-ray diffraction (XRD) pattern for (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite is shown
in Figure 2, revealing a distinct crystalline structure characterized primarily by the per-
ovskite phase. For the Rietveld refinement analysis, the crystallographic data were pro-
cessed using the International Centre for Diffraction Data (ICDD) database card number
ICDD 01-073-8912. This card number corresponds to a relevant structure with compo-
sitional elements similar to those in our (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite, ensuring
accurate refinement of the material’s crystal structure parameters. This choice facilitated
precise determination and validation of the perovskite phase observed in the XRD pat-
tern. The refinement process confirmed the structural integrity and composition of our
synthesized material, supporting its characterization for further study in advanced energy
storage applications. The diffraction peaks of this perovskite were successfully identified
and matched with the R3́C trigonal symmetry. The refined cell parameters for this crystal
structure were determined to be a = b = 5.5859 (1) Å, c = 13.4263 (2) Å, with α = 90◦,
β = 90◦, and γ = 120◦. The calculated unit cell volume was found to be V = 351.25 (1) Å3.
The reliability factors obtained from the Rietveld refinement process are as follows: the
profile factor Rp (%) = 5.91, the weighted profile factor Rwp (%) = 5.48, the structure factor
RF (%) = 3.42, and the goodness of fit χ2 (%) = 1.44 [24]. Ag+ ions, when doped into
the Sr(NiMn)0.5O3 lattice, introduce additional charge carriers. This increase in carrier
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concentration is primarily due to the substitution of Sr2+ ions by Ag+ ions, which can create
oxygen vacancies and enhance the mobility of charge carriers. These values align well with
the existing literature, suggesting that the refined crystallographic parameters are accurate.
Additionally, the average grain size of the material was estimated using the XRD peaks and
the Scherer formula [25]. These values align well with the existing literature, suggesting
that the refined crystallographic parameters are accurate. Additionally, the average grain
size of the material was estimated using the XRD peaks and the Scherer formula [26].

DXRD =
K·λ

β·cosθ
(1)

where D is the average grain size, K is a dimensionless shape factor, typically assumed to be
around 0.89, λ is the X-ray wavelength, β is the corrected full-width half-maxima (FWHM)
of the XRD peaks and θ is the Bragg angle. With the given values, including the X-ray
wavelength (λ), the corrected FWHM (β), and the Bragg angle (θ), the estimated average
grain size of 38 nm was determined. This grain size estimation is useful in characterizing
the crystal structure and properties of the material.
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Figure 2. XRD pattern of of (Sr0.75Ag0.25)(NiNb)0.5O3 ceramic.

In Figure 3a, the scanning electron microscopy (SEM) image reveals a uniform mor-
phology with no discernible chemical contrast among the crystalline grains. This observa-
tion serves to confirm the absence of any secondary phases outside the perovskite phase in
the prepared compound. Notably, this micrograph also indicates that the sample comprises
small particles, with an average size of DMEB (Diameter by Mean Equivalent Breadth)
measuring approximately 175 nanometers. This average size is notably larger than the
value determined from the X-ray diffraction (XRD) pattern. It is important to note that
each particle analyzed through SEM is composed of a multitude of much smaller grains.
As X-rays used in XRD have a considerably higher resolution compared to SEM, the grain
sizes estimated from XRD appear significantly smaller than those obtained from SEM.
Furthermore, in Figure 3b, the energy dispersive X-ray (EDX) spectroscopy of the sample is
presented. The spectrum clearly indicates the presence of all the elements involved in the
preparation process with no discernible impurities. This observation underscores the purity
of the prepared material. Based on the EDX quantification results, the atomic percentages
of the elements in the (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite nanoparticles are as follows:
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strontium (Sr) constitutes 38.0%, silver (Ag) is 25.1%, nickel (Ni) accounts for 18.5%, and
niobium (Nb) makes up 18.4%, with oxygen (O) adjusted for balance. These results confirm
the intended composition and doping levels of the synthesized material.
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3.2. Impact of Frequency on Dielectric Parameters

