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Abstract: As it turns out, both isotope scaling and density limits are phenomena closely linked to fluid
closure. The necessity to include ion viscosity arises for both phenomena. Thus, we have added ion
viscosity to our model. The experimental isotope scaling has been successfully recovered in our fluid
model through parameter scans. Although ion viscosity typically exerts a small effect, the density
limit is manifested by increasing the density by approximately tenfold from the typical experimental
density. In our case, this increase originates from the density in the Cyclone base case. Notably, these
phenomena would not manifest with a gyro-Landau fluid closure. The isotope scaling is nullified
by the addition of a gyro-Landau term, while the density limit results from permitting ion viscosity
to become comparable to the gyro-Landau term. The mechanism of zonal flows, demonstrated
analytically for the Dimits upshift, yields insights into the isotope scaling observed in experiments.
In our approach, ion viscosity is introduced in place of the Landau fluid resonances found in some
fluid models. This implies that the mechanism of isotope scaling operates at the level of fluid closure
in connection with the generation of zonal flows. The strength of zonal flows in our model has
been verified, particularly in connection with the successful simulation of the nonlinear Dimits
shift. Consequently, a role is played by our approach in the temperature perturbation part of the
Reynolds stress.

Keywords: isotope scaling; density limit; turbulence and transport modeling; magnetic confinement;
resonance broadening; tokamaks

1. Introduction

The general problem of tokamak transport has been one of the main issues in fusion
research for a long time [1–51]. However, the specific mechanism behind isotope scaling
remains undetermined [1–4]. Similarly, the underlying reason for the density limit has
not been clearly understood [11,36,51]. Several other papers [38–43] address the density
limit. It is commonly associated with increased turbulent transport and collisions, which
is also true in our transport model. In some cases (Gates et al. Ref. [40]), the coupling to
magnetic perturbations is emphasized. Of course, magnetic field perturbations increase
with the turbulence level in our model as well, but we do not see a causal relationship here.
However, our model for the L–H transition [28], without ion viscosity, is electromagnetic
and agrees very well with the model in Ref. [31]. The density limit in Ref. [31] is associated
with collisions (as in our model) and was also discussed by Giacomin et al. Since we obtain
the density limit by including ion viscosity, we are consistent with Ref. [31]. In the paper by
Giacomin et al., it is also mentioned that the pressure length scale can become significant
across the minor radius, as seen in the case of MARFEs (multifaceted asymmetric radiation
from the edge).

In this study, we connect both isotopic scaling and density limit phenomena to fluid
closure, a mechanism that must also be present in kinetic formulations [10], though it
is not always prominently emphasized. In tokamak plasma modeling, fluid closure is a
necessary step to simplify the system of equations describing plasma dynamics. “Fluid
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closure” refers to the fact that fluid models use a finite number of moments (e.g., density,
temperature), whereas kinetic theory includes infinitely high moments. Different fluid
models handle this limitation using various approaches. One aspect that appears to be
important is the effects of classical dissipation [1,3]. As shown numerically in Ref. [6]
and analytically in Ref. [7], using the reductive perturbation method [8], the Landau fluid
resonance [14] changes the nonlinear Dimits upshift [10] strongly. The Dimits shift refers to
a phenomenon observed in plasma turbulence simulations, particularly in the context of
ion-temperature-gradient (ITG) driven turbulence. It describes a delay or shift in the onset
of strong turbulent transport to higher values of the normalized temperature gradient than
predicted by linear instability analysis. Kinetic Cyclone simulations demonstrated stability
up to about 50% above the linear threshold, a result attributed to nonlinearly generated
zonal flows [6,7]. This upward shift in the threshold has been termed the Dimits upshift.
Our fluid model results, in agreement with the kinetic Dimits shift [6,7], show that we have
the correct strength of zonal flows. This means that the inverse turbulent cascade [16] is
damped out so that there is no pileup of waves at the system size (geometrical size). This
also verifies the choice of absorbing boundary for long wavelengths, as used in Ref. [17]. It
is intriguing to compare our findings with the resistive drift wave fluid model presented
in [9]. In particular, the work in Ref. [18] yielded a kernel transport coefficient that has the
same form as the one derived in our study. By ‘kernel’, we refer to a simplified approach
in which only the diagonal elements of the transport matrix are retained. These diagonal
elements describe direct transport, such as particle flux driven by a density gradient or
heat flux driven by a temperature gradient. Here, we refer to the transport matrix for all
transport channels related to moments with sources in the experiment, such as density,
momentum, temperature, and others. The term ‘moments’ refers to quantities derived
from the distribution function of particles in phase space, as used in kinetic theory. In
plasma models, the distribution function describes the behavior of particles (such as ions
or electrons), and taking ‘moments’ of this function provides macroscopic quantities like
density, momentum, energy, and higher-order quantities like heat flux.

