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Abstract: This work explores the polymerization of sodium 4-styrenesulfonate (NaSS) inside filter
paper using dielectric barrier discharge (DBD) plasma and its application in the environmental field.
The plasma-based technique, performed under mild conditions, solves common problems associ-
ated with conventional polymerization inside porous materials. The polymerization process was
monitored using Fourier-transform infrared (FTIR) spectroscopy, which confirmed the consumption
of double bonds, particularly in NaSS samples containing the optimal concentration of crosslinker
divinyl benzene (DVB) (0.25% wt). Our work demonstrates the effectiveness and promise of DBD
plasma as a substitute polymerization approach, especially for those in porous materials.
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1. Introduction

Dielectric barrier discharge (DBD) plasma is a type of electrical discharge that occurs
between two electrodes separated by an insulating dielectric barrier. This methodology is
particularly effective in producing non-thermal plasmas, which can be generated under
atmospheric pressure [1]. The dielectric barrier is a solid material that can prevent the
formation of a continuous arc discharge and promote the creation of micro discharges [2].
Unlike thermal plasmas, DBD plasma works at low temperatures, making it a suitable
device for applications involving heat-sensitive materials [3]. DBD plasma is cost-effective
compared to other types of plasma because it does not require expensive vacuum systems
since it can be generated under ambient conditions [4].

The high-energy electrons in DBD plasma can initiate various chemical reactions while
keeping the bulk gas at low temperatures, making it an efficient tool for numerous appli-
cations. DBD plasma finds use across various fields, including industry, environmental
science, and biotechnology. It is widely used for ozone generation in water treatment, air
purification, and pollution control, particularly for removing volatile organic compounds
(VOCs) [5]. Industrial uses include food packaging, medical equipment sterilization, and
the synthesis of chemicals such as nanoparticles. For example, DBD plasma has been used
to modify mesoporous silica nanoparticles (MSNs) to create a dual pH and temperature-
responsive drug delivery system [6]. Additionally, it has been employed in energy-efficient
polymerization processes, such as those involving acrylic acid [7], polyaniline [8], and
solid D-ribose [9], without the need for external initiators. Furthermore, DBD plasma has
been used to synthesize conductive paper hybrids by polymerizing bithiophene monomer
directly into paper [10]. In environmental applications, DBD plasma plays a crucial role
in wastewater treatment, including the degradation of perfluorooctanoic acid, a known
groundwater pollutant [11]. In biological systems, it has been used to enhance cell transfec-
tion [12] and promote wound healing [13]. Recently, DBD plasma has been shown to be
a time-efficient method for synthesizing molecularly imprinted polymers (MIPs), which
demonstrates enhanced selectivity compared to traditional methods [14]. Additionally,
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DBD plasma has been employed in decomposing sugars, polymerizing conductive materi-
als, and modifying polymers for rapid and selective lithium-ion separation in the battery
industry [15,16]. DBD plasma applications also extend to engineering fields, including flow
control and ice mitigation [17–20]. Despite its wide range of applications [21–23], it is not
commonly used in the polymerization process.

In our previous work, we demonstrated that DBD plasma could initiate the radical
polymerization of monomers within porous materials, such as cellulose paper, creating
paper-based electronics [10] and water-absorbing papers [7]. In this study, we extend our
exploration of DBD plasma for its environmental applications in porous materials.

Poly (styrene sulfonate) (PSS) is a synthetic polymer [24] produced by either the sul-
fonation of polystyrene or the polymerization of sodium 4-styrenesulfonate (NaSS) [25,26].
Its structure consists of a polystyrene backbone with sulfonate groups attached to the
benzene rings, giving PSS its anionic polyelectrolyte properties [27–30]. PSS has numerous
industrial and biomedical applications [31], including its use in ion-exchange resins, dis-
persants, stabilizers, and as a sizing and finishing agent in the paper and textile industry,
etc. [32–34]. Its ability to remove ions from solutions makes it valuable in water softening
and purification processes.

