1995–2005: A Decade of Innovation in Low Temperature Plasma and Its Applications
Abstract
:1. Introduction
2. Novel Sources of Non-Equilibrium Atmospheric Pressure Plasmas
2.1. The Pulsed Dielectric Barrier Discharge (P-DBD)
2.2. The Resistive Barrier Discharge
2.3. Microdischarges
2.4. Non-Equilibrium Atmospheric Pressure Plasma Jets (N-APPJs)
2.5. High Power Impulse Magnetron Sputtering (HiPIMS)
3. Select New Applications of Low Temperature Plasma
3.1. Biomedical Applications of LTP
3.2. Plasma Interaction with Liquids
3.3. Electromagnetic Waves Interaction with Atmospheric Pressure LTP
3.4. Dusty Plasmas
3.5. Plasma-Assisted Ignition and Combustion
4. Conclusions
Conflicts of Interest
References
- Kanazawa, S.; Kogoma, M.; Moriwaki, T.; Okazaki, S. Stable Glow Plasma at Atmospheric Pressure. J. Phys. D Appl. Phys. 1988, 21, 838. [Google Scholar] [CrossRef]
- Massines, F.; Mayoux, C.; Messaoudi, R.; Rabehi, A.; Ségur, P. Experimental Study of an Atmospheric Pressure Glow Discharge Application to Polymers Surface Treatment. In Proceedings of the X International Conference on Gas Discharges and Their Applications, Swansea, UK, 13–18 September 1992; Volume 2, pp. 730–733. [Google Scholar]
- Roth, J.R.; Laroussi, M.; Liu, C. Experimental Generation of a Steady-State Glow Discharge at Atmospheric Pressure. In Proceedings of the IEEE Conference Record—Abstracts. 1992 IEEE International Conference on Plasma, Tampa, FL, USA, 1–3 June 1992. [Google Scholar]
- Becker, K.; Kogelschatz, U.; Schoenbach, K.H.; Barker, R.J. Non-equilibrium Air Plasmas at Atmospheric Pressure; IOP Pub: Bristol, UK, 2005; ISBN 0750309628. [Google Scholar]
- Laroussi, M. Sterilization of Contaminated Matter by an Atmospheric Pressure Plasma. IEEE Trans. Plasma Sci. 1996, 24, 1188. [Google Scholar] [CrossRef]
- Laroussi, M. Non-Thermal Decontamination of Biological Media by Atmospheric Pressure Plasmas: Review, Analysis, and Prospects. IEEE Trans. Plasma Sci. 2002, 30, 1409–1415. [Google Scholar] [CrossRef]
- Starikovskaia, S.M. Plasma Assisted Ignition and Combustion. J. Phys. D Appl. Phys. 2006, 39, R265. [Google Scholar] [CrossRef]
- Roth, J.R.; Sherman, D.N.; Wilkinson, S.P. Electrohydrodynamic Flow Control with a Glow-Discharge Surface Plasma. AIAA J. 2000, 38, 1166. [Google Scholar] [CrossRef]
- Stark, R.H.; Schoenbach, K.H. Electron heating in atmospheric pressure glow discharges. J. Appl. Phys. 2001, 89, 3568. [Google Scholar] [CrossRef]
- Duten, X.; Packan, D.; Yu, L.; Laux, C.O.; Kruger, C.H. DC and pulsed glow discharges in atmospheric pressure air and nitrogen. IEEE Trans. Plasma Sci. 2002, 30, 178–179. [Google Scholar] [CrossRef]
- Laroussi, M.; Lu, X.; Kolobov, V.; Arslanbekov, R. Power Consideration in the Pulsed DBD at Atmospheric Pressure. J. Appl. Phys. 2004, 6, 3028. [Google Scholar] [CrossRef]
- Laroussi, M.; Alexeff, I.; Richardson, J.P.; Dyer, F.F. The Resistive Barrier Discharge. IEEE Trans. Plasma Sci. 2002, 30, 158–159. [Google Scholar] [CrossRef]
- Laroussi, M.; Lu, X. Room Temperature Atmospheric Pressure Plasma Plume for Biomedical Applications. Appl. Phys. Lett. 2005, 87, 113902. [Google Scholar] [CrossRef]