The Cyclone Base Case (CBC) referred to above is a widely used benchmark for
studying plasma turbulence and transport in tokamaks. It was developed to facilitate
comparisons between different simulation codes and their ability to model turbulent
transport in magnetically confined plasmas. The CBC provides a standardized test case for
simulating ITG-driven turbulence, which is a key driver of transport in tokamak plasmas.
Our current approach connects to the Cyclone project conducted in the late 1990s, as
published in [10]. The primary motivation for this work was the significant discrepancies in
ITER predictions (based on the old ITER design) produced by various fluid models. In the
Cyclone project, the ion thermal conductivity for different fluid models was compared to
fully nonlinear kinetic models as a function of the temperature gradient. Simulations were
conducted over relatively short time scales, up to the point where turbulence saturation
occurred. Notably, the differences in ITER predictions produced by the fluid models
mirrored their performance in actual experiments from that era, such as DIII-D shot 89499.

In this work, both analytical and numerical methods are used. However, ion viscosity
is typically at least an order of magnitude smaller than the Landau fluid resonance [14]
and can thus be incorporated into our general approach to fluid closure. As it turns
out, usually edge data give a stronger isotope effect (about 20% difference in transport
between hydrogen and tritium). A lower temperature at the edge leads to an increase
in ion viscosity. Thus, we also have an interest in the L–H transition [28,31–33] which is
also due to zonal flows. Actually, our fluid model did very well in comparison with local
transport simulations as made in Ref. [31]. Our model, as shown in [28], demonstrated
good agreement with [31], which, in turn, showed reasonable agreement with Alcator
C-Mod results [32]. It was observed that the L–H power threshold increases with ion
temperature at the separatrix and with the magnetic field, as also seen in Alcator C-Mod.
These findings are influenced by the generation of zonal flows, which are dependent on
the fluid closure used. Although our simulations were originally set up for EAST [28],
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we were able to investigate the same parameter regimes used in Refs. [31,32] for Alcator
C-Mod. This allowed us to construct a stability diagram in the magnetohydrodynamic
(MHD) parameter α and a corresponding diamagnetic resistive parameter αD, showing
good agreement. This type of diagram was suggested in [31]. Our analysis indicates that
higher density contributes to instability. As found in Refs. [18,29], a quasilinear approach
is quite adequate for studying drift wave turbulence, and in Ref. [29], a fluid approach
was found to be accurate. Our scaling of temperature at the separatrix with the magnetic
field and the power threshold were also consistent with those reported in Ref. [33]. Thus,
we have secured the validity of our simulation of the L–H transition [28,44]. All our new
findings are related to the excitation of zonal flows and the associated fluid closure aspects.
This connects to our previous work on fast particles [12], where resonance broadening
was shown to be important for both fast particle instabilities and drift waves, eliminating
wave–particle resonances in the latter case. The foundation of this research lies in our drift
wave fluid model [17] (usually referred to as the Weiland model), which still serves as a
valid limit of the current model. The motivation behind implementing fluid closure was to
incorporate all moments with sources observed in the experiment.

The broadening here refers to the loss of precise wave–particle resonance due to non-
linear frequency shifts induced by turbulence, which weakens or averages out dissipative
mechanisms like Landau damping and magnetic drift resonances. The first reference to the
use of this term appears in [13], p. 154. Resonance broadening is associated with nonlinear
friction in the Fokker–Planck equation for turbulent collisions. It results in nonlinear fre-
quency shifts that move (broaden) the resonance, causing the phase velocity of waves to
shift out of resonance with particles. If no source exists in velocity space to counterbalance
this effect (as in the case of fast particle instabilities), the resonance can vanish entirely.
The model by Mattor and Parker [26], extended by Holod et al. [50], corresponds to the
coherent limit of resonance broadening. In this context, nonlinear frequency shifts also
cause waves to move out of resonance with particles.

