Fundamentals and Applications of Nonthermal Plasma Fluid Flows: A Review
Abstract
:1. Introduction
2. Fundamental System of Equations for Heat Transfer in Plasma Fluids
2.1. Plasma Fluid Concept
2.2. Plasma Fluid Temperature
2.3. Kinetic Energy and Internal Energy
2.4. Thermal Conduction, Convection, and Radiation
2.4.1. Thermal Conduction
2.4.2. Heat Transfer
2.4.3. Thermal Radiation
2.5. Method to Express Inertia Term for Field Quantities
2.6. Constitutive Equation
2.7. Fundamental Equations for Plasma Heat Transfer Fluids
2.8. Boundary Conditions
2.9. Analysis Procedure for the System of Fundamental Equations
3. Characteristics of Plasma Fluid Heat Transfer
3.1. Effect on Transport Coefficient
3.2. Effect on Thermal Conductivity
3.3. Effects of Ionization and Chemical Reactions
3.4. Effects of Electromagnetic Fields
3.5. Effects of Joule Heating
3.6. Meaning of Terms Characteristic of Plasma Heat Transfer in the Fundamental Equations
- J × B: This body force acts perpendicular to both the current and magnetic field, which is the Lorentz force.
- ρeE: Electrostatic force. If there is a charge density, this body force is exerted by the electric field.
- Sc: Generation term of chemical reaction heat including ionization reaction.
- represents the interphase energy transfer from electrons to heavy particles.
- In Equation (25) for chemical species, not only chemical reactions but also ionization reactions are considered.
- Miωi generation term. In reactive fluids, the components change due to reactions; thus, the conservation equation for the changing components requires terms for the generation and extinction rates associated with reactions.
- Equations (29) and (30) regarding ionization reactions are newly introduced.
- These equations are newly introduced to represent the law of conservation of electron generation and vanishing.
- ∇●Ge: Transfer term due to the electric field. This term is necessary in the electron transport equation because the electrons are forced to move by the electric field.
- Se: An electron generation term. This term is required in the electron transport equation.
- Newly introduced as the law of conservation of energy for electrons.
- Pelec = J●E: Joule heating. When current flows in plasma, Joule heat is generated per unit volume and is given by the product of current density and electric field strength.
- ∇●(5/2)TeGe: Electron enthalpy transfer due to current by drift flux model.
- Ra: Radiant energy. Plasma is hot and emits electromagnetic waves by several mechanisms. Higher densities and higher temperatures result in greater heat transfer.
3.7. Boundary Conditions for the Effects of Current Flow in and out of Bodies and Heat Transfer
4. Analysis Example of Fundamental Equations Systems
4.1. Heat Transfer and Heat Conduction to Metal Particles Emitted in a Plasma Jet (Equilibrium Plasma Heat Transfer)
4.2. Thermal Fluid Dynamics of Streamers in Atmospheric Pressure Plasma Flow (Nonequilibrium Plasma Heat Transfer)
4.2.1. Model for Analysis
4.2.2. Analysis Procedure
4.2.3. Quasi-One-Dimensional Model Calculation
4.2.4. Two-Dimensional Model Calculation Result
4.3. Heat Transfer and Decomposition of Exhaust Gas CF4 from Semiconductor Manufacturing Equipment
4.3.1. Analytical Model and Boundary Conditions
- Inlet boundary condition (gas inlet):
