A Global Analysis of Hunter-Gatherers, Broadcast Fire Use, and Lightning-Fire-Prone Landscapes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Socioeconomic and Broadcast Fire Use Data
2.2. Biomes
2.3. Biophysical Data
2.4. Geodatabase and Logistic Regression
3. Results
4. Discussion
4.1. Broadcast Fire Use and Lightning Fire-Prone Environments
4.2. Implications for Global Fire Studies
5. Conclusions
Supplementary Materials
Data Accessibility Statement
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sauer, C.O. Grassland Climax, Fire, and Man. J. Range Manag. 1950, 3, 16–21. [Google Scholar] [CrossRef]
- Vale, T.R. The Pre-European Landscape of the United States: Pristine or Humanized? In Fire, Native Peoples, and the Natural Landscape; Vale, T.R., Ed.; Island Press: Washington, DC, USA, 2002; pp. 1–39. [Google Scholar]
- Whitlock, C.; Mcwethy, D.B.; Tepley, A.J.; Veblen, T.T.; Holz, A.; Mcglone, M.S.; Perry, G.L.; Wilmshurst, J.M.; Wood, S.W. Past and present vulnerability of closed-canopy temperate forests to altered fire regimes: A comparison of the Pacific Northwest, New Zealand, and Patagonia. BioScience 2014, 65, 151–163. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The Global Distribution of Ecosystems in a World without Fire. New Phytol. 2005, 165, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Smith, B.D. The ultimate ecosystem engineers. Science 2007, 315, 1797. [Google Scholar] [CrossRef] [PubMed]
- McWethy, D.; Higuera, P.; Whitlock, C.; Veblen, T.; Bowman, D.; Cary, G.; Haberle, S.; Keane, R.E.; Maxwell, B.; McGlone, M. A conceptual framework for predicting temperate ecosystem sensitivity to human impacts on fire regimes. Glob. Ecol. Biogeogr. 2013, 22, 900–912. [Google Scholar] [CrossRef] [Green Version]
- Le Page, Y.; Oom, D.; Silva, J.M.N.; Jönsson, P.; Pereira, J.M.C. Seasonality of vegetation fires as modified by human action: Observing the deviation from eco-climatic fire regimes. Glob. Ecol. Biogeogr. 2010, 19, 575–588. [Google Scholar] [CrossRef]
- Benali, A.; Mota, B.; Carvalhais, N.; Oom, D.; Miller, L.M.; Campagnolo, M.L.; Pereira, J. Bimodal fire regimes unveil a global-scale anthropogenic fingerprint. Glob. Ecol. Biogeogr. 2017, 26, 799–811. [Google Scholar] [CrossRef]
- Rabin, S.S.; Magi, B.I.; Shevliakova, E.; Pacala, S.W. Quantifying regional, time-varying effects of cropland and pasture on vegetation fire. Biogeosciences 2015, 12, 6591–6604. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.; Giglio, L.; Chen, Y.; Van Der Werf, G.; Kasibhatla, P.; DeFries, R.; Collatz, G.; Hantson, S.; Kloster, S. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabin, S.S.; Melton, J.R.; Lasslop, G.; Bachelet, D.; Forrest, M.; Hantson, S.; Li, F.; Mangeon, S.; Yue, C.; Arora, V.K. The Fire Modeling Intercomparison Project (FireMIP), phase 1: Experimental and analytical protocols. Geosci. Model Dev. 2017, 20, 1175–1197. [Google Scholar] [CrossRef]
- Veblen, T.T.; Kitzberger, T.; Villalba, R.; Donnegan, J. Fire History in Northern Patagonia: The Roles of Humans and Climatic Variation. Ecol. Monogr. 1999, 69, 47–67. [Google Scholar] [CrossRef]
- Carcaillet, C. A spatially precise study of Holocene fire history, climate and human impact within the Maurienne valley, North French Alps. J. Ecol. 1998, 86, 384–396. [Google Scholar] [CrossRef] [Green Version]
- Conedera, M.; Tinner, W. The interaction between forest fires and human activity in southern Switzerland. In Biomass Burning and Its Inter-Relationships with the Climate System; Innes, J.L., Beniston, M., Verstraete, M.M., Eds.; Springer: Dordrecht, The Netherlands, 2000; pp. 247–261. [Google Scholar]
- Carcaillet, C.; Bergman, I.; Delorme, S.; Hornberg, G.; Zackrisson, O. Long-term fire frequency not linked to prehistoric occupations in northern Swedish boreal forest. Ecology 2007, 88, 465–477. [Google Scholar] [CrossRef]
- Allen, C.D. Lots of Lightning and Plenty of People: An Ecological History of Fire in the Upland Southwest. In Fire, Native Peoples, and the Natural Landscape; Vale, T.R., Ed.; Island Press: Washington, DC, USA, 2002; pp. 143–194. [Google Scholar]
