Emission Spectroscopic Characterization of a Helium Atmospheric Pressure Plasma Jet with Various Mixtures of Argon Gas in the Presence and the Absence of De-Ionized Water as a Target
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup of the Atmospheric Pressure Plasma Jet
2.2. Electrical Measurements
2.3. Spectroscopic Measurements
3. Results and Discussion
3.1. Measurements of Relative Intensities of Species
3.2. Measurements of Gas Temperature
3.3. Measurements of Electron Density and Electron Temperature
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Winter, J.; Brandenburg, R.; Weltmann, K.-D. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Source Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Pedroni, M.; Morandi, S.; Silvetti, T.; Cremona, A.; Gittini, G.; Nardone, A.; Pallotta, F.; Brasca, M.; Vassallo, E. Bacteria inactivation by atmospheric pressure plasma jet treatment. J. Vac. Sci. Technol. 2017, 36, 01A107. [Google Scholar] [CrossRef]
- Gilmore, B.F.; Flynn, P.B.; Brien, S.O.; Hickok, N.; Freeman, T.; Bourke, P. Cold plasmas for biofilm control: Opportunities and challenges. Trends Biotechnol. 2018, 36, 627–628. [Google Scholar] [CrossRef] [PubMed]
- Keidar, M.; Shashurin, A.; Volotskova, O.; Stepp, M.A.; Srinivasan, P.; Sandler, A.; Trink, B. Cold atmospheric plasma in cancer therapy. Phys. Plasmas 2013, 20, 057101. [Google Scholar] [CrossRef]
- Foster, J.E. Plasma-based water purification: Challenges and prospects for the future. Phys. Plasmas 2017, 24, 055501. [Google Scholar] [CrossRef]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physio-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Laroussi, M.; Lu, X. Room-temperature atmospheric pressure plasma plume for biomedical applications. Appl. Phys. Lett. 2005, 87, 113902. [Google Scholar] [CrossRef] [Green Version]
- Bruggeman, P.; Brandenburg, R. Atmospheric pressure discharge filaments and microplasmas: Physics, chemistry and diagnostics. J. Phys. D Appl. Phys. 2013, 46, 464001. [Google Scholar] [CrossRef]
- Santosh, V.S.; Kondetia, K.; Phanb, C.Q.; Wendec, K.; Jablonowskic, H.; Gangala, U.; Granickd, J.L.; Hunterb, R.C.; Bruggemana, P.J. Long-lived and short-lived reactive species produced by a cold atmospheric pressure plasma jet for the inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Free Radic. Biol. Med. 2018, 124, 275–287. [Google Scholar] [CrossRef]
- Liu, C.T.; Wu, C.J.; Yang, Y.W.; Lin, Z.H.; Wu, J.S.; Hsiao, S.C.; Lin, C.P. Atomic Oxygen and Hydroxyl Radical Generation in Round Helium-Based Atmospheric-Pressure Plasma Jets by Various Electrode Arrangements and Its Application in Sterilizing Streptococcus mutans. IEEE Trans. Plasma Sci. 2014, 42, 12. [Google Scholar] [CrossRef]
- Yue, Y.F.; Mohades, S.; Laroussi, M.; Lu, X. Measurements of Plasma-Generated Hydroxyl and Hydrogen Peroxide Concentrations for Plasma Medicine Applications. IEEE Trans. Plasma Sci. 2016, 44, 11. [Google Scholar] [CrossRef]
- Sarani, A.; Nikiforov, A.Y.; Leys, C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures: Optical emission spectroscopy and temperature measurements. Phys. Plasmas 2010, 17, 063504. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Shen, J.; Xiao, D.-Z.; Xie, H.-B.; Lan, Y.; Fang, S.-D.; Meng, Y.-D.; Chu, P.K. Atmospheric pressure plasma jet utilizing Ar and Ar/H2O mixtures and its applications to bacteria inactivation. Chin. Phys. B 2014, 23, 0752204. [Google Scholar] [CrossRef]
- Nikiforov, A.Y.; Sarani, A.; Leys, C. The influence of water vapor content on electrical and spectral properties of an atmospheric pressure plasma jet. Plasma Source Sci. Technol. 2011, 20, 015014. [Google Scholar] [CrossRef]
- Wang, S.; Schulz-von der Gathen, V.; Döbele, H.F. Discharge comparison of nonequilibrium atmospheric pressure Ar/O2 and He/O2 plasma jets. Appl. Phys. Lett. 2003, 83, 16. [Google Scholar] [CrossRef]
- Li, S.-Z.; Lim, J.-P.; Kang, J.G.; Uhm, H.S. Comparison of atmospheric-pressure helium and argon plasmas generated by capacitively coupled radio-frequency discharge. Phys. Plasmas 2006, 13, 093503. [Google Scholar] [CrossRef] [Green Version]
- Fantz, U. Basic of plasma spectroscopy. Plasma Source Sci. Technol. 2006, 15, S137–S147. [Google Scholar] [CrossRef]