This transport model still has the same normalization as in Ref. [17]. It has never
been fitted to any other theoretical model or experiment, yet it consistently yields good
agreement with conventional (JET, EAST, KSTAR, and DIII-D) and low aspect ratio tokamak
(NSTX) plasma profiles [45–47].

As is clear from this introduction, zonal flows play an important role in tokamak
transport. We here mention three more papers in this field [20–22]. However, none of
these include resonance broadening [23,24], which is now the main argument for our fluid
closure [12]. Contrary to flattening, which means that particles move out of resonance with
waves, resonance broadening means that waves move out of resonance with particles.

The manuscript is structured as follows: Section 2 discusses the inclusion of all mo-
ments with sources in the experimental closure approach and the impact of resonance
broadening on the fluid model. It concludes that resonance broadening has a stabilizing
influence on fast particle instabilities and validates the reactive closure for drift waves,
allowing the use of Braginskii’s highest moment for successful modeling. Section 3 out-
lines the original motivation behind a fluid closure, driven by the aim to encompass all
moments with sources and justified by a nonlinear Fokker–Planck equation. It further
discusses the implications of the Fokker–Planck equation in understanding turbulence
and resonance broadening effects in wave–particle interactions. In Section 4, we explore
the incorporation of ion viscosity, emphasize the pivotal role of zonal flows generated by
Reynolds stress—specifically, in the form of off-diagonal poloidal momentum flux—and
stress the critical consideration of averaged resonances for accurate predictions. Section 5
highlights the relevance of edge data for understanding the H-mode barrier, presenting ion
thermal diffusivity against normalized temperature gradients. The observed isotope mass
effect leads to a confinement time scaling in agreement with experimental results, along
with a global scaling involving heating power. Section 6 explores the strong dependence
on system size and the density limit, highlighting the impact of gyro-Landau resonances
on rotation dynamics. The interplay with E × B convection is elucidated, emphasizing the
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need for strong zonal flows to avoid wave pileup and reflections, particularly in finite radial
systems. The discussion encompasses stabilizing nonlinearity, showcasing its critical role in
preventing an inverse cascade towards longer wavelengths. The importance of such consid-
erations is underscored in reactive systems, as demonstrated in previous works. Section 7
delves into successful applications of the transport model, focusing on isotope scaling and
the density limit while acknowledging challenges in the latter. The discussion underlines
the importance of ion temperature perturbation resonance in turbulence-rotation balance
and tokamak transport dynamics.

2. Fluid Model

The original approach to our fluid closure was to include all moments with sources in
the experiment [17], the reason being that moments without sources would die out on the
transport time scale. An important mechanism turned out to be resonance broadening [19].
This was applied to our model, with the conclusion that we would obtain a reactive closure
with a diagonal part of the same type as in our fluid model [23]. We found that turbulent
collisions have the same effect on a fluid description as classical collisions. A generalization
to include fast particles verified both the stabilizing trend of resonance broadening on fast
particle instabilities [12] and our previous result that our closure is valid for drift waves.
Since resonance broadening only shows that we have a reactive closure, we again employed
our original rule for the exact point of closure [52]. This closure means that we can take the
highest moment at the Braginskii q∗ (refers to the collisionless cross-field, or Righi–Leduc
ion heat flux, as presented in most of our papers, particularly in [34], Equation (6.137)), and
this has been extremely successful in previous studies in cases where the ion viscosity could
be ignored. The highest moment typically incorporated in Braginskii’s model is the third
moment, which accounts for heat flux. This is particularly significant in collisional plasmas,
where higher-order effects beyond simple diffusion become important in describing energy
transport. By incorporating the macroscopic quantities (density, momentum, energy, and
heat flux), we can more accurately capture the essential transport processes in the plasma.
Resonance broadening means that nonlinear frequency shifts change the phase velocity of
waves in such a way that waves move out of resonance with particles when we average over
turbulent fluctuations. Thus, dissipative wave–particle resonances like Landau damping
and magnetic drift resonances are averaged out. Of course, this will be true for all processes,
so we can also use the Braginskii derivation for ion viscosity ([13] Equation (1.8)).