- Prentice, I.; Kelley, D.; Foster, P.; Friedlingstein, P.; Harrison, S.; Bartlein, P. Modeling fire and the terrestrial carbon balance. Glob. Biogeochem. Cycle 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Roos, C.I.; Zedeño, M.N.; Hollenback, K.L.; Erlick, M.M. Indigenous impacts on North American Great Plains fire regimes of the past millennium. Proc. Natl. Acad. Sci. USA 2018, 115, 8143–8148. [Google Scholar] [CrossRef] [PubMed]
- Holz, A.; Veblen, T.T. The amplifying effects of humans on fire regimes in temperate rainforests in western Patagonia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2011, 311, 82–92. [Google Scholar] [CrossRef]
- Lewis, H.T. An Anthropological Critique. In Forgotten Fires: Native Americans and the Transient Wilderness; Lewis, H.T., Anderson, M.K., Eds.; University of Oklahoma Press: Norman, OK, USA, 2002; pp. 17–36. [Google Scholar]
- Smith, E.A.; Wishnie, M. Conservation and Subsistence in Small-Scale Societies. Annu. Rev. Anthropol. 2000, 29, 493–524. [Google Scholar] [CrossRef]
- Bird, R.B.; Bird, D.W.; Codding, B.F.; Parker, C.H.; Jones, J.H. The “Fire Stick Farming” Hypothesis: Australian Aboriginal Foraging Strategies, Biodiversity, and Anthropogenic Fire Mosaics. Proc. Natl. Acad. Sci. USA 2008, 105, 14796–14801. [Google Scholar] [CrossRef] [PubMed]
- Binford, L.R. Constructing Frames of Reference: An Analytical Method for Archaeological Theory Building Using Ethnographic and Environmental Data Sets; University of California Press: Berkeley, CA, USA, 2001. [Google Scholar]
- Stewart, O.C. Forgotten Fires: Native Americans and the Transient Wilderness; University of Oklahoma Press: Norman, OK, USA, 2002. [Google Scholar]
- Williams, G.W. References on the American Indian Use of Fire in Ecosystems; US Forest Service: Washington, DC, USA, 2003.
- Scherjon, F.; Bakels, C.; MacDonald, K.; Roebroeks, W.; Bliege Bird, R.; Bird, D.W.; Bowman, D.M.; Cosgrove, R.; Holdaway, S.; Allen, H. Burning the land: An ethnographic study of off-site fire use by current and historically documented foragers and implications for the interpretation of past fire practices in the landscape. Curr. Anthropol. 2015, 56, 314–315. [Google Scholar] [CrossRef]
- Trauernicht, C.; Brook, B.W.; Murphy, B.P.; Williamson, G.J.; Bowman, D.M. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity. Ecol. Evol. 2015, 5, 1908–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steward, J.H. The Theory of Culture Change: The Methodology of Multilinear Evolution; University of Illinois Press: Urbana, IL, USA, 1955. [Google Scholar]
- Kelly, R.L. The Lifeways of Hunter-Gatherers: The Foraging Spectrum; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Levavasseur, G.; Vrac, M.; Roche, D.; Paillard, D. Statistical modelling of a new global potential vegetation distribution. Environ. Res. Lett. 2012, 7, 044019. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Cecil, D.J.; Buechler, D.E.; Blakeslee, R.J. Gridded lightning climatology from TRMM-LIS and OTD: Dataset description. Atmos. Res. 2014, 135, 404–414. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Pechony, O.; Shindell, D. Fire parameterization on a global scale. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Li, F.; Zeng, X.; Levis, S. A process-based fire parameterization of intermediate complexity in a Dynamic Global Vegetation Model. Biogeosciences 2012, 9, 2761–2780. [Google Scholar] [CrossRef] [Green Version]
- Rabin, S.S.; Ward, D.S.; Malyshev, S.L.; Magi, B.I.; Shevliakova, E.; Pacala, S.W. A fire model with distinct crop, pasture, and non-agricultural burning: Use of new data and a model-fitting algorithm for FINAL. 1. Geosci. Model Dev. 2018, 11, 815. [Google Scholar] [CrossRef]
- Pfeiffer, M.; Spessa, A.; Kaplan, J.O. A model for global biomass burning in preindustrial time: LPJ-LMfire (v1. 0). Geosci. Model Dev. 2013, 6, 643–685. [Google Scholar] [CrossRef]