- Outlet boundary condition (gas outlet):
- Conditions for the center line of the reactor:
- Inner wall boundary condition:
- Outer wall boundary condition:
- Side wall boundary condition:
- Horizontal wall boundary condition:
- Conditions for vertical walls:
4.3.2. Calculation Conditions
4.3.3. Calculation Results and Discussion
4.4. Thermo-Fluid Analysis in Nonequilibrium Plasma MHD Generator
4.4.1. Model for Analysis
4.4.2. Calculation Procedure
4.4.3. Initial and Boundary Conditions
4.4.4. Calculated Results and Comparison with Experiments
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Kampen, N.G.; Felderhof, B.U. Theoretical Methods in Plasma Physics; North-Holland Publishing Company: Amsterdam, The Netherlands, 1967. [Google Scholar]
- Mitchner, M.; Kruger, C.H., Jr. Partially Ionized Gases; A Wiley-Interscience Publication: Hoboken, NJ, USA, 1973. [Google Scholar]
- Cambel, A.B. Plasma Physics and Magnetofluidmechanics; McGraw-Hill Inc.: New York, NY, USA, 1963. [Google Scholar]
- Rosa, R.J. Magnetohydrodynamic Energy Conversion; McGraw-Hill Inc.: New York, NY, USA, 1968. [Google Scholar]
- Shercliff, J.A. A Textbook of Magnetohydrodynamics; Pergamon Press: Oxford, UK, 1965. [Google Scholar]
- Lifschitz, E.M.; Pitaevskii, L.P. Butsuriteki Undogaku 1 (English Translated Title: Physical Kinetics 1); Inoue, T.; Tsuneto, T., Translators; Translators; Tokyo Tosho Co., Ltd.: Tokyo, Japan, 1982. (In Japanese) [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Bano Kotenron (English Title: The Classical Theory of Fields); Hiroshige, T., Translator; Tokyo Tosho Co., Ltd.: Tokyo, Japan, 1978. (In Japanese) [Google Scholar]
- Kanzawa, J. Purazuma Dennetsu (English Translated Title: Plasma Heat Transfer); Shinzansha Saitech Co., Ltd.: Tokyo, Japan, 1992. (In Japanese) [Google Scholar]
- Bogdanov, E.A.; Kudryavtsev, A.A.; Tsendin, L.D.; Arslanbekov, R.R.; Kolobov, V.I.; Kudryavtsev, V.V. Substantiation of The Two-Temperature Kinetic Model by Comparing Calculations within the Kinetic and Fluid Models of the Positive Column Plasma of a Dc Oxygen Discharge. Tech. Phys. 2003, 48, 983–994, Translated from Zhurnal Tekhnicheskoi Fiz. 2003, 73–78, 45–55. [Google Scholar] [CrossRef]
- Tomita, Y. Ryutai Rikigaku Jyosetsu (English Translated Title: Introduction to Fluid Mechanics); Yokendo Co. Ltd.: Tokyo, Japan, 1981. (In Japanese) [Google Scholar]
- Tatsumi, T. Ryutai Rikigaku (English Translated Title: Fluid Mechanics); Baifukan Co., Ltd.: Tokyo, Japan, 1982. (In Japanese) [Google Scholar]
- White, F.M. Viscous Fluid Flow; McGraw-Hill Inc.: New York, NY, USA, 1974. [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Fluid Mechanics; Pergamon Press: Oxford, UK, 1959. [Google Scholar]
- Katsuki, M.; Nakayama, A. Netsuryutai no Suichi Simulation, Kiso Kara Puroguramu Made (English Translated Title: Numerical Simulation of Thermal Flow—From Basics to Programming–); Morikita Publishing Co., Ltd.: Tokyo, Japan, 1990. (In Japanese) [Google Scholar]
- Kadotani, N. Renzokutai Rikigaku (English Translated Title: Mechanics of Continuous Media); Kyoritsu Shuppan Co., Ltd.: Tokyo, Japan, 1969. (In Japanese) [Google Scholar]
- Shimizu, A. Renzokutai Rikigaku no Waho (English Translated Title: Discourse of Continuous Media Mechanics); Morikita Publishing Co., Ltd.: Tokyo, Japan, 2012. (In Japanese) [Google Scholar]
