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Abstract: This study investigates the design and mechanical evaluation of hydroxyapatite
(HAp) scaffolds for bone tissue engineering, using stereolithography (SLA) to fabricate ho-
mogeneous and hollow elongated Voronoi structures. HAp, known for its biocompatibility
and biodegradability, was selected to create scaffolds with a structure that supports cell
growth. Both scaffold designs were tested under compression to measure key properties,
including compressive strength, Young’s modulus, stiffness, and energy absorption. The
homogeneous design demonstrated superior mechanical properties, achieving a maximum
load of 913.6 N at a displacement of 0.166 mm and a stiffness of 5162.8 N/mm, indicating a
higher load-bearing capacity and energy absorption compared to the hollow design. De-
spite these strengths, failure analysis revealed early fractures at strut junctions, particularly
in slender areas, leading to fluctuations in the load–displacement curve and suggesting
a risk to neighboring tissues in practical applications. These findings underscore the po-
tential of Voronoi-based scaffolds for orthopedic use, while also highlighting the need for
structural refinements to improve scaffold durability and clinical effectiveness.

Keywords: Voronoi structures; hydroxyapatite (HAp) scaffolds; mechanical properties;
energy absorption; structural failure

1. Introduction
Bone grafting is the second most popular tissue transplantation procedure after blood

grafting. Nevertheless, bone tissue regeneration is a significant challenge in orthopedics
because osteoporosis and osteogenesis imperfecta can undermine bone function, leading to
the distortion and improper healing of bone fractures [1,2]. Therefore, several approaches
have been developed to address bone defects, including autografts, allografts, and synthetic
substitutes, such as metals, polymers, and ceramics. However, each option presents several
problems and obstacles [3]. An ideal bone-substitute material should possess a three-
dimensional structure that encourages bone growth, has sufficient mechanical strength,
and promotes vascularization. Nonetheless, most current artificial bone materials lack
adequate mechanical strength, which hinders their widespread application and results
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in less-than-optimal outcomes, including non-healing and fractures. To overcome these
challenges, the current focus is on developing biodegradable 3D porous scaffolds that
possess high porosity, interconnectivity, and uniform pore distribution [4].

The effectiveness of these scaffolds in imitating real bone depends heavily on the
following parameters: (1) proper material; (2) appropriate geometric configuration; and
(3) suitable 3D printing method [5].

The literature has indicated that both polymer and metallic implants can potentially
release ions that are proven to be harmful and toxic to living tissues [6]. Bioceramics such as
alumina (Al2O3), zirconia (ZrO2), and (HAp) can create interfacial bonds with the human
body. These ceramics possess compressive strengths comparable to those of trabecular
bones, enabling them to be fashioned into highly interconnected macroporous structures.
This structural characteristic enhances nutrient supply and facilitates bone growth. Nev-
ertheless, the brittleness of bioceramics is a major obstacle to their commercialization for
load-bearing applications [7].

(HAp) is a bioceramic material than possibly obtained either naturally through
agricultural wastes and marine processing or synthetically through techniques such as
mechanochemical or hydrothermal techniques [8,9]. Recently, HAp bioceramics have
gained widespread use in the biomedical sector, particularly for scaffold production, owing
to their exceptional chemical biocompatibility [10] and biodegradability [11]. They are the
major inorganic components of natural bone. Furthermore, a study by Panseri et al. [12]
demonstrated its ability to enhance cell proliferation in early stages, highlighting its poten-
tial to promote bone generation in humans [13].

In addition to selecting appropriate materials for bone scaffolds, numerous researchers
have focused on enhancing mechanical properties through innovative structural designs.
For example, Lu et al. [14] opted for Ca-silicate bioceramic materials and explored three
pore structure variations: cylindrical, hexagonal, and cubic. Their findings indicated that,
overall, bioceramic scaffolds with a cylindrical structure exhibited superior compressive
and flexural resistance compared to other scaffolds. Jang et al. [15] developed a novel
porous scaffold with a hollow cylindrical HAp scaffold that showed mechanical stability
and created an optimal environment for grafting onto the scaffold without triggering
inflammation. Xu et al. [16] designed two types of regular lattice structures: uniform lattice
structures (ULSs) and functionally graded lattice structures (FGLSs). Both types exhibited
good energy absorption. Lu et al. [17] also studied the different structures. Their research
involved the transformation of conventional (Dodeca and Octa) cells into Voronoi cells
with irregular shapes by manipulating the x–y–z axes. Their findings demonstrated that
altering the axes led to modification of the unit cell geometry, resulting in enhanced stiffness
and various other mechanical properties. Currently, the application of irregular Voronoi
geometry has become widespread in the design of numerous structures, particularly in
the realm of creating biological scaffolds, owing to its proven strength, hardness, and light
weight. In another numerical study, Piros and Trautmann [18] adjusted the mechanical
properties of a Voronoi scaffold using the porosity of lattice structure and irregularity.

