Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Determination of Seasons
2.3. Delimitation of Fire Scars
2.4. Spatio-Temporal Dynamics of Fire
3. Results
3.1. Local Climate Aspects and Seasonal Classification
3.2. Annual Patterns of Burned Area
3.3. Spatial and Seasonal Distribution of Fire Scars
3.4. Map of Fire Recurrence
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tyukavina, A.; Hansen, M.C.; Potapov, P.V.; Stehman, S.V.; Smith-Rodriguez, K.; Okpa, C.; Aguilar, R. Types and rates of forest disturbance in Brazilian Legal Amazon, 2000–2013. Sci. Adv. 2017, 3, e1601047. [Google Scholar] [CrossRef] [Green Version]
- Hislop, S.; Haywood, A.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Nguyen, T.H. A satellite data driven approach to monitoring and reporting fire disturbance and recovery across boreal and temperate forests. Int. J. Appl. Earth Obs. Geoinf. 2020, 87, 102034. [Google Scholar] [CrossRef]
- Durigan, G.; Ratter, J.A. The need for a consistent fire policy for Cerrado conservation. J. Appl. Ecol. 2016, 53, 11–15. [Google Scholar] [CrossRef]
- Schmidt, I.B.; Eloy, L. Fire regime in the Brazilian Savanna: Recent changes, policy and management. Flora 2020, 268, 151613. [Google Scholar] [CrossRef]
- Fidelis, A.; Alvarado, S.T.; Barradas, A.C.S.; Pivello, V.R. The year 2017: Megafires and management in the Cerrado. Fire 2018, 1, 49. [Google Scholar] [CrossRef] [Green Version]
- Argibay, D.S.; Sparacino, J.; Espindola, G.M. A long-term assessment of fire regimes in a Brazilian ecotone between seasonally dry tropical forests and savannah. Ecol. Indic. 2020, 113, 106151. [Google Scholar] [CrossRef]
- Ward, D.S.; Shevliakova, E.; Malyshev, S.; Rabin, S. Trends and variability of global fire emissions due to historical anthropogenic activities. Glob. Biogeochem. Cycles 2018, 32, 122–142. [Google Scholar] [CrossRef]
- Jones, M.W.; Santín, C.; van der Werf, G.R.; Doerr, S.H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 2019, 12, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Werf, G.R.; Randerson, J.T.; Giglio, L.; Leeuwen, T.T.V.; Chen, Y.; Rogers, B.M.; Mu, M.; Van Marle, M.J.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P.; Boschetti, L.; Zubkova, M.; Kolden, C.A. Global patterns of interannual climate–fire relationships. Glob. Chang. Biol. 2018, 24, 5164–5175. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Tian, H.; Tao, B.; Ren, W.; Kush, J.; Liu, Y.; Wang, Y. Spatial and temporal patterns of global burned area in response to an-thropogenic and environmental factors: Reconstructing global fire history for the 20th and early 21st centuries. J. Geophys. Res. Biogeosci. 2014, 119, 249–263. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Neto, M.B.; Pivello, V.R. Lightning fires in a Brazilian savanna National Park: Rethinking management strategies. Environ. Manag. 2000, 26, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Rissi, M.N.; Baeza, M.J.; Gorgone-Barbosa, E.; Zupo, T.; Fidelis, A. Does season affect fire behaviour in the Cerrado? Int. J. Wildland Fire 2017, 26, 427–433. [Google Scholar] [CrossRef]
- Durigan, G. Zero-fire: Not possible nor desirable in the Cerrado of Brazil. Flora 2020, 268, 151612. [Google Scholar] [CrossRef]
- Klink, C.A.; Machado, R.B. Conservation of the Brazilian cerrado. Conserv. Biol. 2005, 19, 707–713. [Google Scholar] [CrossRef]