- Rosensweig, R.E. Ferrohydrodynamics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar]
- Landau, L.D.; Lifschitz, E.M. Theory of Elasticity; Sato, T., Translator; Tokyo Tosho Co., Ltd.: Tokyo, Japan, 1972. (In Japanese) [Google Scholar]
- Adachi, C. Bekutoru to Tensoru, (English Translated Title: Vectors and Tensors); Baifukan Co., Ltd.: Tokyo, Japan, 1957. (In Japanese) [Google Scholar]
- Fujita, K. Denjikigaku Note (Kaiteiban) and Zoku Denjikigaku Note (English Translated Title: Notes on Electromagnetism (Revised Edition) and Note on Electromagnetism 2); Corona Publishing Co., Ltd.: Tokyo, Japan, 1971. (In Japanese) [Google Scholar]
- Giedt, W.H. Principles of Engineering Heat Transfer, 1st ed.; D. Van Nostrand Co., Inc.: New York, NY, USA, 1957. [Google Scholar]
- Takeyama, T.; Ohtani, S.; Aihara, T. Dennetsu Kogaku (English Translated Title: Heat Transfer Engineering); Maruzen Co., Ltd.: Tokyo, Japan, 1983. (In Japanese) [Google Scholar]
- Yamamoto, T.; Okubo, M.; Hung, Y.T.; Zhang, R. Advanced Air and Noise Pollution Control; Wang, L.K., Pereira, N.C., Hung, Y.T., Eds.; Humana Press; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Nam, S.-W.; Okubo, M.; Nishiyama, H.; Kamiyama, S. Numerical Analysis of Heat Transfer and Fluid Flow on High-Temperature Jet Including Particles in Plasma Spraying. Trans. Jpn. Soc. Mech. Eng. 1993, 59, 2135–2141. (In Japanese) [Google Scholar] [CrossRef]
- Okubo, M.; Yoshida, K.; Yamamoto, T. Numerical and Experimental Analysis of Nanosecond Pulse Dielectric Barrier Discharge-Induced Nonthermal Plasma for Pollution Control. IEEE Trans. Ind. Appl. 2008, 44, 1410–1417. [Google Scholar] [CrossRef]
- Okubo, M. Air and Water Pollution Control Technologies Using Atmospheric Pressure Low-Temperature Plasma Hybrid Process. J. Plasma Fusion Res. 2008, 84, 121–134. (In Japanese) [Google Scholar]
- Okubo, M. Evolution of Streamer Groups in Nonthermal Plasma. Phys. Plasmas 2015, 22, 123515. [Google Scholar] [CrossRef]
- Kuroki, T.; Tanaka, S.; Okubo, M.; Yamamoto, T. Numerical Investigations for CF4 Decomposition Using RF Low Pressure Plasma. IEEE Trans. Ind. Appl. 2007, 43, 1075–1083. [Google Scholar] [CrossRef]
- Okubo, M.; Okuno, Y.; Kabashima, S.; Yamasaki, H. Numerical Simulation of Discharge Structures in Ar/Cs Plasma Disk MHD Generator. IEEJ Trans. Power Energy 1999, 119, 820–827. (In Japanese) [Google Scholar] [CrossRef]
- CFD-ACE-GUI Modules Manuals (Flow, Heat Transfer, Chemistry, Electric, Plasma Modules); CFD Res. Corp.: Huntsville, AL, USA, 2004.
- Zhang, M.-L.; Li, C.W.; Shen, Y.-M. A 3D Non-Linear k–ε Turbulent Model for Prediction of Flow and Mass Transport in Channel with Vegetation. Appl. Math. Model. 2010, 34, 1021–1031. [Google Scholar] [CrossRef]
- Ségur, P.; Massines, F. The Role of Numerical Modelling to Understand the Behaviour and to Predict the Existence of an Atmospheric Pressure Glow Discharge Controlled by a Dielectric Barrier. In Proceedings of the 13th International Conference on Gas Discharges and their Applications, Glasgow, UK, 3–8 September 2000; pp. 15–24. [Google Scholar]
- NIST (National Institute of Standards and Technology). Atomic Spectra Database. Available online: http://physics.nist.gov/cgi-bin/AtData/main_asd (accessed on 24 January 2023).