Using geometric and physical parameters such as area (S), thickness (e), and capaci-
tance (C) of the sample in a straightforward expression ε = Ce/ε0S, one can calculate the
dielectric constant ε or permittivity of the sample. Figure 4 illustrates the effect of frequency
on dielectric parameters, including (a) permittivity (ε) and (b) tangent loss (tan δ), within
the frequency at selected temperatures. Initially, the value of ε smoothly decreases with
the rise in frequency, eventually stabilizing at higher frequencies, indicating saturation.
This trend persists across all temperatures. In the low-frequency region, various types of
polarization typically occur, resulting in higher relative permittivity [27]. A decrease in
dielectric constant with increasing frequency is expected in nearly all insulators due to
relaxation processes within the material. As frequency increases, the total polarization of
the material decreases because the mechanisms contributing to polarization become less
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effective, consequently reducing permittivity. The temperature and frequency dependence
of dielectric loss or dissipation factor exhibit a similar behavior to the dielectric constant.
This behavior aligns with the Maxwell and Wagner two-layer model, which is based on
Koop’s phenomenological theory. According to this model, the dielectric structure of the
material consists of two layers: conducting grains and insulating grain boundaries [28].
At lower frequencies, electrons as charge carriers are more active at grain boundaries,
whereas at higher frequencies, electrons primarily interact with conducting grains [29]. At
low frequencies, electrons require more energy for motion due to the higher resistance
of grain boundaries, resulting in a larger dissipation factor (tan δ) at high temperatures.
Conversely, at high frequencies, electrons require less energy for motion due to lower
resistance, leading to a smaller dissipation factor within the specified temperature range.
The loss factor is significant for device quality as it describes the energy dissipation in
insulators. A low tangent loss is desirable to ensure minimal power loss for an effective
dielectric material [30].

Ceramics 2024, 7, FOR PEER REVIEW  7 
 

 

 

Figure 4. Frequency dependence of (a) 𝜀 and (b) tanδ of (Sr0.75Ag0.25)(NiNb)0.5O3 ceramic for various 
temperatures. 

3.3. Variation of Dielectric Properties with Temperature 
Figure 5a illustrates the impact of temperature and frequency on the insulating 

(permittivity) properties of the material under investigation. It is observed that the die-
lectric parameters of the material remain unaffected by frequency and temperature, in-
dicating the significant role of electronic and/or ionic polarization [31]. The dielectric 
permittivity (dielectric constant) experiences a notable increase with temperature eleva-
tion. This characteristic variation in the dielectric parameters can be attributed to the 
scattering of temperature-dependent charge carriers and/or defects/impurities present in 
the sample [32]. In Figure 5b, the temperature dependence of tan δ at a selected frequen-
cy of the AC electric field is elucidated. The trend in the variation of tan δ with tempera-
ture mirrors that of ε. Tan δ increases with temperature escalation and exhibits a sharp 
rise at higher temperatures. This abrupt increase is heavily influenced by electrical con-
ductivity [33]. 

Ceramics 2024, 7, FOR PEER REVIEW  7 
 

 

 

Figure 4. Frequency dependence of (a) 𝜀 and (b) tanδ of (Sr0.75Ag0.25)(NiNb)0.5O3 ceramic for various 
temperatures. 

3.3. Variation of Dielectric Properties with Temperature 
Figure 5a illustrates the impact of temperature and frequency on the insulating 

(permittivity) properties of the material under investigation. It is observed that the die-
lectric parameters of the material remain unaffected by frequency and temperature, in-
dicating the significant role of electronic and/or ionic polarization [31]. The dielectric 
permittivity (dielectric constant) experiences a notable increase with temperature eleva-
tion. This characteristic variation in the dielectric parameters can be attributed to the 
scattering of temperature-dependent charge carriers and/or defects/impurities present in 
the sample [32]. In Figure 5b, the temperature dependence of tan δ at a selected frequen-
cy of the AC electric field is elucidated. The trend in the variation of tan δ with tempera-
ture mirrors that of ε. Tan δ increases with temperature escalation and exhibits a sharp 
rise at higher temperatures. This abrupt increase is heavily influenced by electrical con-
ductivity [33]. 

Figure 4. Frequency dependence of (a) ε and (b) tan δ of (Sr0.75Ag0.25)(NiNb)0.5O3 ceramic for various
temperatures.



Ceramics 2024, 7 964

3.3. Variation of Dielectric Properties with Temperature

Figure 5a illustrates the impact of temperature and frequency on the insulating (per-
mittivity) properties of the material under investigation. It is observed that the dielectric
parameters of the material remain unaffected by frequency and temperature, indicating
the significant role of electronic and/or ionic polarization [31]. The dielectric permittiv-
ity (dielectric constant) experiences a notable increase with temperature elevation. This
characteristic variation in the dielectric parameters can be attributed to the scattering of
temperature-dependent charge carriers and/or defects/impurities present in the sam-
ple [32]. In Figure 5b, the temperature dependence of tan δ at a selected frequency of the
AC electric field is elucidated. The trend in the variation of tan δ with temperature mirrors
that of ε. Tan δ increases with temperature escalation and exhibits a sharp rise at higher
temperatures. This abrupt increase is heavily influenced by electrical conductivity [33].
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3.4. Impedance Spectroscopy