- Eloy, L.; Schmidt, I.B.; Borges, S.L.; Ferreira, M.C.; Dos Santos, T.A. Seasonal fire management by traditional cattle ranchers prevents the spread of wildfire in the Brazilian Cerrado. Ambio 2019, 48, 890–899. [Google Scholar] [CrossRef]
- Welch, J.R.; Coimbra, C.E., Jr. Indigenous fire ecologies, restoration, and territorial sovereignty in the Brazilian Cerrado: The case of two Xavante reserves. Land Use Policy 2019, 104055. [Google Scholar] [CrossRef]
- Mataveli, G.A.V.; Pereira, G.; Chaves, M.E.D.; Cardozo, F.D.S.; Stark, S.C.; Shimabukuro, Y.E.; Aragão, L.E.; de Oliveira, G.; Chen, J.M. Deforestation and land use and land cover changes in protected areas of the Brazilian Cerrado: Impacts on the fire-driven emissions of fine particulate aerosols pollutants. Remote Sens. Lett. 2021, 12, 79–92. [Google Scholar] [CrossRef]
- zu Ermgassen, E.K.; Ayre, B.; Godar, J.; Lima, M.G.B.; Bauch, S.; Garrett, R.; Green, J.; Lathuillière, M.J.; Löfgren, P.; MacFarquhar, C. Using supply chain data to monitor zero deforestation commitments: An assessment of progress in the Brazilian soy sector. Environ. Res. Lett. 2020, 15, 035003. [Google Scholar] [CrossRef]
- Trigueiro, W.R.; Nabout, J.C.; Tessarolo, G. Uncovering the spatial variability of recent deforestation drivers in the Brazilian Cerrado. J. Environ. Manag. 2020, 275, 111243. [Google Scholar] [CrossRef] [PubMed]
- Parente, L.; Nogueira, S.; Baumann, L.; Almeida, C.; Maurano, L.; Affonso, A.G.; Ferreira, L. Quality assessment of the PRODES Cerrado deforestation data. Remote Sens. Appl. Soc. Environ. 2021, 21, 100444. [Google Scholar] [CrossRef]
- de Espindola, G.M.; de Silva Figueredo, E.; Júnior, P.P.; dos Reis Filho, A.A. Cropland expansion as a driver of land-use change: The case of Cerrado-Caatinga transition zone in Brazil. Environ. Dev. Sustain. 2021, 1–15. [Google Scholar] [CrossRef]
- de Araújo, M.L.S.; Sano, E.E.; Bolfe, É.L.; Santos, J.R.N.; dos Santos, J.S.; Silva, F.B. Spatiotemporal dynamics of soybean crop in the Matopiba region, Brazil (1990–2015). Land Use Policy 2019, 80, 57–67. [Google Scholar] [CrossRef]
- Calmon, D. Shifting frontiers: The making of Matopiba in Brazil and global redirected land use and control change. J. Peasant Stud. 2020, 1–25. Available online: https://www.tandfonline.com/doi/full/10.1080/03066150.2020.1824183 (accessed on 1 July 2021).
- Silva, P.; Rodrigues, J.; Santos, F.; Pereira, A.; Nogueira, J.; DaCamara, C.; Libonati, R. Drivers Of Burned Area Patterns In Cerrado: The Case Of Matopiba Region. In Proceedings of the 2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS), Santiago, Chile, 21–26 March 2020; pp. 542–547. [Google Scholar]
- Spadotto, B.R.; Martenauer Saweljew, Y.; Frederico, S.; Teixeira Pitta, F. Unpacking the finance-farmland nexus: Circles of cooperation and intermediaries in Brazil. Globalizations 2021, 18, 461–481. [Google Scholar] [CrossRef]
- Vieira, R.M.D.S.P.; Tomasella, J.; Barbosa, A.A.; Polizel, S.P.; Ometto, J.P.H.B.; Santos, F.C.; da Cruz Ferreira, Y.; de Toledo, P.M. Land degradation mapping in the MATOPIBA region (Brazil) using remote sensing data and decision-tree analysis. Sci. Total Environ. 2021, 782, 146900. [Google Scholar] [CrossRef]