- Kolobov, V.I.; Arslanbekov, R.R. Towards Adaptive Kinetic-Fluid Simulations of Weakly Ionized Plasmas. J. Comput. Phys. 2012, 231, 839–869. [Google Scholar] [CrossRef]
- Winands, G.J.J.; Liu, Z.; Pemen, A.J.M.; van Heesch, E.J.M.; Yan, K.; van Veldhuizen, E.M. Temporal Development and Chemical Efficiency of Positive Streamers in a Large Scale Wire-Plate Reactor as a Function of Voltage Waveform Parameters. J. Phys. D Appl. Phys. 2006, 39, 3010–3017. [Google Scholar] [CrossRef]
- Zhang, H.; Mauer, G.; Liu, S.; Liu, M.; Jia, Y.; Li, C.; Li, C.; Vaßen, R. Modeling of the Effect of Carrier Gas Injection on the Laminarity of the Plasma Jet Generated by a Cascaded Spray Gun. Coatings 2022, 12, 1416. [Google Scholar] [CrossRef]
- Xu, C.; Ye, Z.; Xiao, H.; Li, L.; Zhang, J. Numerical Simulation of Temperature Field and Temperature Control of DC Arc Plasma Torch. J. Phys. Conf. Ser. 2021, 2005, 012134. [Google Scholar] [CrossRef]
- Tsai, J.H.; Hsu, C.M.; Hsu, C.C. Numerical Simulation of Downstream Kinetics of an Atmospheric Pressure Nitrogen Plasma Jet Using Laminar, Modified Laminar, and Turbulent Models. Plasma Chem. Plasma Process. 2013, 33, 1121–1135. [Google Scholar] [CrossRef]
- Sun, J.H.; Sun, S.R.; Zhang, L.H.; Wang, H.X. Two-Temperature Chemical Non-Equilibrium Modeling of Argon DC Arc Plasma Torch. Plasma Chem. Plasma Process. 2020, 40, 1383–1400. [Google Scholar] [CrossRef]
- Sun, J.-H.; Sun, S.-R.; Niu, C.; Wang, H.-X. Non-Equilibrium Modeling on the Plasma–Electrode Interaction in an Argon DC Plasma Torch. J. Phys. D Appl. Phys. 2021, 54, 465202. [Google Scholar] [CrossRef]
- Trelles, J.P.; Pfender, E.; Heberlein, J. Multiscale Finite Element Modeling of Arc Dynamics in a DC Plasma Torch. Plasma Chem. Plasma Process. 2006, 26, 557–575. [Google Scholar] [CrossRef]
- Liu, S.H.; Trelles, J.P.; Murphy, A.B.; Li, L.; Zhang, S.L.; Yang, G.J.; Li, C.X.; Li, C.J. Numerical Simulation of the Flow Characteristics inside a Novel Plasma Spray Torch. J. Phys. D Appl. Phys. 2019, 52, 335203. [Google Scholar] [CrossRef]
- Huang, R.; Fukanuma, H.; Uesugi, Y.; Tanaka, Y. Comparisons of Two Models for the Simulation of a DC Arc Plasma Torch. J. Therm. Spray Technol. 2013, 22, 183–191. [Google Scholar] [CrossRef]
- Ramachandran, K.; Marqués, J.L.; Vaßen, R.; Stöver, D. Modelling of Arc Behaviour inside a F4 APS Torch. J. Phys. D Appl. Phys. 2006, 39, 3323–3331. [Google Scholar] [CrossRef]
- Huang, R.; Fukanuma, H.; Uesugi, Y.; Tanaka, Y. Simulation of Arc Root Fluctuation in a DC Non-Transferred Plasma Torch with Three Dimensional Modeling. J. Therm. Spray Technol. 2012, 21, 636–643. [Google Scholar] [CrossRef]
- Alaya, M.; Chazelas, C.; Mariaux, G.; Vardelle, A. Arc-Cathode Coupling in the Modeling of a Conventional DC Plasma Spray Torch. J. Therm. Spray Technol. 2014, 24, 3–10. [Google Scholar] [CrossRef]
