ElectroCatalytic Activity of Nickel Foam with Co, Mo, and Ni Phosphide Nanostructures
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Materials
2.2. Hydrothermal Synthesis by Plasma
2.3. Sample Preparation
2.4. Characterization Techniques
2.4.1. Microstructural Characterization
2.4.2. Electrocatalytic Activity Characterization
3. Results and Discussion
3.1. Microstructural Characterization
3.2. Electrocatalytic Activity Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Marini, S.; Salvi, P.; Nelli, P.; Pesenti, R.; Villa, M.; Kiros, Y. Stable and inexpensive electrodes for the hydrogen evolution reaction. Int. J. Hydrogen Energy 2013, 38, 11484–11495. [Google Scholar] [CrossRef]
- Nath, K.; Najafpour, M.M.; Voloshin, R.A.; Balaghi, S.E.; Tyystjärvi, E.; Timilsina, R.; Eaton-Rye, J.J.; Tomo, T.; Nam, H.G.; Nishihara, H.; et al. Photobiological hydrogen production and artificial photosynthesis for clean energy: From bio to nanotechnologies. Photosynth. Res. 2015, 126, 237–247. [Google Scholar] [CrossRef] [PubMed]
- Wilberforce, T.; El-Hassan, Z.; Khatib, F.N.; Al Makky, A.; Baroutaji, A.; Carton, J.G.; Olabi, A.G. Developments of electric cars and fuel cell hydrogen electric cars. Int. J. Hydrogen Energy 2017, 42, 25695–25734. [Google Scholar] [CrossRef] [Green Version]
- Emets, V.V.; Ponomarev, I.I.; Grinberg, V.A.; Mayorova, N.A.; Zharinova, M.Y.; Volkova, Y.A.; Nizhnikovskii, E.A.; Skupov, K.M.; Razorenov, D.Y.; Andreev, V.N.; et al. Development of hydrogen-air fuel cells with membranes based on sulfonated polyheteroarylenes. Russ. J. Electrochem. 2017, 53, 86–91. [Google Scholar] [CrossRef]
- González-Buch, C.; Herraiz-Cardona, I.; Ortega, E.; García-Antón, J.; Pérez-Herranz, V. Synthesis and characterization of macroporous Ni, Co and Ni–Co electrocatalytic deposits for hydrogen evolution reaction in alkaline media. Int. J. Hydrogen Energy 2013, 38, 10157–10169. [Google Scholar] [CrossRef]
- Sun, T.; Cao, J.; Dong, J.; Du, H.; Zhang, H.; Chen, J.; Xu, L. Ordered mesoporous NiCo alloys for highly efficient electrocatalytic hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 6637–6645. [Google Scholar] [CrossRef]
- Kubisztal, J.; Budniok, A.; Lasia, A. Study of the hydrogen evolution reaction on nickel-based composite coatings containing molybdenum powder. Int. J. Hydrogen Energy 2007, 32, 1211–1218. [Google Scholar] [CrossRef]
- Subramanya, B.; Ullal, Y.; Shenoy, S.U.; Bhat, D.K.; Hegde, A.C. Novel Co–Ni–graphene composite electrodes for hydrogen production. RSC Adv. 2015, 5, 47398–47407. [Google Scholar] [CrossRef]
- Eftekhari, A. Electrocatalysts for hydrogen evolution reaction. Int. J. Hydrogen Energy 2017, 42, 11053–11077. [Google Scholar] [CrossRef]
- Xu, M.; Han, L.; Han, Y.; Yu, Y.; Zhai, J.; Dong, S. Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution. J. Mater. Chem. A 2015, 3, 21471–21477. [Google Scholar] [CrossRef]
- Pu, Z.; Saana Amiinu, I.; Wang, M.; Yang, Y.; Mu, S. Semimetallic MoP2: An active and stable hydrogen evolution electrocatalyst over the whole pH range. Nanoscale 2016, 8, 8500–8504. [Google Scholar] [CrossRef] [PubMed]