3. Formulation

The original motivation for our fluid closure was to include all moments with sources
in the experiment. The elimination of higher moments was then motivated by a nonlinear
Fokker–Planck equation. The Fokker–Planck equation for turbulent collisions [12,23] can
be written as(

∂

∂t
+ v · ∂

∂r

)
W(X, X′, t, t′) =

∂

∂v

[
βv + Ci + Dν ∂

∂v

]
W(X, X′, t, t′) + Sv. (1)

β = ∑
j

β j|ϕj|2 (2a)

Dν = ∑
j

dj|ϕj|2. (2b)

The index j represents the different wave modes that contribute to the total coefficients
(β) and (Dν), with each mode contributing according to its squared amplitude (|ϕj|2). We
are here interested in drift waves, so we take Sv = ⟨Sv⟩ = 0. In the given context, W
represents the transition probability between states X and X′ over the time interval t − t′.
The terms β, Ci, Dν, and ϕ denote the nonlinear turbulent friction, classical friction term
due to ion-ion collisions, nonlinear diffusion coefficient in velocity space, and electrostatic
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potential, respectively. The Fokker–Planck equation leads to the mean square of velocity
deviation (velocity dispersion) developing as [23]

⟨△v2⟩ = Dν

β
(1 − e−βt). (3)

This quantity measures the average deviation of particle velocities from their mean
due to turbulent collisions over time. It helps in understanding the intensity and impact of
turbulence on plasma behavior and illustrates how particles spread over time. A simplified
derivation of Equation (3) was given in Ref. [34], Chapter 9, where the Chandrasekhar
solution [53] of Equation (1) without viscosity was used as a weight function. Now, the
classical collision term just gives the usual classical viscosity, so we will recover Equation (4)
since Equation (3) means that we have a reactive closure as discussed in Section 4.

The Fokker–Planck equation can also be applied to fast particles if we add a fast
particle source, and then we can recover equations for both fast particles and drift waves
within appropriate limits [12]. In both cases, resonance broadening [19,23] reduces the
wave–particle interaction. As it turns out, the resonance broadening is due to nonlinear
frequency shifts, which would also remain in the coherent limit [26,27].

A solution for coherent explosive instability with a nonlinear frequency shift (Figure 1)
was shown already in our book [24]. Similar to our recent work [48], we can explore the co-
herent three-wave interaction regime as also studied in Refs. [13,54] for drift waves [26,27].

Figure 1. This figure exhibits similarity to the suppression of explosive instability by a nonlinear
frequency shift [27]. Reproduced from [I. Holod, J. Weiland, and A. Zagorodny Physics of Plasmas 9,
1217 (2002)], with the permission of AIP Publishing.

The coherent, unstable three-wave system is stabilized by nonlinear frequency shifts.
These work as if the sign of the wave energy is shifted, thus we have alternatively Landau
growth and damping. This is the way the effect of waves-particles [23] interaction is
averaged out, leading to the absence of energy transfer between waves and particles, as
shown by Equation (3) in the turbulent case.

In summary, this section motivates the use of a fluid closure approach, which utilizes
a nonlinear Fokker–Planck equation to include all experimental moments and eliminate
higher moments. The equation accounts for nonlinear turbulent friction, classical collision
friction, and nonlinear diffusion, and can be extended to fast particles and drift waves,
leading to resonance broadening and balanced wave–particle interactions. This approach
provides a comprehensive framework for understanding turbulent collision dynamics and
wave–particle interactions. By incorporating nonlinear effects, it offers a more accurate and
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robust description of plasma behavior, enabling better predictions and insights in various
plasma physics applications.

4. Exploring Ion Viscosity Effects in Drift Wave Turbulence

In order to study isotope scaling, we add ion viscosity to our usual derivation.