- Bird, R.B.; Tayor, N.; Codding, B.F.; Bird, D.W. Niche construction and Dreaming logic: Aboriginal patch mosaic burning and varanid lizards (Varanus gouldii) in Australia. Proc. R. Soc. B 2013. [Google Scholar] [CrossRef]
- Marlon, J.R.; Kelly, R.; Daniau, A.-L.; Vannière, B.; Power, M.J.; Bartlein, P.; Higuera, P.; Blarquez, O.; Brewer, S.; Brücher, T.; et al. Reconstructions of biomass burning from sediment charcoal records to improve data-model comparisons. Biogeosciences 2016, 13, 3225–3244. [Google Scholar] [CrossRef] [Green Version]
- Daniau, A.L.; Bartlein, P.; Harrison, S.; Prentice, I.C.; Brewer, S.; Friedlingstein, P.; Harrison-Prentice, T.; Inoue, J.; Izumi, K.; Marlon, J. Predictability of biomass burning in response to climate changes. Glob. Biogeochem. Cycle 2012, 26. [Google Scholar] [CrossRef] [Green Version]
- Power, M.; Mayle, F.; Bartlein, P.; Marlon, J.; Anderson, R.; Behling, H.; Brown, K.; Carcaillet, C.; Colombaroli, D.; Gavin, D. Climatic control of the biomass-burning decline in the Americas after AD 1500. Holocene 2013, 23, 3–13. [Google Scholar] [CrossRef]
- Lewis, H.T.; Ferguson, T.A. Yards, corridors and mosaics: How to burn a boreal forest. Hum. Ecol. 1988, 16, 57–77. [Google Scholar] [CrossRef]
- Bird, R.B. Disturbance, Complexity, Scale: New Approaches to the Study of Human-Environment Interactions*. Annu. Rev. Anthropol. 2015, 44, 241–257. [Google Scholar] [CrossRef]
- Laris, P. Humanizing savanna biogeography: Linking human practices with ecological patterns in a frequently burned savanna of southern Mali. Ann. Assoc. Am. Geogr. 2011, 101, 1067–1088. [Google Scholar] [CrossRef]
- Hantson, S.; Kloster, S.; Coughlan, M.; Daniau, A.-L.; Vannière, B.; Brücher, T.; Kehrwald, N.; Magi, B.I. Fire in the earth system: Bridging data and modeling research. Bull. Am. Meteorol. Soc. 2016, 97, 1069–1072. [Google Scholar] [CrossRef]
- Marsh, G.P. Man and Nature; or Physical Geography as Modified by Human Action; University of Washington Press: Seattle, WA, USA, 1965; p. 472. [Google Scholar]
1 | Small-scale societies are commonly defined as politically autonomous groups of people, with populations ranging in size from 102 to 103 (Smith & Wishnie, 2000 [23]). Subsistence and land use can be characterized as a spectrum of hunting, gathering, and limited agricultural or pastoral activities. |
Biomes = All (N = 339), BFU Present/Absent = 156/183 | ||||
Coefficient | Standard Error | Z | p | |
Constant | −1.9614 | 0.3323 | −5.9041 | 3.55 × 10−9 |
Gathering* | 0.0207 | 0.0055 | 3.7512 | 1.76 × 10−4 |
Density* | 0.0171 | 0.0044 | 3.9653 | 7.33 × 10−5 |
LFP* | 0.0149 | 0.0029 | 5.1489 | 2.62 × 10−7 |
Biomes = Forested (N = 207), BFU Present/Absent = 84/123 | ||||
Coefficient | Standard Error | Z | p | |
Constant | −1.6934 | 0.3868 | −4.3784 | 1.20 × 10−5 |
Gathering | 0.0008 | 0.0079 | 0.1011 | 0.92 |
Density* | 0.0301 | 0.0060 | 5.0556 | 4.29 × 10−7 |
LFP* | 0.0094 | 0.0035 | 2.7088 | 6.75 × 10−3 |
Biomes = Unforested (N = 132), BFU Present/Absent = 72/60 | ||||
Coefficient | Standard Error | Z | p | |
Constant | −2.5255 | 0.7463 | −3.3839 | 7.15 × 10−4 |
Gathering* | 0.0371 | 0.0111 | 3.3396 | 8.39 × 10−4 |
Density | −0.0032 | 0.0072 | −0.4407 | 0.66 |
LFP* | 0.0226 | 0.0064 | 3.5498 | 3.86 × 10−4 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coughlan, M.R.; Magi, B.I.; Derr, K.M. A Global Analysis of Hunter-Gatherers, Broadcast Fire Use, and Lightning-Fire-Prone Landscapes. Fire 2018, 1, 41. https://doi.org/10.3390/fire1030041
Coughlan MR, Magi BI, Derr KM. A Global Analysis of Hunter-Gatherers, Broadcast Fire Use, and Lightning-Fire-Prone Landscapes. Fire. 2018; 1(3):41. https://doi.org/10.3390/fire1030041
Chicago/Turabian StyleCoughlan, Michael R., Brian I. Magi, and Kelly M. Derr. 2018. "A Global Analysis of Hunter-Gatherers, Broadcast Fire Use, and Lightning-Fire-Prone Landscapes" Fire 1, no. 3: 41. https://doi.org/10.3390/fire1030041
APA StyleCoughlan, M. R., Magi, B. I., & Derr, K. M. (2018). A Global Analysis of Hunter-Gatherers, Broadcast Fire Use, and Lightning-Fire-Prone Landscapes. Fire, 1(3), 41. https://doi.org/10.3390/fire1030041