We hypothesized that doping porous materials with PSS could create materials capable
of removing toxic chemicals for environmental applications. Traditional methods for
synthesizing PSS on porous materials, however, pose challenges. The sulfonation of
polystyrene requires strong acids (e.g., sulfur trioxide or chlorosulfonic acid), which can
degrade certain materials [35,36]. Alternatively, polymerizing NaSS using ultraviolet
(UV) radiation [37] or heat [38] can also be problematic, as heat-initiated polymerization
can damage some materials [39], and UV polymerization typically achieves only partial
polymerization in deeper layers due to limited photon penetration [40,41].

In contrast, DBD plasma can generate radical initiators in situ and penetrate porous
materials, initiating polymerization internally under mild conditions [42]. This makes DBD
plasma a safer alternative for synthesizing PSS within porous materials. In this study, we
tested the use of DBD plasma to induce the polymerization of sodium 4-styrenesulfonate
(NaSS) with N,N′-methylenebisacrylamide (MBAA) to form a stable polymer network
inside porous filter paper and assessed its effectiveness in removing waste chemicals
from water.

Methylene blue was used in these experiments as a test toxic chemical. Methylthionine
chloride, commonly known as methylene blue (chemical formula C16H18ClN3S), is widely
used both as a dye and a therapeutic agent [43,44]. However, methylene blue is also
considered an environmental pollutant, as its persistence in aquatic environments can
lead to toxicity in marine organisms and disrupt ecosystems [45–52]. PSS is recognized
as an effective material for methylene blue adsorption due to its anionic sulfonate groups
(–SO3

−), which form strong ionic interactions with the cationic dye molecules [45].

2. Materials and Methods
2.1. Materials

N,N′-methylenebisacrylamide (MBAA) was purchased from TCI America (Portland,
OR, USA). Distilled water (DI), 4-Stryenesulfonate (NaSS) (Aldrich Chemical, Milwaukee,
WI, USA), and divinyl benzene (DVB) was purchased from Electron Microscopy Science
(Hatfield, PA, USA).

2.2. DBD Plasma Generation

The DBD plasma was generated using a microsecond-pulsed power supply (FID
Technology, Burbach, Germany) and an electrode–dielectric barrier discharge setup, as
described previously [7]. In summary, the DBD electrode operates by producing a plasma
stream between a high-voltage copper plate (25 mm thick) and a grounded electrode
(Figure 1). A 1 mm thick quartz dielectric plate serves as an insulating barrier over the
copper plate. The plasma discharge gap between the bottom of the quartz plate and the
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sample surface was 5 mm. Plasma was generated using a variable voltage and frequency
power supply, which applied a pulsed alternating polarity voltage of 20 kV (peak-to-peak)
with a 10 ns pulse width and a rise time of 5 V/ns. For all experiments, a peak voltage of
11.2 kV and a repetition frequency of 690 Hz were used. The input energy was calculated
to be approximately 10 mJ per pulse. The plasma treatment area corresponded to the
dimensions of the copper plate, measuring 38 mm × 64 mm.
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Figure 1. Scheme of DBD Plasma device.

2.3. DBD Plasma Polymerization of NaSS Monomer

A total of 2 g of NaSS monomer is dissolved in 10 mL of DI water, and 3 other samples
were made following the same setup, adding varying amounts of MBAA based on weight
relative to the NaSS (Sample 1: 0.1%, Sample 2: 0.25%, and Sample 3: 0.5%). A total of
5 microliter aliquots of the samples were then dropped onto silicon wafers, which were
placed on glass slides for transporting. The slides with the wafers and the aliquots were
brought to the plasma well, where they were exposed to the plasma for 3 min intervals—
9 and 15 min in total.

The consistent distance of 5 mm between the quartz plate and the sample surface,
combined with the defined plasma area (38 mm × 64 mm) from the copper plate, supports
even plasma exposure across the wafer. The carefully controlled parameters, including peak
voltage, pulse width, and frequency, contribute to a uniform discharge. However, some
factors, such as slight variations in sample positioning on the wafers, potential drying of the
NaSS solution, and even plasma distribution, can affect the uniformity. Adding DI water
to prevent drying could help mitigate these inconsistencies. While these factors generally
support an even polymerization process, slight variations could still occur, especially near
the edges of the wafer.