However, it is difficult to produce Voronoi structures using conventional methods.
Although conventional techniques offer some control over the pore size within a specific
range, achieving precise control is challenging owing to inherent limitations [19–21]. Con-
sidering these constraints, additive manufacturing (AM) is a novel approach for the design
and manufacture of Voronoi structures [22]. By using AM, it is possible to design and
fabricate intricate structures with precision, thereby overcoming the limitations of tradi-
tional methods. Extensive research has been conducted on the AM techniques for metals
and polymers [23,24]. However, the adoption of AM technologies in the ceramic sector is
less widespread than that in the polymer and metal industries. This is attributed to the
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challenges related to the resolution, surface quality, mechanical properties, and scalability
of additively manufactured ceramic components compared to conventional ceramic man-
ufacturing processes [25–28]. Ceramic printing employs various additive manufacturing
(AM) techniques, each with distinct benefits and drawbacks depending on the intended
use. The ASTM standards recognize several primary AM methods for creating ceramic
components, including material extrusion, powder bed fusion, material jetting, binder
jetting, vat photopolymerization, directed energy deposition, and sheet lamination [29,30].
These approaches have their respective strengths and weaknesses [31]. While material ex-
trusion and powder bed fusion can produce dense ceramic parts, they may face challenges
in achieving intricate details and complex shapes. Binder jetting excels in rapid production
of large ceramic items but often necessitates extensive post-processing, such as sintering
and infiltration, to improve mechanical characteristics [32]. Material jetting offers accurate
droplet placement but has limitations in scaling up for intricate structures. Directed energy
deposition and sheet lamination, although suitable for certain applications, are generally
not preferred for ceramics due to difficulties in handling fragile materials [33,34].

Among these methods, vat photopolymerization techniques, particularly stereolithog-
raphy (SLA), stand out as the most appropriate for applications demanding high precision,
intricate geometries, and exceptional surface quality, especially in biomedical contexts like
hydroxyapatite (HAp) ceramics. SLA boasts superior resolution (up to 25 µm), ensuring
accurate replication of complex microporous structures crucial for osteoconductivity and
bone integration [34–36]. This technique utilizes a photosensitive resin mixed with ceramic
particles, enabling layer-by-layer solidification through UV light exposure, which reduces
material waste and ensures excellent interlayer bonding. In comparison to other photopoly-
merization methods such as digital light processing (DLP), SLA provides smoother surface
finishes and better consistency in feature detail [34]. Furthermore, SLA enables the creation
of complex internal architectures, like interconnected porosity of lattice structures, with
minimal need for support structures—a significant advantage for tissue engineering and
bone scaffold applications [33,35].

The dimensional stability of SLA during sintering and its compatibility with hy-
droxyapatite compositions underscore its appropriateness for this research. This method
overcomes the limitations of conventional techniques such as freeze-drying or gel casting,
which typically yield inconsistent porosity in lattice structures and lack precise control
over structural elements [35,36]. SLA’s capacity to produce bioactive, mechanically strong
ceramic scaffolds makes it a cost-effective and efficient approach for enhancing bone tis-
sue engineering and regenerative medicine applications. These attributes establish vat
photopolymerization as an unrivaled option for manufacturing high-performance HAp
ceramics in this investigation.

The 3D SLA technology is considered one of the best technologies that are compatible
with the manufacture of these complex structures for ceramics [37]. Numerous ceramic
HAp scaffolds with the required porosity of lattice structure have been developed using
different geometries, porosities, and fabrication techniques. For instance, Kang et al. [38]
achieved the highest compressive and bending strengths when 3D HAp scaffolds were
manufactured using SLA technology. Furthermore, in a study by Liu et al. [39], a 3D
SLA-printed HAp scaffold exhibited superior compressive strength and reduced stress
concentration. Additionally, the favorable outcomes observed by Liu et al. [13] suggested
that scaffolds with complex shapes should be manufactured using the 3D SLA technique.