- Griem, H.R. Plasma Spectroscopy; McGraw-Hill: New York, NY, USA, 1964. [Google Scholar]
- Calzada, M.D.; Moisan, M.; Gamero, A.; Sola, A. Experimental investigation and characterization of the departure from local thermodynamic equilibrium along a surface-wave-sustained discharge at atmospheric pressure. J. Appl. Phys. 1996, 80, 46. [Google Scholar] [CrossRef]
- Sola, A.; Calzada, M.D.; Gamero, A. On the use of the line-to-continuum intensity ratio for determining the electron temperature in a high-pressure argon surface-microwave discharge. J. Phys. D Appl. Phys. 1995, 28, 4. [Google Scholar] [CrossRef]
- Gordillo-Vázquez, F.J.; Camero, M.; Gómez-Aleixandre, C. Spectroscopic measurements of the electron temperature in low pressure radiofrequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanocarbon structures. Plasma Sources Sci. Technol. 2005, 15, 1. [Google Scholar] [CrossRef]
- Torres, J.; Palomares, J.M.; Sola, A.; van der Mullen, J.J.A.M.; Gamero, A. A Stark broadening method to determine simultaneously the electron temperature and density in high-pressure microwave plasmas. J. Phys. D Appl. Phys. 2007, 40, 5929–5936. [Google Scholar] [CrossRef]
- Zhu, X.M.; Pu, Y.K.; Balcon, N.; Boswell, R. Measurement of the electron density in atmospheric-pressure low-temperature argon discharges by line-ratio method of optical emission spectroscopy. J. Phys. D Appl. Phys. 2009, 42, 142003. [Google Scholar] [CrossRef]
- Yarmolenko, P.S.; Moon, E.J.; Landon, C.; Manzoor, A.; Hochman, D.W.; Viglianti, B.L.; Dewhirst, M.W. Thresholds for thermal damage to normal tissues: An update. Int. J. Hyperth. 2011, 27, 320–343. [Google Scholar] [CrossRef] [PubMed]
- Masoud, N.; Martus, K.; Figus, M.; Becker, K. Rotational and Vibrational Temperature Measurements in a High-Pressure Cylindrical Dielectric Barrier Discharge (C-DBD). Contrib. Plasma Phys. 2005, 45, 30–37. [Google Scholar] [CrossRef]
- Koike, S.; Sakamoto, T.; Kobori, H.; Matsuura, H.; Akatsuka, H. Spectroscopic Study on Vibrational Nonequilibrium of a Microwave Discharge Nitrogen Plasma. Jpn. J. Appl. Phys. 2004, 43, 5550. [Google Scholar] [CrossRef]
- Gulec, A.; Bozduman, F.; Hala, A.M. Atmospheric pressure 2.45-GHz microwave helium plasma. IEEE Trans. Plasma Sci. 2015, 43, 786790. [Google Scholar] [CrossRef]
- NIST Atomic Spectra Database. Available online: http://physics.nist.gov/PhysRefData (accessed on 21 February 2019).
- Ouyang, Z.; Surla, V.; Cho, S.T.; Ruzic, D.N. Characterization of an atmospheric-pressure helium plasma generated by 2.45-GHz microwave power. IEEE Trans. Plasma Sci. 2012, 40, 3476–3481. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Liao, Z.; Pei, X.; Wu, S. OH Radicals Distribution and Discharge Dynamics of an Atmospheric Pressure Plasma Jet above Water Surface. IEEE Trans. Radiat. Plasma Med. Sci. 2018, 2, 223–228. [Google Scholar] [CrossRef]
- Collette, A.; Dufour, T.; Reniers, F. Reactivity of water vapor in an atmospheric argon flowing post discharge plasma torch. Plasma Sources Sci. Technol. 2016, 25, 025014. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bolouki, N.; Hsieh, J.-H.; Li, C.; Yang, Y.-Z. Emission Spectroscopic Characterization of a Helium Atmospheric Pressure Plasma Jet with Various Mixtures of Argon Gas in the Presence and the Absence of De-Ionized Water as a Target. Plasma 2019, 2, 283-293. https://doi.org/10.3390/plasma2030020
Bolouki N, Hsieh J-H, Li C, Yang Y-Z. Emission Spectroscopic Characterization of a Helium Atmospheric Pressure Plasma Jet with Various Mixtures of Argon Gas in the Presence and the Absence of De-Ionized Water as a Target. Plasma. 2019; 2(3):283-293. https://doi.org/10.3390/plasma2030020
Chicago/Turabian StyleBolouki, Nima, Jang-Hsing Hsieh, Chuan Li, and Yi-Zheng Yang. 2019. "Emission Spectroscopic Characterization of a Helium Atmospheric Pressure Plasma Jet with Various Mixtures of Argon Gas in the Presence and the Absence of De-Ionized Water as a Target" Plasma 2, no. 3: 283-293. https://doi.org/10.3390/plasma2030020
APA StyleBolouki, N., Hsieh, J. -H., Li, C., & Yang, Y. -Z. (2019). Emission Spectroscopic Characterization of a Helium Atmospheric Pressure Plasma Jet with Various Mixtures of Argon Gas in the Presence and the Absence of De-Ionized Water as a Target. Plasma, 2(3), 283-293. https://doi.org/10.3390/plasma2030020