The slides would be removed between intervals to check for signs of polymerization
(color change to yellow) and to see if the aliquot was drying out. If there were signs of the
aliquot drying out, the sample would add 5 microliters of DI water to keep the solution
intact. This was not performed between all intervals to prevent samples from spilling from
the wafers or for excess liquid to stick to the bottom of the plasma well. After the plasma
treatments (3 or 5 intervals), the samples were taken out and left on the lab bench to air dry
overnight. This can be seen in Figure 2.
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2.4. IR and FT-IR Characterization and Analysis

A PerkinElmer Spectrum One FTIR Spectrometer (Waltham, MA, USA) was employed
to capture samples’ Fourier-transform infrared (FTIR) spectra before and after DBD plasma
treatment. FTIR measurements were conducted using attenuated total reflection (ATR),
covering the spectral range from 650 cm−1 to 3650 cm−1 with a resolution of 4 cm−1. Before
and after polymerization by plasma, the samples were scanned by the FTIR spectrometer,
having the silicon wafers placed sample side down onto the diamond of the spectrometer
and then scanned.

2.5. Hydrophilicity Test Analysis

It is crucial to assess the polymers’ compatibility with water-based solutions, their
potential for biomedical applications, and how they will function in aqueous reaction
environments [51]. The hydrophilicity test is commonly employed to evaluate polymers’
capacity to attract and hold water. There are multiple methods to examine how a polymer
interacts with water, encompassing water absorption testing, surface energy calculation,
and the predominant one, contact angle measurement. The final method measures the
contact angle between the water droplet and the polymer surface by placing the droplet
on the polymer surface. This contact angle serves as a pivotal indicator of the polymer’s
hydrophilicity. If the water droplet beads up on the polymer surface, this high contact angle
demonstrates low hydrophilicity, while a low contact angle, where the water spreads out
on the polymer surface, indicates high hydrophilicity. Since PSS is considered a hydrophilic
polymer, the samples were also tested for hydrophilicity by adding 3 microliter drops to
dried samples and observing the resulting contact angle of the liquid.

2.6. Methylene Blue Removal Analysis

This analysis used PSS with two crosslinkers to study their effect on removing methy-
lene blue (MB) from water. For this experiment, 0.001 g of MB was dissolved in 200 mL of
DI water, and its UV-Vis spectrum was recorded. Three samples of PSS containing varying
amounts of MBAA, as described in Section 2.3, were prepared alongside samples with the
same ratios using DVB as the crosslinker. Filter papers were soaked in each solution and
exposed to DBD plasma for 20 min to form polymers on the filter paper. The MB solution
was then filtered through all six polymer-coated filter papers and a regular filter paper for
comparison. The UV-Vis spectra of all filtrates were collected for comparison.

The MB removal efficiency of the prepared papers after filtration was calculated by
using Equation (1) as follows:

Efficiency = (Ci − Cf/Ci) × 100 (1)
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Ci and Cf are the initial and final concentrations of MB in solution, measured at
665 nm [53].

3. Results
3.1. Characterization of PSS Using Infrared Spectroscopy

We first demonstrated the use of DBD plasma to induce the polymerization of sodium
4-styrenesulfonate (NaSS). The resulting FTIR scans are shown in Figure 3.
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Figure 3. FTIR spectra of 4-Styrenesulfonate (NaSS) and Poly (styrene sulfonate) (PSS) synthesized
from DBD plasma treatment of NaSS.

The primary focus of the IR spectra is the peaks at 985 ± 5 cm−1 and 910 ± 5 cm−1,
which are the peaks associated with the C=C double bonds commonly observed in vinyl
compounds. After DBD plasma polymerization, NaSS exhibits the complete disappearance
of these peaks, indicating total polymerization of NaSS. This confirms the effectiveness of
DBD plasma in inducing NaSS polymerization.

The FTIR spectra of NaSS and PSS closely resemble those reported in the literature,
with the major peaks at 985 cm−1 and 910 cm−1 indicating the completion of the poly-
merization process. A notable difference observed in our sample, compared to published
spectra, is the presence of two distinct peaks in the 3400–3600 cm−1 region for NaSS. This
suggests the presence of water molecules in two forms: free water and water associated
with NaSS via hydrogen bonding. This is not unusual, as varying amounts or interactions
of water with the monomer can result in different peaks in this region.

The plasma discharge on the substrate was assumed to be uniform based on prior
studies involving DBD plasma. However, due to the NaSS deposition on the wafer surfaces
via drop-casting, the resulting film is likely non-uniform. As this study serves as a prelimi-
nary investigation for subsequent research on polymerization within porous materials, we
did not assess the film’s uniformity.