- Zhukovskii, R.; Chazelas, C.; Vardelle, A.; Rat, V.; Distler, B. Effect of Electromagnetic Boundary Conditions on Reliability of Plasma Torch Models. J. Therm. Spray Technol. 2020, 29, 894–907. [Google Scholar] [CrossRef]
- El-Hadj, A.A.; Ait-Messaoudene, N. Comparison between Two Turbulence Models and Analysis of the Effect of the Substrate Movement on the Flow Field of a Plasma Jet. Plasma Chem. Plasma Process. 2005, 25, 699–722. [Google Scholar] [CrossRef]
- Cheng, K.; Chen, X.; Wang, H.X.; Pan, W. Modeling Study of Shrouding Gas Effects on a Laminar Argon Plasma Jet Impinging upon a Flat Substrate in Air Surroundings. Thin Solid Films 2006, 506–507, 724–728. [Google Scholar] [CrossRef]
- Pan, W.X.; Meng, X.; Li, G.; Fei, Q.X.; Wu, C.K. Feasibility of Laminar Plasma-Jet Hardening of Cast Iron Surface. Surf. Coat. Technol. 2005, 197, 345–350. [Google Scholar] [CrossRef]
- Liu, S.H.; Trelles, J.P.; Li, C.J.; Guo, H.B.; Li, C.X. Numerical Analysis of the Plasma-Induced Self-Shadowing Effect of Impinging Particles and Phase Transformation in a Novel Long Laminar Plasma Jet. J. Phys. D Appl. Phys. 2020, 53, 375202. [Google Scholar] [CrossRef]
- Boulos, M.I.; Fauchais, P.; Pfender, E. Thermal Plasmas Fundamentals and Applications; Plenum Press: New York, NY, USA, 1994; Volume 1, ISBN 9781489913395. [Google Scholar]
- Chau, S.-W.; Lin, Y.-T.; Chen, S.-H. Decomposition Modeling of Carbon Tetrafluoride with Nitrogen Thermal Plasma. IEEE Trans. Plasma Sci. 2019, 47, 1185. [Google Scholar] [CrossRef]
- Pfender, E. Thermal Plasma Technology: Where Do We Stand and Where Are We Going? Plasma Chem. Plasma Process. 1999, 19, 1–31. [Google Scholar] [CrossRef]
- Chau, S.W.; Hsu, K.L. Modeling Steady Axis-Symmetric Thermal Plasma Flow of Air by a Parallelized Magneto-Hydrodynamic Flow Solver. Comput. Fluids 2011, 45, 109–115. [Google Scholar] [CrossRef]
- Chau, S.-W.; Tai, C.-M.; Chen, S.-H. Nonequilibrium Modeling of Steam Plasma in a Nontransferred Direct-Current Torch. IEEE Trans. Plasma Sci. 2014, 42, 3797–3808. [Google Scholar] [CrossRef]
- Stone, H.L. Iterative Solution of Implicit Approximations of Multidimensional Partial Differential Equations. SIAM J. Numer. Anal. 1968, 5, 530–558. [Google Scholar] [CrossRef]
- Hsu, S.C. Air Plasma Flow Simulation Inside a Non-Transferred Welltype Cathode Direct Current Torch at Different Pressures. Master’s Thesis, Departments of the National Taiwan Institute of Technology, Taipei, Taiwan, 2013. [Google Scholar]
- Sasaki, R.; Fujino, T.; Takana, H.; Kobayashi, H. Theoretical Analysis of Annular Laminar Flows with MHD Interaction Driven by Rotating Co-axial Cylinder. Electron. Commun. Jpn. 2021, 104, 12311, Translated from IEEJ Trans. Power Energy (Denki Gakkai Ronbunshi B) 2021, 141, 280–286. [Google Scholar] [CrossRef]
- Takana, H.; Tanida, A. Development and Fundamental Characteristics of Co-axial MHD Energy Conversion Device. Mech. Eng. J. 2017, 4, 16-00500. [Google Scholar] [CrossRef]