- Shukla, P.P.; Mamun, A.A. Introduction to Dusty Plasma Physics; CRC Press: Boca Raton, FL, USA, 2001; ISBN 978-0-750306-53-9. [Google Scholar]
- Fetisov, I.K.; Filippov, A.A.; Khodachenko, G.V.; Mozgrin, D.V.; Pisarev, A.A. Impulse irradiation plasma technology for film deposition. Vacuum 1999, 53, 133–136. [Google Scholar] [CrossRef]
- Kouznetsov, V.; Macák, K.; Schneider, J.M.; Helmersson, U.; Petrov, I. A novel pulsed magnetron sputter technique utilizing very high target power densities. Surf. Coat. Technol. 1999, 122, 290–293. [Google Scholar] [CrossRef]
- Du Moncel, T. Notice Sur L’appareil D’induction Electrique De Ruhmkorff Et Sur Les Experiences Que L’on Peut Faire Avec Cet Instrument; Hachette et Cie: Paris, France, 1855. [Google Scholar]
- Von Siemens, W. Ueber die elektrostatische Induction und die Verzögerung des Stroms in Flaschendrähten. Poggendorfs Ann. Phys. Chem. 1857, 12, 66. [Google Scholar] [CrossRef]
- Kogelschatz, U. Silent discharges for the generation of ultraviolet and vacuum ultraviolet excimer radiation. Pure Appl. Chem. 1990, 62, 1667–1674. [Google Scholar] [CrossRef]
- Kogelschatz, U.; Eliasson, B.; Egli, W. Dielectric Barrier Discharges: Principle and Applications. J. Phys. IV 1997, 7, 47–66. [Google Scholar] [CrossRef]
- Kogelschatz, U. Filamentary, Patterned, and Diffuse Barrier Discharges. IEEE Trans. Plasma Sci. 2002, 30, 1400–1408. [Google Scholar] [CrossRef]
- Laroussi, M.; Richardson, J.P.; Dobbs, F.C. Effects of Non-Equilibrium Atmospheric Pressure Plasmas on the Heterotrophic Pathways of Bacteria and on their Cell Morphology. Appl. Phys. Lett. 2002, 81, 772–774. [Google Scholar] [CrossRef]
- Laroussi, M.; Mendis, D.A.; Rosenberg, M. Plasma Interaction with Microbes. New J. Phys. 2003, 5, 41. [Google Scholar] [CrossRef]
- White, A.D. New Hollow Cathode Glow Discharge. J. Appl. Phys. 1959, 30, 711. [Google Scholar] [CrossRef]
- Becker, K.; Schoenbach, K.H.; Eden, J.G. Microplasmas and Applications. J. Phys. D Appl. Phys. 2006, 39, R55. [Google Scholar] [CrossRef]
- Schoenbach, K.H.; Becker, K. 20 Years of Microplasma Research. Eur. Phys. J. D 2016, 70, 29. [Google Scholar] [CrossRef]
- Brandenburg, R.; Ehlbeck, J.; Stieber, M.V.; von Woedtke, T.; Zeymer, J.; Schluter, O.; Weltmann, K.-D. Antimicrobial Treatment of Heat Sensitive Materials by Means of Atmospheric Pressure rf-driven Plasma Jet. Contrib. Plasma Phys. 2007, 47, 72–79. [Google Scholar] [CrossRef]
- Laroussi, M. Low Temperature Plasma Jet for Biomedical Applications: A Review. IEEE Trans. Plasma Sci. 2015, 43, 703–712. [Google Scholar] [CrossRef]
- Teschke, M.; Kedzierski, J.; Finantu-Dinu, E.G.; Korzec, D.; Engemann, J. High Speed Photographs of a Dielectric Barrier Atmospheric Pressure Plasma Jet. IEEE Trans. Plasma Sci. 2005, 33, 310–311. [Google Scholar] [CrossRef]
- Lu, X.; Laroussi, M. Dynamics of an Atmospheric Pressure Plasma Plume Generated by Submicrosecond Voltage Pulses. J. Appl. Phys. 2006, 100, 063302. [Google Scholar] [CrossRef]