The electrical characteristics of electro-ceramics and ionic conductors, encompassing
impedance across grain boundaries and electrodes, can undergo assessment utilizing a



Ceramics 2024, 7 965

non-invasive complex impedance approach. This method stands as a reliable means of
characterizing these materials, providing insights into both the tangible (resistive) and
abstract (reactive) elements of complex impedance. Spectroscopy enables the determina-
tion of impedance and elastic modulus, along with the extraction of various associated
parameters. By subjecting the sample to an alternating current (AC) electric field, a sinu-
soidal disturbance is initiated, facilitating the examination of these characteristics across
different frequencies and temperatures [34–37]. Typically, the frequency-dependent be-
havior of dielectric properties in materials is elucidated through complex capacitive and
impedance parameters, which are articulated as follows: complex dielectric constant,
complex impedance, electric modulus and dielectric loss.

ε* = ε′ − j ε′ (2)

Z* = Z′ − jZ′′ = Rs + j (ωLs − 1/ωCs) (3)

M* = M′ + j M′′ = j ωC0 Z* (4)

tan δ = ε′/ε′′ (5)

where Rs is the resistance, Ls is the inductance, Cs is the capacitance, ω is the angular
frequency (ω = 2πf, where f is the frequency), and j is the imaginary unit. The equations
provided offer ample opportunity for creating visual representations to gauge the impacts
of the parameters within the electrode/ceramic/electrode system. Figure 6a,b illustrate
how Z’ and Z′′ vary with frequency and temperature. The influence of the applied AC
electric field frequency on the sample is typically associated with various complex physical
properties, including dielectric constant, impedance, electric modulus, and dielectric loss.
Apart from the equations mentioned earlier, additional equations can also be employed to
determine the real and imaginary components of impedance [38].

Z′ =
R

1 + (ωτ)2 (6)

Z′′ =
ωRτ

1 + (ωτ)2 (7)

The resistance measured as R corresponds with the angular frequency of the electric
field denoted by ω, and the relaxation time, symbolized by τ, equals RC, where C signifies
capacitance. The relaxation time for a bulk sample can be estimated using the formula
τ = RgCg. As depicted in Figure 6a, the decrease in the value of Z′ with increasing tem-
perature at low frequencies indicates the semiconductor characteristics of the material.
Consequently, the negative temperature coefficient of resistance (NTCR) or semiconductor
behavior of the material is observed at higher temperatures [39]. Therefore, the relaxation
properties of the sample are established [32]. The Z′ value smoothly rises with increasing
temperature and frequency, suggesting an increase in AC conductivity at low frequency
(100 kHz) with temperature. In the figure, it is observed that at higher frequencies, the
Z′ value merges into a line at higher temperatures, indicating the existence of a mecha-
nism strongly related to temperature and the release of space charge [40]. As observed in
Figure 6b, there is no peak, indicating less or no dissipation of current in the sample at
low temperatures. The presence of a peak at higher temperatures suggests the existence
of dielectric relaxation in the material. The frequency at which the imaginary value Z′′

reaches its highest limit (Zmax
′′) shifts to the higher frequency region with increasing tem-

perature. The broadening of peaks and the decrease in the highest limit of the imaginary
impedance component (with respect to temperature) indicate that the dielectric relaxation
mechanism is temperature dependent. Therefore, these dielectric processes related to



Ceramics 2024, 7 966

relaxation occur due to lattice deformation and vacancies present in the material at higher
temperatures [41,42].
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3.5. Nyquist Diagram