- Dos Reis, L.C.; e Silva, C.M.S.; Bezerra, B.G.; Mutti, P.R.; Spyrides, M.H.C.; Da Silva, P.E. Analysis of Climate Extreme Indices in the MATOPIBA Region, Brazil. Pure Appl. Geophys. 2020, 177, 4457–4478. [Google Scholar] [CrossRef]
- Marques, A.R.; Amorim, A.; Fonsesca, A.A.P. Forest restoration activities with the indigenous community in Maranhão. Biodivers. Bras. BioBrasil 2020, 1, 27. [Google Scholar] [CrossRef]
- Varga, I.V.D. The unbearable lightness of State: Devastation, genocide, illnesses and misery in the contemporary frontiers of Amazon, in Maranhão. Acta Amaz. 2008, 38, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Hunke, P.; Mueller, E.N.; Schröder, B.; Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 2015, 8, 1154–1180. [Google Scholar] [CrossRef]
- Maranhão, D.D.C.; Pereira, M.G.; Collier, L.S.; dos Anjos, L.H.C.; Azevedo, A.C.; de Souza Cavassani, R. Pedogenesis in a karst environment in the Cerrado biome, northern Brazil. Geoderma 2020, 365, 114169. [Google Scholar] [CrossRef]
- Rodrigues, M.D.S.; da Conceição, G. Floristic diversity of different Cerrado, the State Park Mirador, Maranhão, Brazil. Braz. Geogr. J. Geosci. Humanit. Res. Medium 2014, 5, 139–156. [Google Scholar]
- Barbosa, D.D.A.; Brasil, L.S.; Azevêdo, C.A.S.D.; Lima, L.R.C. The role of spatial and environmental variables in shaping aquatic insect assemblages in two protected areas in the transition area between Cerrado and Amazônia. Biota Neotrop. 2020, 20. Available online: https://www.scielo.br/j/bn/a/FmLbvR9kyn4RdFksrfSdFrq/?lang=en (accessed on 1 July 2021). [CrossRef]
- Liebmann, B.; Camargo, S.J.; Seth, A.; Marengo, J.A.; Carvalho, L.M.; Allured, D.; Fu, R.; Vera, C.S. Onset and end of the rainy season in South America in observations and the ECHAM 4.5 atmospheric general circulation model. J. Clim. 2007, 20, 2037–2050. [Google Scholar] [CrossRef] [Green Version]
- Alves, D.B.; Pérez-Cabello, F. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon). Sci. Total Environ. 2017, 601, 142–158. [Google Scholar] [CrossRef] [PubMed]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Woodcock, C.E.; Allen, R.; Anderson, M.; Belward, A.; Bindschadler, R.; Cohen, W.; Gao, F.; Goward, S.N.; Helder, D.; Helmer, E.; et al. Free access to Landsat imagery. Science 2008, 320, 1011. [Google Scholar] [CrossRef] [PubMed]
- Long, T.; Zhang, Z.; He, G.; Jiao, W.; Tang, C.; Wu, B.; Zhang, X.; Wang, G.; Yin, R. 30 m resolution global annual burned area mapping based on Landsat Images and Google Earth Engine. Remote Sens. 2019, 11, 489. [Google Scholar] [CrossRef] [Green Version]
- Bastarrika, A.; Chuvieco, E.; Martín, M.P. Mapping burned areas from Landsat TM/ETM+ data with a two-phase algorithm: Balancing omission and commission errors. Remote Sens. Environ. 2011, 115, 1003–1012. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C.; Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. Landscape assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Gen. Tech. Rep. RMRS-GTR-164-CD; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; Volume 164, p. LA-1-55. [Google Scholar]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F.; Key, C.H.; Benson, N.C.; Sutherland, S.; Gangi, L.J. FIREMON: Fire Effects Monitoring and Inventory System; Gen. Tech. Rep. RMRS-GTR-164; US Department of Agriculture, Forest Service, Rocky Mountain Research Station. 1 CD.: Fort Collins, CO, USA, 2006.