Despite these advancements, to the best of our knowledge, the stress–strain curve,
load–displacement curve, and failure behavior have not been extensively explored. It is
evident that in the context of real bone applications, understanding the various stages of
failure is as critical as studying their overall mechanical properties. Consequently, the
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objective of the current study is to discuss the effects of utilizing two different HAp-based
cylindrical scaffolds produced through the SLA technique, focusing on compression testing.
We analyzed the specifics of the curves and failure stages and discussed their effectiveness
in biomedical applications.

2. Materials and Methods
2.1. Voronoi Design

In the current research, elongated Voronoi cells were designed. Rhinoceros 7 and
Grasshopper software (version 8.14.24345.15001) were utilized to create topological patterns
for the two elongated Voronoi structure designs. In Appendix A, Random point seeding was
used to generate both homogeneous and gradient scaffolds while maintaining a consistent
volume and density. The design methodology has been detailed in our previous work [40].

The struts of elongated Voronoi cells were stretched to more than their length in the
previous work [40]. Two types of elongated cylindrical Voronoi cylinders were designed:
homogeneous and hollow cylinders; their details are listed in Table 1.

Table 1. Details of designed samples.

Elongated Voronoi
Structure Sample Shape Seed

Number R (mm) r (mm) H (mm)

Homogeneous Cylinder 56 3.27 - 12
Hollow Hollow cylinder 55 3.27 1 12

2.2. Material and Fabrication

The scaffold structures illustrated in Figure 1a,b were produced using stereolithogra-
phy (SLA) additive manufacturing with hydroxyapatite (HAp) powder. The 3D Voronoi
samples were created at Shandong University using a 3D SLA ceramic printer (3D CERAM,
Bonnac-la-Côte, France), based on the designed models and predetermined printing param-
eters. The HAp ceramic paste for printing was formulated according to methods outlined
in previous studies [35,36,41], combining polyester acrylate resin, 1,6-hexanediol diacry-
late (HDDA) as a reactive diluent, and 2,2-dimethoxy-1,2-phenylacetophenone (DMPA)
as a photo-initiator with HAp powder. The HAp powder, consisting of rod-shaped or
spherical particles ranging from 20 nm to 15 µm in size, underwent vacuum drying, alco-
hol dispersion with surfactants, and 12 h ball milling to ensure uniform distribution and
appropriate viscosity.

Printing parameters were fine-tuned based on earlier research [35,36,41], employing
a laser power of 100 mW, scanning speed of 5 m/s, hatch spacing of 0.5 mm, and layer
thickness of 50 µm. Following the printing process, thermal treatments involving debinding
and sintering were applied to eliminate the photosensitive resin and consolidate the HAp
scaffolds. The debinding process, carried out at 1050 ◦C in a muffle furnace, facilitated
resin pyrolysis, with the majority of weight loss occurring during this stage, as verified
through thermogravimetric analysis [35].

Following the debinding stage, the sintering process was optimized to improve the
mechanical characteristics and structural integrity of the hydroxyapatite (HAp) scaffolds
while maintaining their crystalline structure. The sintering was performed in air at a care-
fully regulated temperature of 1250 ◦C, which was determined to be ideal for enhancing
densification and creating strong bonds between particles without compromising HAp’s
chemical stability. To avoid structural issues like cracking or warping, the heating rate dur-
ing sintering was precisely controlled at 5 ◦C/min, ensuring a gradual temperature increase.
The cooling rate was similarly maintained at 5 ◦C/min to reduce the risk of thermal shock,
which could potentially cause microcracks and negatively affect the scaffolds’ mechanical
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properties. These controlled thermal treatments preserved the intended geometry and
porosity of the scaffolds’ lattice structure.
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Figure 1. (a,b) Three-dimensional printed samples after sintering. (c,d) SEM images of samples at
different magnifications. (e) Compressive test setup with a microscopic lens.