Figure 7 displays the Nyquist diagram, showcasing complex impedance plots (Z′

vs. Z′′), within the frequency range of 1 kHz to MHz, depicting temperature-dependent
semicircular arcs. By comparing experimental data (real and imaginary components of Z)
with the components of a circuit comprising resistors and capacitors, fitting parameters are
obtained. In this circuit, the capacitor represents polarization with energy storage, while
the resistor signifies a conductive path. The decrease in impedance with rising temperature
indicates dependence on the sample’s conductivity. According to Debye theory, a perfect
semicircle with its center precisely on the x-axis (real impedance component) signifies
Debye-type dielectric relaxation, resulting in a single semicircle [43]. Conversely, when
the semicircle’s center is below the axis (typically observed at high temperatures), the
relaxation process is non-Debye type, resulting in two circles or semicircles. The center of
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the first semicircle falling on the Z′ axis indicates grain resistance or effect, while the second
one is caused by grain boundary resistance. However, in this study, only a single semicircle
(with its center below the x-axis) is observed even at higher frequencies and temperatures,
attributed to the conduction of the material due to grain effect [44]. The Debye-type
dielectric relaxation primarily accounts for the formation of such single semicircles, whose
magnitude can be estimated using an electric circuit with a parallel combination of a
capacitor Cg and resistance Rg. The relaxation time (τ) related to the circle can be estimated
using the formula τ = RgCg. As depicted in the figure, grain boundaries do not contribute
to impedance or electrical parameters, particularly at the stated frequency and temperature
ranges, indicating that only grains are responsible for transport properties or electrical
conduction in the material. The value of grain or bulk resistance can be determined
using the semicircle’s diameter. The close agreement between experimental and model
parameters obtained from the circuit using the software Zveiw underscores the accuracy
and validity of the experimental data and the proposed theoretical model. The values of
the parameters Rg and Cg are summarized in Table 1.
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Table 1. Electrical parameters of equivalent circuit deduced from Nyquist plots at different tempera-
tures for (Sr0.75Ag0.25)(NiNb)0.5O3 perovskite.

T (K) 260 280 300 320 340

Rg (KΩ) 36.25 28.57 22.78 18.75 13.54

Cg (10−9F) 11.25 8.27 4.64 7.81 3.27

3.6. Modulus Analysis

To determine the resistive and capacitive characteristics of dielectrics under AC electri-
cal fields, electric modulus spectroscopy is employed. Analyzing the frequency dependence
of electrical modulus aids in understanding relaxation processes in materials. Through this
technique, various electrical properties and processes of materials can be studied, including
polarization, the role of grain boundaries in conduction, AC/DC electrical conductivity,
dielectric relaxation, and more. Additionally, the influence of temperature and frequency
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on these parameters can be investigated using this technique. The equation for the modulus
technique’s general relation has been derived and presented as follows [45].

M′ = A [
(ωRC)2

1 + (ωRC)2 ] = A [
τ2ω

2

1 + τ2ω
2 ] (8)

M′′ = A [
(ωRC)

1 + (ωRC)2 ] = A [
ωτ

1 + τ2ω
2 ] (9)

In the equation, A represents the ratio of capacitance (C) in vacuum to dielectric
(Co/C), R stands for resistance, and ω denotes the angular frequency of the applied
AC field. By leveraging the effects of grains and grain boundary in electric modulus
technique, we can effectively investigate the heterogeneous nature of polycrystalline sample.
This insight is not achievable through complex impedance graphs. Furthermore, this
technique is instrumental in estimating the electrode contribution to the total resistance.
It is noteworthy that impedance techniques are unable to discern electrode contributions
in the resistive/capacitive characteristics of the material. Figure 8a,b illustrate the effects
of electric field frequency and temperatures on modulus components, namely M′ and
M′′. A continuous decrease in the value of M′ is observed in the low-frequency region,
followed by a gradual increase in its value with increasing frequency, eventually reaching a
saturated asymptotic value at higher frequencies across all temperatures. To elucidate the
transport properties and conduction mechanism in the material, the short-range mobility
of charge carriers is taken into account. This implies that under the influence of a DC
electric field, there is a lack of restoring force that affects the flow of charge carriers [46]. As
depicted in Figure 8b, initially, the value of M′′ increases with frequency up to its maximum
(peak) value (M′′

max), then decreases. Additionally, it is observed that with increasing
temperature, the position of M′′ max shifts to the higher frequency side. The shift of the
peak position to the higher frequency side at higher temperatures indicates that thermal
energy activates charge carriers. Moreover, as the broadening of the asymmetric peak
increases with rising temperature, the relaxation time of charge carriers decreases. This
phenomenon is observed only in the case of a non-Debye type of relaxation mechanism.
The dielectric relaxation can be modeled using the Arrhenius relation, and the activation
energy (Ea) estimated from Ln (Fmax) vs. (1000/T) plot is determined as 0.266 eV (Figure 9).
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3.7. Electrical Conductivity Study

In many instances, the electrical conductivity (σ) in manganite systems such as
(Ln3+

1−x M2+
x)(Mn3+

1−xMn4+
x)O−2

3, where Ln represents elements like La or Sr, is pri-
marily ascribed to the process of electron hopping that takes place between adjacent Mn3+

and Mn4+ ions. This electron hopping is facilitated by the presence of the oxygen anion
O2− [40], and it serves as a fundamental mechanism influencing the electrical properties
of these materials. To investigate the hopping conduction mechanism in the synthesized
(Sr3+