- Tanaka, R.; Kawata, T.; Tsukahara, T. DNS of Taylor-Couette Flow Between Counter-Rotating Cylinders at Small Radius Ratio. Int. J. Adv. Eng. Sci. Appl. Math. 2018, 10, 159–170. [Google Scholar] [CrossRef]
- Kobayashi, H. Large eddy Simulation of Magnetohydrodynamic Turbulent Channel Flows with Local Subgrid-Scale Model Based on Coherent Structures. Phys. Fluids 2006, 18, 045107. [Google Scholar] [CrossRef]
- Kobayashi, H. Large Eddy Simulation of Magnetohydrodynamic Turbulent Duct Flows. Phys. Fluids 2008, 20, 015102. [Google Scholar] [CrossRef]
- Tanaka, Y. Two-Temperature Chemically Non-Equilibrium Modelling of High-Power Ar-N2 Inductively Coupled Plasmas at Atmospheric Pressure. J. Phys. D Appl. Phys. 2004, 37, 1190–1205. [Google Scholar] [CrossRef]
- Tochikubo, F.; Uchida, S. Modeling of Atmospheric Pressure Nonthermal Plasma for Engineering Design. OYO Butsuri 2005, 74, 1081–1086. (In Japanese) [Google Scholar]
- Golubovskii, Y.B.; Maiorov, V.A.; Behnke, J.F.; Tepper, J.; Lindmayer, M. Study of the Homogeneous Glow-Like Discharge in Nitrogen at Atmospheric Pressure. J. Phys. D Appl. Phys. 2004, 37, 1346–1356. [Google Scholar] [CrossRef]
- Pancheshnyi, S.V.; Starikovskii, A.Y. Two-Dimensional Numerical Modelling of the Cathode-Directed Streamer Development in a Long Gap at High Voltage. J. Phys. D Appl. Phys. 2003, 36, 2683–2691. [Google Scholar] [CrossRef]
- Sato, T.; Ito, D.; Nishiyama, H. Reactive Flow Analysis of Nonthermal Plasma in a Cylindrical Reactor. IEEE Trans. Ind. Appl. 2005, 41, 900–905. [Google Scholar] [CrossRef]
AC Voltage frequency, MHz | 2 | |
Atmospheric temperature, K | 293 | |
Absolute pressure, Pa | 80 | |
Power, kW | 2.0 | |
Mass flow rate of gas, g/s | 0.02107 | |
Initial mass fraction of species | CF4 | 0.5789 |
O2 | 0.42105 |
Working gas | Ar/Cs |
Stagnation temperature, K | 2480–2520 |
Stagnation pressure, MPa | 0.14 |
Seed fraction | (3.9–12.0) × 10−4 |
Ext. load resistance RL0, Ω | 10 |
Ext. load resistance RL, Ω | 0.075–0.215 |
Area ratio of channel | 4.2 |
Magnetic flux density, T | 2.7 (r = 82.5 mm) 0.39 (r = 270 mm) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okubo, M. Fundamentals and Applications of Nonthermal Plasma Fluid Flows: A Review. Plasma 2023, 6, 277-307. https://doi.org/10.3390/plasma6020020
Okubo M. Fundamentals and Applications of Nonthermal Plasma Fluid Flows: A Review. Plasma. 2023; 6(2):277-307. https://doi.org/10.3390/plasma6020020
Chicago/Turabian StyleOkubo, Masaaki. 2023. "Fundamentals and Applications of Nonthermal Plasma Fluid Flows: A Review" Plasma 6, no. 2: 277-307. https://doi.org/10.3390/plasma6020020
APA StyleOkubo, M. (2023). Fundamentals and Applications of Nonthermal Plasma Fluid Flows: A Review. Plasma, 6(2), 277-307. https://doi.org/10.3390/plasma6020020