- Burchardt, T. The hydrogen evolution reaction on NiPx alloys. Int. J. Hydrogen Energy 2000, 25, 627–634. [Google Scholar] [CrossRef]
- Hong, S.H.; Ahn, S.H.; Choi, J.; Kim, J.Y.; Kim, H.Y.; Kim, H.-J.; Jang, J.H.; Kim, H.; Kim, S.-K. High-activity electrodeposited NiW catalysts for hydrogen evolution in alkaline water electrolysis. Appl. Surf. Sci. 2015, 349, 629–635. [Google Scholar] [CrossRef]
- Langmuir, I. The Interaction of Electron and Positive Ion Space Charges in Cathode Sheaths. Phys. Rev. 1929, 33, 954–989. [Google Scholar] [CrossRef]
- Li, M.; Liu, X.; Xiong, Y.; Bo, X.; Zhang, Y.; Han, C.; Guo, L. Facile synthesis of various highly dispersive CoP nanocrystal embedded carbon matrices as efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 2015, 3, 4255–4265. [Google Scholar] [CrossRef]
- Xiao, P.; Sk, M.A.; Thia, L.; Ge, X.; Lim, R.J.; Wang, J.-Y.; Lim, K.H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Chen, Y.; Lin, Y.; Cui, P.; Sun, K.; Liu, Y.; Liu, C. Cobalt nickel phosphide nanoparticles decorated carbon nanotubes as advanced hybrid catalysts for hydrogen evolution. J. Mater. Chem. A 2016, 4, 14675–14686. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, G.; Shi, Y.; Zhao, Y.; Jiang, J.; Zhang, Y.; Wang, H. One-step synthesis of nickel and cobalt phosphide nanomaterials via decomposition of hexamethylenetetramine-containing precursors. Dalton Trans. 2015, 44, 14122–14129. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Zhang, C.; Peng, C.; Wang, D.-y.; Ding, D.; He, Q. Study of the Synergistic Effect of Nanoporous Nickel Phosphates on Novel Intumescent Flame Retardant Polypropylene Composites. J. Spectrosc. 2015, 2015, 289–298. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, D.; Gong, L.; Zhang, L.; Xia, Z. Catalytic Activity Origin and Design Principles of Graphitic Carbon Nitride Electrocatalysts for Hydrogen Evolution. Front. Mater. 2019, 6, 16. [Google Scholar] [CrossRef] [Green Version]
Phosphide Specimens | CoP | MoP | NiP | |||
---|---|---|---|---|---|---|
Elements | Co | P | Mo | P | Ni | P |
wt. (%) | 72.8 | 27.2 | 87.3 | 12.7 | 97.8 | 2.2 |
at. (%) | 58.5 | 41.5 | 68.9 | 31.1 | 95.9 | 4.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saghafi Yazdi, M.; Rezayat, M.; Rovira, J.J.R. ElectroCatalytic Activity of Nickel Foam with Co, Mo, and Ni Phosphide Nanostructures. Plasma 2022, 5, 221-232. https://doi.org/10.3390/plasma5020017
Saghafi Yazdi M, Rezayat M, Rovira JJR. ElectroCatalytic Activity of Nickel Foam with Co, Mo, and Ni Phosphide Nanostructures. Plasma. 2022; 5(2):221-232. https://doi.org/10.3390/plasma5020017
Chicago/Turabian StyleSaghafi Yazdi, Morteza, Mohammad Rezayat, and Joan Josep Roa Rovira. 2022. "ElectroCatalytic Activity of Nickel Foam with Co, Mo, and Ni Phosphide Nanostructures" Plasma 5, no. 2: 221-232. https://doi.org/10.3390/plasma5020017
APA StyleSaghafi Yazdi, M., Rezayat, M., & Rovira, J. J. R. (2022). ElectroCatalytic Activity of Nickel Foam with Co, Mo, and Ni Phosphide Nanostructures. Plasma, 5(2), 221-232. https://doi.org/10.3390/plasma5020017