- Breilmann, W.; Maszl, C.; Benedikt, J.; von Keudell, A. Dynamic of the growth flux at the substrate during high-power pulsed magnetron sputtering (HiPIMS) of titanium. J. Phys. D Appl. Phys. 2013, 46, 485204. [Google Scholar] [CrossRef]
- Stoffels, E.; Flikweert, A.J.; Stoffels, W.W.; Kroesen, G.M.W. Plasma Needle: A non-destructive Atmospheric Plasma Source for Fine Surface Treatment of Biomaterials. Plasma Sources Sci. Technol. 2002, 11, 383. [Google Scholar] [CrossRef]
- Laroussi, M.; Fridman, A.; Satava, R.M. Plasma Medicine. Plasma Process. Polym. 2008, 5, 501. [Google Scholar] [CrossRef]
- Isbary, G.; Morfill, G.; Schmidt, H.U.; Georgi, M.; Ramrath, K.; Heinlin, J. A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br. J. Dermatol. 2010, 163, 78–82. [Google Scholar] [CrossRef]
- Lu, X.; Keidar, M.; Laroussi, M.; Choi, E.; Szili, E.J.; Ostrikov, K. Transcutaneous plasma stress: From soft-matter models to living tissues. Mater. Sci. Eng. R Rep. 2019, 138, 36–59. [Google Scholar] [CrossRef]
- Laroussi, M. Sterilization of Liquids Using a Plasma Glow Discharge. Patent # 5,876,663, 2 March 1999. [Google Scholar]
- Lu, X.; Laroussi, M.; Kolb, J.; Kono, S.; Schoenbach, K.H. Temporal Emission Behavior of Pulsed Discharges in Water. In Proceedings of the 14th IEEE International Pulsed Power Conference, Dallas, TX, USA, 15–18 June 2003; p. 957. [Google Scholar]
- Kolb, J.F.; Lu, X.; Xiao, S.; Bickes, C.; Minamitani, Y.; Laroussi, M.; Schoenbach, K.H.; Joshi, R.; Schamiloglu, E. Electrical Breakdown in Polar Liquids. In Proceedings of the Conference Record of the Twenty-Sixth International Power Modulator Symposium, 2004 and 2004 High-Voltage Workshop, San Francisco, CA, USA, 23–26 May 2004; p. 121. [Google Scholar]
- Lu, X.; Laroussi, M. Atmospheric Pressure Glow Discharge in Air Using a Water Electrode. IEEE Trans. Plasma Sci. 2005, 33, 272–273. [Google Scholar]
- Bruggeman, P.; Leys, C. Nonthermal Plasma in and in Contact with Liquids. J. Phys. D Appl. Phys. 2009, 42, 053001. [Google Scholar] [CrossRef]
- Locke, B.R.; Shih, K.-Y. Review of the methods to form hydrogen peroxide in electrical discharge plasma with liquid water. Plasma Sources Sci. Technol. 2011, 20, 034006. [Google Scholar] [CrossRef]
- Lukes, P.; Dolezalova, E.; Sisrova, I.; Klupek, M. Aqueous-phase chemistry and bactericidal effects from an air discharge plasma in contact with water: Evidence for the formation of peroxynitrite through a pseudo-second-order post-discharge reaction of H2O2 and HNO2. Plasma Sources Sci. Technol. 2014, 23, 015019. [Google Scholar] [CrossRef]
- Tanaka, H.; Mizuno, M.; Ishikawa, K.; Nakamura, K.; Kajiyama, H.; Kano, H.; Kikkawa, F.; Hori, M. Plasma-Activated Medium Selectively Kills Glioblastoma Brain Tumor Cells by Down-Regulating a Survival Signaling Molecule, AKT Kinase. Plasma Med. 2011, 1, 265. [Google Scholar] [CrossRef]
- Mohades, S.; Laroussi, M.; Sears, J.; Barekzi, N.; Razavi, H. Evaluation of the Effects of a Plasma Activated Medium on Cancer Cells. Phys. Plasmas 2015, 22, 122001. [Google Scholar] [CrossRef]
- Laroussi, M. Interaction of microwaves with Atmospheric Pressure Plasmas. Int. J. Infrared Millim. Waves 1995, 16, 2069–2083. [Google Scholar] [CrossRef]