X-ray diffraction (XRD) analysis from previous studies [35,36,41] verified that the op-
timized sintering parameters successfully maintained the characteristic crystalline peaks
of HAp, without any signs of decomposition into tricalcium phosphate (TCP) or other sec-
ondary phases. Preserving this phase stability is crucial, as HAp’s bioactivity and mechanical
properties are directly related to its crystalline structure. By following these sintering proto-
cols, the resulting scaffolds exhibited a combination of high mechanical performance and
biofunctional properties, making them suitable for bone tissue engineering applications.

Figure 1c,d display SEM images of the samples at various magnifications after sintering.
The analysis revealed that the layers were well-bonded, with a consistent printing layer
thickness of about 50 µm. The sintering process effectively densified the scaffolds, ensuring
structural integrity and enhancing mechanical performance.
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A high-magnification SEM image (Figure 2) was examined to explore how heat treat-
ment influences the sintering process and particle dimensions of hydroxyapatite (HAp).
This image offers a comprehensive view of the scaffold’s microscopic structure, highlighting
surface features and particle attributes following the sintering procedure.
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Figure 2. High-magnification SEM image of the HAp scaffold after sintering, showing well-bonded
layers and smooth interparticle connections.

The SEM examination shows well-fused layers with seamless interparticle connections,
demonstrating the effectiveness of the sintering process. A minor enlargement in HAp
particle size is noted, which is in line with the applied thermal treatment parameters. Impor-
tantly, there is no evidence of substantial particle clumping or phase changes, confirming
that the sintering conditions successfully promote densification while maintaining HAp’s
crystal structure. These observations are consistent with earlier research emphasizing the
significance of optimized sintering in enhancing mechanical characteristics and structural
integrity [35,36,41].

2.3. Mechanical Testing

Bone scaffolds require an adequate compressive strength. Therefore, compression tests
were performed to evaluate the mechanical properties of the two elongated Voronoi scaffolds.
The compressive test was repeated ten times for each sample. The compression test was
performed using an ETM104B (Shenzhen Wance Testing Machine), as shown in Figure 1e. The
results of the compressive tests were plotted as a stress–strain curve. The apparent Young’s
modulus (E*), stiffness (S*), and ultimate compressive strength (US) of the scaffolds were
calculated from the stress–strain curve using Equation (1) and Equation (2), respectively:

E∗ = σ∗/ε∗ (1)

S∗ = F/∆L (2)
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where σ∗ is the apparent stress of the scaffolds in MPa calculated from Equation (3), ε∗ is
the apparent strain of the scaffolds which is determined using Equation (4), F is the applied
load in N, and ∆L represents the compressive displacement in mm.

σ∗ = F/A = F/π r2 (3)

ε∗ = ∆L/Li=

(
Li − L f

)
Li

(4)

where r is the radius of the scaffolds in mm, Li is the initial length of the porous scaffold in
mm, Lf is the length of the scaffold after the deformation in mm, and A is the cross-section
area in mm2. Based on the concept that stress is constant over the cross-section area and
throughout the gauge length.

Energy absorption is an important characteristic in biomedical engineering, particularly
for designing scaffolds in the event of a bone crash. Energy absorption was calculated for
both homogeneous and gradient scaffolds to compare their ability to absorb energy. It can
be obtained from the area under the load–displacement curve using Equation (5) below:

TEA =
∫

Pave ds ≡ Pave

(
d f − di

)
(5)

where Pave is the mean crushing force, di is the initial crushing distance, and d f is the final
crushing distance.

Because our samples were intended to be employed in the fabrication of biological
scaffolds, they needed to be lightweight. As a result, the SEA of the models had to be
calculated. SEA is defined as total energy absorbed divided by sample mass. It can be
calculated from the following Equation (6):

SEA = TEA/MASS (6)

The microstructures of natural bone are diverse, and the mechanical properties are
greatly influenced by porosity of lattice structure. Li et al. [42], recommended that the
porosity of lattice structure of the bone scaffold be at least 50% and the pore size be 100–400
µm. In the current study, the gravimetric approach [43] was used to determine porosity of
lattice structure as shown in Equation (7):

Total porosity of lattice structure (%) = [1 − (weight/volume)/ρmaterial ] × 100 (7)

where ρmaterial is the density of the material, and (weight/volume) is the apparent density
of the scaffold.