3
2

ni

(
∂

∂t
+ vi · ∇

)
Ti + Pi∇ · vi = −∇ · q∗i + iνii, (4)

As discussed after Equation (3), the model can use ion viscosity from Braginskii’s
equations directly. Turbulent viscosity behaves like nonlinear friction (see Ref. [23]) and
can be included without changing the model’s final results, where ion viscosity

νii = νee

(
Te

Ti

)3/2
(

me

mi
)0.5 1

A0.5 , (5)

where A is the isotope mass number and νee is the electron–electron collision frequency.
Our viscosity, however, has been taken from Ref. [13], Equation (1.8). This gives the scaling
T−3/2

i n/A0.5 for the viscosity. Thus, we see that viscosity is smaller for heavier isotopes
(favorable scaling) and larger for higher density (unfavorable scaling). Equation (5) leads
to the ion temperature perturbation

δTi

Ti
=

ω

ω − 5ωDi/3 + iνii

[
2
3

δni

n
+

ω∗e

ω
(ηi −

2
3
)

eϕ

Te

]
. (6)

Note, that the viscosity term enters at the fluid resonance in the ion energy equation,
the most sensitive point in our fluid modeling. This sensitivity is the main improvement
in our model. Here, ni is the ion density, vi is the ion flow velocity, q∗i is the diamagnetic
ion heat flow, Te(Ti) is the electron (ion) temperature, e is the electron charge, mi is the ion
mass, me is the electron mass, ϵ0 is the permittivity of free space, ω = ωr + iγ, where ωr
is the real frequency and γ is the mode’s growth rate, ωDi is the magnetic drift frequency,
ω∗e is the electron diamagnetic drift frequency, and ηi is the ratio of the ion temperature
gradient to ion density gradient. It is important to recall that in our usual reactive limit, the
linear threshold of Ion Temperature Gradient (ITG) modes appears exactly at the resonance
in Equation (6). As it turns out, zonal flows play important roles in both Dimits shifts, the
L–H transition, isotope scaling, and finally the density limit. Zonal flows are generated by
the Reynolds stress.

We note that Equations (4)–(6) are a generalization of our fluid closure, where the
principle is to omit dissipative kinetic resonances, keeping only moments with sources in
the experiment. This can be motivated by resonance broadening, as explained in Ref. [12].
Resonance broadening and profile flattening are parallel phenomena that both remove
wave particle resonances, although resonance broadening is strongly nonlinear. If you
have a particle source that injects particles into the resonant region in phase space, it can
balance the flattening so that the resonance survives. The same thing can happen with
resonance broadening. Here, we have the source of fast particles, which can balance the
resonance broadening so that the resonance remains. In this case, it is the question of
waves moving out of resonance with particles. However, as we clarify in our paper on
fast particles [12], drift waves lack a source because their frequency is approximately two
orders of magnitude lower than the source’s, leading to the averaging of the source. Then,
only resonance broadening remains, and the wave particle resonance is cancelled. We have
shown this in Ref. [23], and our paper on fast particles [12] just uses this.

Γp = ⟨VErVθ⟩ = −1
2

D2
Bkrkθ ϕ̂∗

[
ϕ̂ +

1
τ

P̂i

]
+ c.c, (7)

In the expression, Γp represents the off-diagonal poloidal momentum flux, VEr denotes
the radial component of the E × B drift, Vθ signifies the poloidal flow velocity, DB is defined
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as ρscs where cs represents the sound speed, kθ stands for the poloidal wavenumber,
ϕ̂ is defined as eϕ/Te, and normalized ion pressure, and P̂i is calculated as δPi/Pi. In
Equation (7), it is noteworthy to observe the dependence on ion temperature through ion
pressure (Pi). This dependence is highly sensitive to the fluid closure, as indicated by
Equation (6). Here, the last part, the E × B convection of the diamagnetic flow, is often
ignored but is, in fact, the most important part. In the Equation (7), “c.c.” denotes the
complex conjugate. This means that the complex conjugate of the preceding expression
must be added to ensure the result is real, as physical quantities such as fluxes are required
to be real-valued.