3.2. Formation and Hydrophilic Property of PSS/MBAA and PSS/DVB Polymer Network

PSS is water-soluble, making it prone to being washed out of porous materials when
exposed to water. To prevent PSS leakage and enhance the efficiency of PSS-doped porous
materials for chemical removal, crosslinkers such as MBAA and DVB were used to co-
polymerize with NaSS, forming a networked PSS that is insoluble in any solvent. Figure 4
shows the image of this polymer network. The resulting polymer is insoluble in water,
meeting the requirement for doping porous materials to remove toxic chemicals. The poly-
mer was observed to be hydrophilic, as indicated by its very low contact angle (Figure 4).
The water contact angle for our sample is roughly 8 ± 2◦.
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3.3. Methylene Blue Water Pollutant Removal

For proof-of-concept, filter paper doped with PSS was tested for its methylene blue
(MB) removal efficiency. This test aimed to assess how effectively PSS, crosslinked with
varying amounts of MBAA and DVB, could remove MB from the solution. By crosslink-
ing the PSS with these agents inside the filter paper, the polymer becomes more robust
and potentially more effective at capturing and filtering out MB due to the enhanced
network structure.

The removal efficiency of MB was quantified by comparing different filter papers
doped with PSS that had been crosslinked with either MBAA or DVB at various concentra-
tions. As shown in Table 1, the results are the MB removal rates after a single filtration. The
study found that PSS crosslinked with 0.5% DVB demonstrated the highest MB removal effi-
ciency, suggesting that this specific concentration of DVB forms an optimal network within
the PSS matrix for capturing MB. This highlights the potential of using DVB-crosslinked
PSS for applications requiring effective filtration and removal of dye pollutants, such as
wastewater treatment.

Table 1. MB removal rates after the first filtration using both PSS/MBAA and PSS/DVB. The
uncertainty is determined as ±2%.

Crosslinker Ratio MB Removal Rate (%)

MBAA 0.1% 58.22
0.25% 58.50
0.5% 63.35

DVB 0.1% 58.54
0.25% 63.65
0.5% 68.83

Subsequently, four consecutive filtrations were also performed using blank filter paper
and filter paper doped with PSS crosslinked with 0.5% DVB. The results, shown in Table 2,
indicate that the PSS/DVB-coated filter paper removed 99.4% of MB after four filtrations,
compared to 78.5% removal by the blank filter paper.

Following the initial filtration tests, four consecutive filtrations were performed to
further evaluate the long-term MB removal efficiency of the PSS-coated filter paper. Specifi-
cally, the one crosslinked with 0.5% DVB, compared to blank filter paper without any PSS
coating. This series of tests aimed to determine the sustained filtration capacity and effec-
tiveness of the PSS/DVB system over multiple cycles, simulating practical use scenarios
where a filter would need to handle more than one round of filtration.

As presented in Table 2, the results were compelling. After four consecutive filtrations,
the PSS-coated filter paper crosslinked with 0.5% DVB achieved a remarkable 99.4% removal
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of MB from the solution. This contrasts significantly with the blank filter paper, which only
removed 78.5% of MB under the same conditions. The difference in removal efficiency
demonstrates the enhanced capability of the PSS/DVB coating in consistently capturing
and removing MB molecules over multiple filtration cycles. This performance can be
attributed to the stable, crosslinked network of PSS created by DVB, which provides more
active sites for MB adsorption and prevents the polymer from dissolving or degrading
during filtration. As previously noted, the increased hydrophilicity of the material also
likely contributes to its enhanced affinity for MB, facilitating greater contact and interaction
between the dye molecules and the filter surface.

Overall, the PSS/DVB-coated filter paper’s ability to maintain higher removal ef-
ficiency across multiple filtration rounds highlights its potential for practical water pu-
rification and dye pollutant removal applications. The durability and effectiveness of
this crosslinked system make it a promising candidate for use in large-scale or industrial
filtration systems where repeated usage is critical.

Table 2. MB removal rates after four filtration trials using both PSS/DVB and blank filter paper. The
uncertainty is determined as roughly ±2%.