2.4. Digital Image Correlation (DIC) Analysis

Strain distribution during compressive loading of the manufactured hydroxyapatite
(HAp) scaffolds was examined using the Digital Image Correlation (DIC) technique. This
optical method, which does not require physical contact, allows for comprehensive strain
measurement by monitoring the deformation of a speckled pattern applied to the samples’
surfaces. The DIC apparatus consisted of a high-resolution camera (Canon EOS 6D Mark II,
26 MP) positioned at a right angle to the sample, capturing images at set intervals during
the loading process. These images were then analyzed using Vic-2D software, version 4.4
(Correlated Solutions, Columbia, SC, USA) to calculate strain fields.

Before testing, the samples were prepared by applying a fine speckle pattern using
white and black paints, creating high-contrast features essential for precise DIC analy-
sis. A testing machine (ETM104B, Shenzhen Wance Testing Machine) was used to apply
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compressive loads to the scaffolds while the camera recorded deformation sequences. The
resulting DIC analysis produced strain maps at various stages of loading, revealing areas
of stress concentration and the initiation of failure.

3. Results and Discussions
3.1. Mechanical Properties

Figure 3a displays the load–displacement curve of the two samples. It indicates that
the homogeneous cylinder is somewhat stiffer than the hollow one. It reveals that the
homogeneous cylinder withstood a maximum load of 913.6 N at a displacement of about
0.166 mm with the stiffness of 5162.8 N/mm. Whilst the hollow cylinder reached the
highest load of 659.8 N at a displacement of about 0.156 mm with the stiffness of about
3636.3 N/mm. This is attributed to the fact that when homogeneous cylinder is subjected
to a load, the load is distributed roughly evenly throughout all portions of the structure,
absorbing the most energy, and it can provide a better biological environment for cell
proliferation [44].
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Figure 3b presents the apparent stress–strain curve of the two designed elongated
Voronoi scaffolds. The data show that strain rises with increasing load, and both designs
show a linear rise in the apparent stress up to a certain strain value, beyond which the
relationship between these two parameters changed to be more moderate. In both struc-
tures, there is a linear correlation between apparent stress and strain until they reach a
similar apparent strain of approximately 0.003. Nonetheless, the homogeneous structure
has an apparent stress of 5.5 MPa which is higher than the apparent stress of the hollow
structure of about 3.8 MPa. Then, the apparent stress begins to rise as the strain is increased
until both structures reach a maximum deformation and are broken at a strain of 0.014
and 0.013, for the homogeneous structure and for the hollow structure, respectively. It
is worth mentioning that these results are higher than those obtained from the samples
designed with the standard Voronoi cells, this is due to the fact that cell geometry with
a larger pore size can carry a larger amount of stress concentration and loading which
leads to an improving the mechanical properties [45]. In addition, the microstructures of
the sample could be enhanced through the extension of cell struts [46] and the moderate



Ceramics 2025, 8, 4 9 of 17

spacing of the cells from each other. Furthermore, designing a structure with a larger pore
size leads to distributing fewer seeds of Voronoi cells [47], where, with the decrease in the
number of seed points, the total surface area decreases; hence, the average shear stress of
the Voronoi cells’ walls decreases [48].
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Table 2 shows the mechanical properties of both designs (homogeneous and hollow
cylinder). It can be highlighted that the homogeneous cylinder displayed higher Young’s
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modulus (1.85 GPa) and ultimate strength (about 27.2 MPa), and the hollow cylinder
sample exhibited lower Young’s modulus (1.43 GPa) and ultimate strength 21.7 MPa. It
turns out that these results outperformed the results obtained in our previous study for
the standard elongated Voronoi structure [40], and they are higher than for the human
trabecular bone (0.70–15.0 MPa) [1]. Furthermore, the gained values increased by about
93% when the biopolymer was replaced with the HAp bioceramic material [49]. This
is attributed to the HAp’s elevated hardness and excellent compressive strength, and it
possesses greater biocompatibility in comparison to the biopolymers [50]. In addition, these
values are superior when compared to the work conducted by Abdian et al. [51], where
they incorporated HAp into chitosan (CS); and the values are also higher than those of
He et al. [52], where they coated scaffolds. Moreover, the improvement in the architectural
configuration of the individual Voronoi cell affects the mechanical properties of the Voronoi
scaffold [53].

Table 2. The mechanical properties of the samples.