0.75Ag+2
0.25)0.5(Ni+3Nb+4)0.5O3 sample, the changes in its conductivity are depicted in
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Figure 10 with respect to both frequency and temperature. The values of σ (conductivity)
were determined using the following relationship [47]:

σ = G
t
A

(10)

where G represents the electrical conductance, t is the thickness of the pellet, and A is the
cross-sectional area of the pellet. Notably, conductivity values remain relatively stable in
the low-frequency range, up to a frequency value (f ≤ 105 Hz), identified as the hopping
frequency. This constancy is attributed to limited electron hopping between Mn3+–Mn4+

ions, primarily influenced by the heightened activity of weakly conductive grain boundaries
within this frequency spectrum. The low-frequency conductivity corresponds to the dc
conductivity (σdc). Subsequently, a notable exponential increase in conductivity occurs
beyond frequency. This phenomenon is attributed to enhanced activity of conductive
grains in this frequency range, intensifying electron hopping between Mn3+–Mn4+ ions and
thereby facilitating the conduction process in the sample. This high-frequency conductivity
aligns with the ac conductivity (σAC). To modelize σ-values, the Jonscher power law [48,49]
was employed as the mathematical relation.

σAc(ω) = σdc + Aωs (11)

where σdc represents the dc conductivity, and A and s denote the pre-exponential and
exponent factors, respectively.
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Furthermore, our analysis leads to the conclusion that the sample demonstrates semi-
conductor behavior without undergoing a transition into a metal-semiconductor phase.
Notably, all s-values are below unity, indicating, according to the Funke criterion [50],
that electron hopping between Mn3+–Mn4+ ions occurs between neighboring sites. In
the high-temperature range, the dc conductivity behavior aligns well with the Arrhenius
relation [51], expressed by the following mathematical formula:

σdc= σ0 exp (
−Ea

KBT
) (12)

where Ea represents the activation energy, σ0 is the pre-exponential term, and KB is Boltz-
mann’s constant. The activation energy (Ea) for the sample is calculated using Equation (12),
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and the graph of Ln (σdc) vs. (1000/T) is depicted in Figure 11. The expected Ea value,
derived from the slope of the plot, is determined to be 0.268 eV. The activation energy
derived from electrical conductivity closely aligns with the activation energy obtained
from complex spectroscopic impedance. This close correspondence affirms that the con-
duction processes and relaxation phenomena within the prepared materials involve the
same type of charge carrier. The electrical properties of Sr0.75Ag0.25Ni0.5Mn0.5O3, a material
doped with silver, were investigated using impedance spectroscopy across various tem-
peratures and frequencies. The study revealed that silver doping significantly enhances
the material’s electrical conductivity compared to its undoped counterpart, Sr(NiMn)0.5O3.
Specifically, the electrical conductivity of Sr0.75Ag0.25Ni0.5Mn0.5O3 was found to range from
0.9 × 10−2 S/m to 1.25 × 10−2 S/m, indicating a notable increase attributed to the doping
process. Moreover, the activation energy required for electrical conduction was observed to
decrease upon silver doping. The undoped Sr(NiMn)0.5O3 exhibited an activation energy of
0.287 eV, whereas the doped Sr0.75Ag0.25Ni0.5Mn0.5O3 showed a reduced activation energy
of 0.268 eV. This reduction in activation energy signifies that the introduction of silver low-
ers the energy barrier for charge carrier movement within the material. Consequently, the
doped material demonstrates improved electrical conductivity due to enhanced mobility
of charge carriers at a given temperature.
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4. Conclusions

The polycrystalline (Sr0.75Ag0.25)(NiNb)0.5O3 ceramic has been synthesized using the
sol–gel technique. Initial structural analysis based on X-ray diffraction data indicates a sin-
gle phase of the trigonal system. The dielectric parameters like permittivity and dissipation
factor are influenced by the frequency of the applied AC electric field and temperature.
These electrical parameters are obtained through dielectric and impedance measurements.
The high dielectric constant of the material is attributed to the Maxwell–Wagner model and
space charge polarization. Despite the dissipation factor being temperature-dependent, the
compound exhibits low energy loss even at higher temperatures, which further decreases
with increasing frequency. Due to its low energy dissipation factor, the material possesses
a high-quality factor, making it suitable for use as a component in microwave devices.
Complex-impedance plots offer valid explanations and applications of the conduction
phenomenon in the material. The frequency dependence of the AC conductivity conforms
to Jonscher’s universal power law.
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