Trial Filter Paper MB Removal Rate (%)

First blank 47.80
PSS/DVB(0.5%) 68.83

Second blank 67.70
PSS/DVB(0.5%) 84.41

Third blank 74.30
PSS/DVB(0.5%) 95.80

Fourth blank 78.50
PSS/DVB(0.5%) 99.40

4. Discussion

The findings of this work show that sodium 4-styrene sulfonate (NaSS) can be poly-
merized within porous materials, especially filter paper, using dielectric barrier discharge
(DBD) plasma. Plasma offers a distinct benefit compared to traditional polymerization
techniques like UV or heat-based polymerization, which frequently have drawbacks like
inadequate penetration or thermal damage to delicate materials. FTIR measurement shows
that the C=C double bonds completely disappear in NaSS, indicating that the DBD plasma
successfully triggered polymerization under mild circumstances. This supports the feasi-
bility of DBD plasma for polymerization within porous substrates and is consistent with
earlier research using non-thermal plasma for comparable purposes.

The PSS crosslinked with 0.5% divinylbenzene (DVB) with the highest methylene blue
elimination efficiency indicates greater stability and longevity of the polymer network.
This demonstrates how crosslinked PSS can be used in environmental applications where
multiple filtration cycles are necessary, such as wastewater treatment. These findings are
consistent with the body of research on the effectiveness of crosslinked polymer systems
in environmental cleanup. The applications of DBD plasma-synthesized PSS materials
for water treatment would require practical considerations such as material durability,
filtration efficiency under variable water conditions, commercialization, and potential
fouling. Furthermore, while stable in controlled lab settings, the crosslinked structure may
face challenges in natural waters containing competing organic and inorganic materials,
which could reduce its adsorption capacity for methylene blue (MB). Thus, optimizing DBD
plasma treatment for consistent polymerization quality, testing its stability in various water
conditions, and assessing capacity for larger treatment systems are essential to advancing
this technique for practical environmental applications. Additionally, the durability of
the DBD plasma-modified filter paper in continuous flow systems will also be considered.
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Reusability would be advantageous for real-world applications; therefore, regeneration of
the filter material when it reaches adsorption capacity is another considerable factor.

The DBD plasma can be generated in various gases, such as N2, Ar, O2, air, etc.
Although all of them can polymerize monomers to polymers, such as NaSS to PSS, the
polymerization process, polymerization efficiency, reaction rate, and properties of polymers
vary from different plasmas. Among these, air DBD plasma is the most common plasma
due to its lower cost. In our experiments, the DBD plasma was generated in air at ambient
conditions. The air–plasma contains reactive oxygen and nitrogen species (ROS and RNS),
including ozone (O3), radicals (•NO and •OH), superoxide anion (O2

−), and electrons, etc.
The radicals are believed to be the species that could initiate the polymerization reaction.
Other species, including impurities in air, do not significantly affect the polymerization
process and the properties of the polymers.

Subsequent investigations may concentrate on the feasibility of this methodology
for commercial implementations and examine alternative monomers and crosslinkers
for constructing customized polymer networks. Additionally, researching the long-term
stability of these systems in real-world climatic circumstances would provide greater insight
into their practical usage. Another area worth investigating is combining DBD plasma
polymerization with other environmentally friendly technologies to create integrated
systems for resource recovery or pollution management.

5. Conclusions

The FTIR data demonstrates that DBD plasma treatment effectively induces polymer-
ization of sodium 4-styrene sulfonate (NaSS) within porous filter paper and creates a stable
PSS matrix crosslinked with N, N-methylene bisacrylamide (MBAA) and divinyl benzene
(DVB). The optimized use of DBD plasma under mild conditions enabled thorough poly-
merization without initiators or excessive thermal energy. Among tested configurations,
the PSS crosslinked with 0.5% DVB exhibited the highest methylene blue (MB) removal,
up to 99.4%, over four consecutive filtrations. This crosslinked network demonstrates
stability and reusability, aligning with sustainable water purification goals. Future direc-
tions include investigating this method’s scalability, testing additional monomer systems,
and developing DBD plasma-modified filter materials with tailored properties for diverse
environmental and biomedical applications. These findings highlight the broader potential
of non-thermal plasma in creating robust, biocompatible, and efficient polymer-based
adsorbents for environmental applications.
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