Sample E* (GPa) US (MPa)

Homogeneous 1.85 ± 0.02 27.2 ± 0.3
Hollow 1.43 ± 0.01 21.7 ± 0.2

Figure 3c displays the comparison between energy absorption and displacement for 3D
elongated Voronoi scaffolds. It is evident that there is a rising tendency in the relationship
between energy and displacement for both samples (homogeneous and hollow). It is
noteworthy that the improvements come slowly in the beginning; then, the absorbed
energy increases rapidly as the displacement increases, reaching the plateau of about
0.166 mm for homogeneous and 0.149 mm for hollow sample. These findings imply
that both structures can benefit from more displacement in order to increase their energy
absorption, and this also suggests that the two designs behave similarly as their energy
absorption increases. The results indicated that the greater amount of energy was absorbed
compared with that absorbed from using the standard elongated Voronoi in our previous
work [40]. The total energy absorbed is 69.777 J and 45.254 J for the homogeneous and
hollow cylinders, respectively. These results are greater than those obtained in the study
for PLA/HAp/YSZ scaffold [54]. Inevitably, changing the pore size could be achieved by
adjusting the height characteristics of the structure, which, in turn, leads to the struts of the
scaffold becoming thicker and the pore size larger while the number of pores decreases [44],
which causes the structure to withstand a higher load per displacement and absorb greater
energy. The optimal absorption materials should have a lengthy platform to absorb more
energy when crushed [55]. It is noticeable that comparing the two types of designs as
illustrated in Figure 3d, the homogeneous cylinder achieved a higher rate of specific
energy absorption, as they outperformed the hollow cylinder with the same relative density
under a constant loading rate, this is consistent with the results obtained in the previous
study [40]. The homogeneous cylinder design features are the best performance with a
specific energy absorption of 155.062 J/g. On the contrary, the hollow cylinder achieved a
lower performance with a specific energy absorption of about 100.565 J/g. However, this
result indicates an overwhelming performance—compared to what was obtained in the
previous study [40]—of both cylinders (90%) before making a modification to the Voronoi
cell. Additionally, the performance surpasses that reported by Liu et al. in their study on
the hierarchical microstructure of bioceramic scaffolds [56].

The 3D porous structures of the scaffolds play an important role in the treatment of
bone defects in cases the damage is significant. In such cases, the porosity of the scaffold’s
lattice structure during the design phase should closely align with the natural bone’s
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lattice structure porosity range of 52% to 90%. Additionally, the pore size influences tissue
regeneration [57]. It is recommended to design macroporous scaffolding that helps bone
growth [58], particularly exceeding 200 µm [59]. Consequently, we designed our scaffolds
with approximately 64% and 60% lattice structure porosity for the homogeneous and hollow
cylinders, respectively. The lattice structure porosity and the density of the scaffolds were
calculated using Equation (7). The density distribution of the scaffolds was regulated by
the volume of the structures, which was, in turn, influenced by the number of Voronoi cells.
Additionally, both designs were maintained at a consistent volume of about 95 mm3, a
density of 0.0005 g/mm3, and a thickness of 0.1 mm.

3.2. Failure Structure

Figure 4 shows the failure of the samples during the compressive loading. The stages
numbered from 1 to 6 correspond to specific points on the stress–strain curve shown in Figure 3a,
where the discussion of failure mechanisms took place. As shown in Figures 3a and 4, cell
failures initiate at low strain. As strain continues to rise, an increasing number of struts fail
as they approach their maximum strength. This occurrence leads to heightened fluctuations
in the load–displacement curve. With each strut breakage, a sharp decline is observed in
the load–displacement curve. Nonetheless, the entire structure remains capable of bearing
the load, allowing for load augmentation as displacement increases until reaching point 6
(maximum load). It is worth mentioning that in real applications, these early-stage failures
could be harmful to nearby tissue [38].

It can clearly be seen from the load–displacement curve and stress–strain curve at
Figure 3a,b that load humps become less sharp and stress valleys become more complanate
in the hollow sample. In these printed structures, failure is governed by the fracture
of the struts. Due to this, the properties of the parent materials and the quality of the
printing could have a direct effect on the failure of the structure. Figure 4 shows that for
the homogeneous samples, the failure of the struts starts from the outside surface of the
structure, and for the hollow sample, the failure of the sample begins from the inside of the
sample. Therefore, identifying the initial failure for hollow samples is difficult.