In the absence of viscosity, marginal stability for the reactive system enters at the
resonance in Equation (6). Because of the resonance, we obtain a particularly strong drive
of rotation here (see Figure 2). We have used the data from the Cyclone project, specifically:
ne = 4.5 × 1019 m−3, R = 2.5 m, T = 2.0 keV, a = 0.63 m, q = 1.4, s = 0.78, B = 2.0 T. The
data are considered at half the radius. Although ion viscosity is usually small, it can still
be of importance here, and it turns out to generate the isotope scaling. We recall from
Ref. [7] that the resonance in Equation (6) is completely smeared out by gyro-Landau fluid
resonances, giving a significantly smaller rotation. We note that gyro-Landau resonances
are averaged out by resonance broadening and are, without this averaging, typically an
order of magnitude larger than ion viscosity but added in the same place. We may here
add that nonlinear flattening means that particles move out of resonance with waves,
while resonance broadening means that waves are moving out of resonance with particles.
Thus, there is no way that we could obtain the isotope scaling if we kept the unaveraged
gyro-Landau resonances.

In summary, this section examines the impact of ion viscosity on drift wave turbulence
and isotope scaling, utilizing Braginskii’s formulation for ion viscosity and noting that
turbulent viscosity behaves similarly to nonlinear friction. The derived equations illustrate
the effect of ion viscosity on ion temperature perturbations and validate the fluid closure
approach. The study highlights the importance of zonal flows and resonance broadening
in achieving isotope scaling and maintaining plasma stability.

Figure 2. (a) Normalized growth rate and normalized flow shear (b) transport (ion thermal diffusivity)
are derived for Cyclone parameters (ne = 4.5 × 1019m−3, R = 2.5 m, T = 2.0 keV, a = 0.63 m, q = 1.4,
s = 0.78, B = 2.0 T) based on the findings in Ref. [7], incorporating ion viscosity corresponding
to hydrogen in Equation (6). The data is considered at half the radius. The strong flow shear at
marginal stability arises from the fluid resonance described in Equation (6). Waves with wavelengths
approaching the system size will inevitably reach marginal stability at some point, leading to strong
damping. Consequently, transport is heavily influenced by the fluid closure. The reactive closure
results from the detuning of wave–particle resonances due to resonance broadening or nonlinear
frequency shifts.

5. Isotope Effects on Transport and Confinement: Edge Considerations and
Predictive Comparison

As pointed out above, edge data are relevant since the transport flux has to pass the
edge. Since the H-mode barrier depends on the same type of zonal flows as the Dimits
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shift, ion thermal diffusivity as a function of the normalized temperature gradient is shown
for the parameters relevant to the plasma edge in Figure 3. Figure 3 directly continues from
Figure 2. We are extending the results of Ref. [7] by including ion viscosity.

Figure 3. Transport as a function of normalized ion temperature gradients for both hydrogen and
tritium shows a decrease in transport with a higher isotope mass. These results are obtained by
adding ion viscosity to the calculations conducted in Ref. [7]. The data here is considered at the edge,
where sharper gradients are present.

It is known that the pedestal can be close to force balance, but the L–H transition
process involves the creation of zonal flows via poloidal rotation. This allows the use of
analytic results from Ref. [7] to determine transport calculations. When switching from the
use of hydrogen to tritium, a 6% drop in transport is noted in typical edge data.

Using data from our local code and from Figure 3, the scaling leads to the confinement
time (τE) scaling with isotope mass (A),

τE = A0.2. (8)

This result agrees with the experimental result in Ref. [36]. We also recall our result
for global scaling with heating power (P) [37] and is also largely consistent with [11].
Additionally, it is important to note the strong FLR stabilization for large gradients (see,
e.g., Ref. [34], Equation 6.161).

In summary, these results may be stated as follows:

τE ∼ P−0.67 A0.2. (9)

Now, using our predictive code for ITER simulations of hydrogen and tritium, we
instead obtain:

τE ∼ A0.5. (10)

This result was obtained by comparing runs with different isotopes at different tem-
peratures assuming that τE scales as T−2/3. The ITER simulations, focusing on ELMY
H-mode discharges and employing the Weiland [17,49] and NCLASS [50] neoclassical
models for predictive simulation, are shown in Figure 4. The simulations initiate with
prescribed sources and an assumed L-mode profile, progressing to the temperature of the
L–H transition and pedestal. We do not make any assumptions about the occurrence of an
L–H transition or the specific locations of barriers to temperature [44]. We note that these
calculations are rather sensitive since we are close to a pole in the fluid equations. Thus, we
expect that the difference in these energy confinement scalings (c.f. Ref. [4]) can be due to
impurities in the ITER simulations, where Zeff = 1.65. We did not include impurities in the
local code.
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Figure 4. The ion temperature is depicted by the full line before and after the L–H transition in a
simulation of ITER, utilizing the Weiland fluid model along with the neoclassical module. This is a
global simulation showing the central ion temperature: Te ∼ 20.0 keV and the H-mode barrier.