- Vidmar, R.J. On the use of atmospheric pressure plasmas as electromagnetic reflectors and absorbers. IEEE Trans. Plasma Sci. 1990, 18, 733–741. [Google Scholar] [CrossRef]
- Laroussi, M. Relationship between the Number Density and the Phase Shift in Microwave Interferometry for Atmospheric Pressure Plasma. Int. J. Infrared Millim. Waves 1999, 20, 1501–1508. [Google Scholar] [CrossRef]
- Mendis, D.A. Dust in Cosmic Plasma Environments. Astrophys. Space Sci. 1979, 65, 5–12. [Google Scholar] [CrossRef]
- Boufendi, L.; Bouchoule, A. Industrial developments of scientific insights in dusty plasmas. Plasma Sources Sci. Technol. 2002, 11, A211. [Google Scholar] [CrossRef]
- Morfill, G.E.; Ivlev, A.V. Complex plasmas: An interdisciplinary research field. Rev. Mod. Phys. 2009, 81, 1353. [Google Scholar] [CrossRef]
- Morfill, G.E.; Baturin, Y.; Fortov, V. Plasma Research at the Limit; Imperial College Press: London, UK, 2013; ISBN 978-1-908977-24-3. [Google Scholar]
- Bozhenkov, S.M.; Starikovskaia, S.M.; Sechenov, V.A.; Starikovkii, A.Y.; Zhukov, V.P. Combustible Mixtures Ignition in a Wide Pressure Range, Nanosecond High Voltage Discharge Ignition. In Proceedings of the 41st AIAA Aeorospace Science Meting and Exhibit, Reno, NV, USA, 6–9 January 2003; p. 876. [Google Scholar]
- Galley, D.; Pilla, G.; Lacoste, D.; Ducruix, S.; Lacas, F.; Veynante, D.; Laux, C.O. Plasma Enhanced Combustion of a Lean Premixed Air-Propane Turbulent Flame Using Nanosecond Repetitively Pulsed Plasma. In Proceedings of the 43rd AIAA Aeorospace Science Meting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1193. [Google Scholar]
- Adamovich, I.; Lempert, W.R.; Rich, J.W.; Urkin, Y.G.; Nishihara, M. Repetitively Pulsed Nonequilibrium Plasmas for Magnetohydrodynamic Flow Control and Plasma-Assisted Combustion. J. Propuls. Power 2008, 24, 1198. [Google Scholar] [CrossRef]
- Adamovic, I.; Baalrud, S.D.; Bogaerts, A.; Bruggeman, P.J.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P.; et al. The 2017 Plasma Roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys 2017, 50, 323001. [Google Scholar] [CrossRef]
- Weltmann, K.-D.; Kolb, J.F.; Holub, M.; Uhrlandt, D.; Šimek, M.; Ostrikov, K.; Hamaguchi, S.; Cvelbar, U.; Černák, M.; Locke, B.; et al. The future for plasma science and technology. Plasma Process. Polym. 2019, 16, e1800118. [Google Scholar] [CrossRef]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laroussi, M. 1995–2005: A Decade of Innovation in Low Temperature Plasma and Its Applications. Plasma 2019, 2, 360-368. https://doi.org/10.3390/plasma2030028
Laroussi M. 1995–2005: A Decade of Innovation in Low Temperature Plasma and Its Applications. Plasma. 2019; 2(3):360-368. https://doi.org/10.3390/plasma2030028
Chicago/Turabian StyleLaroussi, Mounir. 2019. "1995–2005: A Decade of Innovation in Low Temperature Plasma and Its Applications" Plasma 2, no. 3: 360-368. https://doi.org/10.3390/plasma2030028
APA StyleLaroussi, M. (2019). 1995–2005: A Decade of Innovation in Low Temperature Plasma and Its Applications. Plasma, 2(3), 360-368. https://doi.org/10.3390/plasma2030028