Figure 5 shows the Digital Image Correlation (DIC) analysis of the homogeneous
sample. Initially, as the load is applied, strain is evenly distributed throughout the entire
structure. However, as the load continues to increase, the highest strain becomes evident
at the junction of the struts, as depicted in Figure 5b. It is from this point that structural
failure starts, as illustrated in Figure 5c.

By using the microscopic lens (Figure 6a,b), specific struts that failed during loading
were observed. Most of the failure of the lattice initiates at the outer surface of the junction
of the struts (shown by red arrow), and then these cracks propagate towards the junction
as shown in Figure 6a. Two other failure mechanisms were also observed in the structure.
The strength degradation is attributed to the onset of failure at the weakest domain within
the structure. This corresponds to the slender struts in the structure (Figure 6b). The critical
load in this case corresponds to the maximum bending stress at a strut. Another weak
point in the structure is a printing fault. As evident in the last image of Figure 6b, the strut
breaks at the printing layer.
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Figure 6. High magnification image of structures during loading: (a) homogeneous sample;
(b) hollow sample.

Figure 7a,b presents the SEM analysis revealing the crack propagation and failure
mechanism of the hollow sample at a strain of (0.005). The cracks initiated parallel to the
loading direction until reaching the weak bonding interface of the printing layers, which
changes its direction and propagates between layers. This observation underscores the
significant impact of printing defects in the mechanical properties [35].

Despite the mechanical benefits, further refinement is needed to address these failure
points and enhance the long-term durability of the scaffolds, highlighting the need for
structural improvements to optimize the clinical efficacy of Voronoi-based scaffolds.
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4. Conclusions
This research examining two SLA-fabricated HAp Voronoi designs revealed that the

uniform cylinder demonstrated enhanced mechanical characteristics, including rigidity, re-
sistance to compression, and specific energy absorption, outperforming traditional Voronoi
structures and the human trabecular bone. However, analysis of failure modes uncovered
early fractures at strut intersections during stress application, indicating weaknesses in
slender struts and printed layers that could potentially damage adjacent tissues. Although
the mechanical benefits are evident, additional improvements are necessary to address
these weak points and enhance the long-term resilience of the scaffolds. This underscores
the importance of structural modifications to maximize the clinical effectiveness of Voronoi-
based scaffolds.

Author Contributions: A.A., formal analysis, investigation, methodology, writing—original draft,
conceptualization, project administration, validation; Z.D.I.S., formal analysis, methodology, con-
ceptualization, writing—review and editing, project administration, investigation; Z.A., software,
visualization, formal analysis, investigation, writing—original draft. C.Z., Writing—review & editing.
All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The original contributions presented in this study are included in the
article. Further inquiries can be directed to the corresponding authors.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

Appendix A
Rhinoceros 7 and Grasshopper were employed to generate the homogeneous elongated

Voronoi structure (Figure A1). The process began with the creation of a cylindrical form
using Circle and Extrude plugins. Random points were then distributed within this cylinder
using the Populate 3D Geometry plugin, which were subsequently connected to the 3D
Voronoi plugin to create Voronoi cells. To ensure the cells remained within the cylinder’s
boundaries, the Solid Intersection plugin was utilized, followed by the Deconstruct Brep
plugin for surface extraction and refinement. The Voronoi cells were elongated in the Z-
direction using the Scale NU plugin, transforming the standard Voronoi into an elongated
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version. The final step involved using the Pipe plugin to adjust the thickness of the cell
struts, after which the design was baked to produce the completed homogeneous structure.
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Figure A1. Grasshopper script for the homogeneous elongated Voronoi structure, showing the use of
the Scale NU plugin to elongate Voronoi cells uniformly along the Z-direction with controlled thickness.

The hollow elongated Voronoi structure (Figure A2) was created through a similar
process, with additional steps for hollowing the cells. As before, the cylindrical geometry
was created and populated with points using the Populate 3D Geometry and 3D Voronoi
plugins. A Bounding Box plugin was introduced to aid in aligning the Voronoi structure
within the cylinder. The Solid Intersection and Deconstruct Brep plugins were used to
confine the cells to the desired volume. The hollowing effect was achieved by applying the
Pipe plugin with specific radius parameters. The Scale NU plugin was again employed
to elongate the cells in the Z-direction. Both structures maintained consistent volume and
density while achieving their respective topological patterns.
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