In summary, this section examines isotope effects on transport and confinement at
the plasma edge. It highlights the importance of edge data, as transport flux must pass
through the edge, and shows that the H-mode barrier depends on zonal flows. Ion thermal
diffusivity decreases with higher isotope mass. The L–H transition, driven by poloidal
rotation, enables the use of analytic transport calculations. A switch from hydrogen to
tritium results in a 6% reduction in transport, with confinement time (τE) scaling as A0.2,
consistent with experimental data. However, ITER simulations predict a different scaling
of τE = A0.5, possibly due to impurities not accounted for in local code simulations. The
sensitivity of these calculations is noted, particularly near poles in the fluid equations.

6. Density Limit and System Size Dependence: Insights from Gyro-Landau Resonances
and E-Cross-B Convection

We now recall from Ref. [7] that there is hardly any rotation if we include the unaver-
aged gyro-Landau resonances. Then, we obtain a much weaker zonal flow, which could
hardly absorb the inverse turbulent cascade. Then, we obtain a pileup of waves at the
system size, leading to very strong transport, which is in accordance with the density limit
Equation (11). Now, we know that the gyro-Landau resonances are typically about an
order of magnitude larger than the ion viscosity. However, ion viscosity will increase with
density, so if we increase density by about a factor 10, we reach a density limit [38].

nG =
Ip

πa2 , (11)

where Ip is the plasma current, and a is the minor radius. Here, we are focusing on processes
that may limit the density at the plasma edge, although the average density across the entire
plasma volume may well exceed this limit. Our first observation is the strong dependence
on the system size, meaning a strong potential dependence on perturbations with radial
scale length approaching the system size. Now, the stabilization of an instability due to
E × B convection is written:

γδT = vE · ∇δT. (12)

leading to
eδϕ

Te
=

γ

ω∗e

1
kxLn

, (13)

where kx is the radial wavenumber and Ln is the density gradient scale length. Note, that
in Equation (13), the diamagnetic drift accounts only for the density gradient. Thus, the
density gradient is canceled (see, e.g., Ref. [34]). The saturation level in Equation (13) is
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in agreement with typical experiments and is used both by us and in other works. A very
critical point is whether the nonlinearity in Equation (12) is entirely stabilizing. This is only
the case if we are looking at the correlation length (corresponding to the mode number with
the largest growth rate as normalized by the drift frequency) and if there are no reflections
in k-space. This may be critical for the inverse cascade, leading to cascade towards longer
wavelengths, i.e., towards the system size. Clearly, it is very important to take into account
that we are here looking at systems with a finite radial size. To avoid obtaining a pileup
in waves at the system size with reflections, we need strong zonal flows that absorb the
inverse cascade. This is usually only available in reactive systems, as seen in Ref. [18] for
only density transport and in Ref. [17] using our reactive fluid closure. We note that in both
cases, we obtain a transport kernel of the type

D =
γ3/k2

x
ω2

r + γ2 . (14)

In Ref. [18], we have an exact fluid closure by taking a zero-ion temperature, while
in our case, we have no kinetic dissipation because of resonance broadening [7,13]. In
our case Equation (12) is applied to ion temperature. In our derivation, we also included
pinch terms from a full quasilinear procedure [17]. The quasilinear approach was found
in Ref. [29] to be valid within a few percent in the fluid case. We now recall that if the
ion density is increased by about a factor of 100, the ion viscosity in Equation (6) becomes
comparable to an unnormalized gyro-Landau resonance that was, in fact, displayed in
Ref. [7]. The result for the rotation was similar to in Figure 5 below, where the density was
only increased by a factor of 10 above the Cyclone case. The result of the Cyclone work was
an increase of up to a factor 3 in thermal conductivity for an unnormalized gyro-Landau
fluid model. However, recent gyro-Landau fluid models have been normalized to the
nonlinear gyrokinetic code [11].

Figure 5. (a) Normalized growth rates and normalized flow shear (b) transport (ion thermal dif-
fusivity) illustrate similar variations as seen in Figure 2. Both the rotation and Dimits shift exhibit
a decreasing trend, consistent with the observations in Ref. [7] for the gyro-Landau fluid model.
This particular case corresponds to a density of 4.5 × 1020 m−3. It illustrates how thermal diffusivity
increases with higher density. The exact density limit depends on when zonal flows become too weak
to absorb the inward inverse turbulent cascade.

Consequently, if the density is increased by approximately ten times compared to the
density investigated in the Cyclone work [10], it is expected that there will be an increase
in thermal transport, a decrease in flow shear, and the disappearance of the Dimits shift.
The increase in transport may be associated with a weakening of the H-mode barrier and
the emergence of significant turbulence structures, such as MARFEs, which are sometimes
observed in experimental studies near the density limit. However, MARFEs can also exist
during H-mode without necessarily causing the density limit. Due to the normally larger
sizes of MHD modes compared to drift waves, it is anticipated that MHD ballooning,
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kinetic ballooning modes, resistive ballooning modes, and peeling modes may also be
present near the edge.

This section explores the density limit and system size dependence in plasma transport,
focusing on gyro-Landau resonances and E × B convection. Including unaveraged gyro-
Landau resonances results in weaker zonal flows, leading to increased transport and
aligning with the density limit equation. Gyro-Landau resonances are significantly larger
than ion viscosity, but ion viscosity increases with density, reaching the density limit
when density is increased by about a factor of ten. Stabilization of instabilities due to
E × B convection is crucial, with saturation levels matching experimental observation [31].
Strong zonal flows are necessary to prevent wave pileup at system size, which is typically
available in reactive systems. Increasing the ion density gradient significantly raises thermal
transport, potentially breaking the H-mode barrier and causing substantial turbulence
structures, similar to those seen in experiments at the density limit.

7. Summary

In this work, we have achieved two additional successful applications of our transport
model: isotope scaling and the density limit. Regarding isotope scaling, we believe it fits
perfectly [11]. However, for the density limit [38,39], the evidence is less accurate. We
investigated increasing the density in our model and found that exceeding the edge density
limit significantly would be required to reach the gyro-Landau limit, which gives viscosity
comparable to the gyro-Landau resonance. In comparison, the Greenwald limit can be
exceeded by a factor of two when pellet injection (PI) is used, but exceeding the density
limit in our case would need even greater increases. We also discuss the implications
of encountering MARFEs and ballooning instability in this scenario. MARFEs are very
large-scale structures and can, therefore, be torn apart by zonal flows.

We recall the derivation and development of our fluid model, first established in
1988 using theory and simulations with an absorbing boundary for long wavelengths.
The original model remains valid within the appropriate limit. The motivation for the
absorbing boundary for long wavelengths is now supported by the damping of zonal flows.
This first-principles model is not tailored to any other theoretical model or experiment. A
notable extension of the model includes the incorporation of fast particles, and applying
resonance broadening for fast particle modes—an aspect utilized by other research groups.

From a broader perspective, transport in tokamaks is observed to be governed by a
delicate balance between turbulence and rotation. In our model, similar to any fluid model,
both turbulence and rotation (resulting from turbulence) originate at the resonance in the
ion temperature perturbation. This resonance defines the linear threshold of the ITG and
acts as the primary source of rotation. We assert that this interplay fundamentally controls
transport. Given that both our isotope scaling and density limit rely predominantly on this
resonance, we consider them fundamental. While acknowledging the existence of several
other mechanisms contributing to both isotope scaling and density limits, we maintain
confidence in the fundamentality of our proposed mechanisms. This confidence arises
from their close relation to our fluid closure, previously shown to give excellent agree-
ment [11,31,34,37,45–47] with experiment and from their integral role in overall transport
control, leading us to expect their dominance.
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