- Meng, R.; Zhao, F. Remote sensing of fire effects: A review for recent advances in burned area and burn severity mapping. In Remote Sensing of Hydrometeorological Hazards; CRC Press: Boca Raton, FL, USA, 2017; pp. 261–283. [Google Scholar]
- Vermote, E.; Justice, C.; Claverie, M.; Franch, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sens. Environ. 2016, 185, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Muenchow, J.; Schratz, P.; Brenning, A. RQGIS: Integrating R with QGIS for Statistical Geocomputing. R J. 2017, 9, 409–428. [Google Scholar] [CrossRef]
- Jaya, M.T.S.; Fajar, A.N. Analysis of The Implementation Quantum GIS: Comparative Rffect and User Performance. J. Theor. Appl. Inf. Technol. 2019, 97, 2596–2605. [Google Scholar]
- Alvarado, S.T.; Fornazari, T.; Cóstola, A.; Morellato, L.P.C.; Silva, T.S.F. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecol. Indic. 2017, 78, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Varga, I.V.D. A insustentável leveza do estado: Devastação, genocídio, doenças e miséria nas fronteiras contemporâneas da Amazônia, no Maranhão. Acta Amaz. 2008, 38, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Junior, C.H.L.S.; Anderson, L.O.; Oliveira, L.E.; de Aragão, C.; Rodrigues, B.D. Dinâmica das queimadas no Cerrado do Estado do Maranhão, Nordeste do Brasil. Rev. Dep. Geogr. 2018, 35, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Daldegan, G.A.; De Carvalho, O.A.; Guimarães, R.F.; Gomes, R.A.T.; Ribeiro, F.D.F.; McManus, C. Spatial patterns of fire recurrence using remote sensing and GIS in the Brazilian savanna: Serra do Tombador Nature Reserve, Brazil. Remote Sens. 2014, 6, 9873–9894. [Google Scholar] [CrossRef] [Green Version]
- Pereira Júnior, A.C.; Oliveira, S.L.; Pereira, J.M.; Turkman, M.A.A. Modelling fire frequency in a Cerrado savanna protected area. PLoS ONE 2014, 9, e102380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Milanez, C.; Ribeiro, F.; Castro, P.; Majer, J.; Ribeiro, S. Effect of fire on ant assemblages in Brazilian cerrado in areas containing vereda wetlands. Sociobiology 2015, 62, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Grace, J.; Jose, J.S.; Meir, P.; Miranda, H.S.; Montes, R.A. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 2006, 33, 387–400. [Google Scholar] [CrossRef]
- Martínez-Ramos, M.; Balvanera, P.; Villa, F.A.; Mora, F.; Maass, J.M.; Méndez, S.M.-V. Effects of long-term inter-annual rainfall variation on the dynamics of regenerative communities during the old-field succession of a neotropical dry forest. For. Ecol. Manag. 2018, 426, 91–100. [Google Scholar] [CrossRef]
- Mayr, M.J.; Vanselow, K.A.; Samimi, C. Fire regimes at the arid fringe: A 16-year remote sensing perspective (2000–2016) on the controls of fire activity in Namibia from spatial predictive models. Ecol. Indic. 2018, 91, 324–337. [Google Scholar] [CrossRef]
- Darbyshire, E.; Morgan, W.T.; Allan, J.D.; Liu, D.; Flynn, M.J.; Dorsey, J.R.; O’Shea, S.J.; Lowe, D.; Szpek, K.; Marenco, F.; et al. The vertical distribution of biomass burning pollution over tropical South America from aircraft in situ measurements during SAMBBA. Atmos. Chem. Phys. 2019, 19, 5771–5790. [Google Scholar] [CrossRef] [Green Version]
- Dionizio, E.A.; Heil Costa, M.; de Almeida Castanho, A.D.; Ferreira Pires, G.; Schwantes Marimon, B.; Hur Marimon-Junior, B.; Lenza, E.; Martins Pimenta, F.; Yang, X.; Jain, A.K. Influence of climate variability, fire and phosphorus limitation on vegetation structure and dynamics of the Amazon–Cerrado border. Biogeosciences 2018, 15, 919–936. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W.A.; Orthen, B.; Nascimento, P.K.V.D. Comparative fire ecology of tropical savanna and forest trees. Funct. Ecol. 2003, 17, 720–726. [Google Scholar] [CrossRef]
- de Dantas, L.V.; Batalha, M.A.; Pausas, J.G. Fire drives functional thresholds on the savanna–forest transition. Ecology 2013, 94, 2454–2463. [Google Scholar]
- Nobre, C.A.; Marengo, J.A. Mudanças Climáticas em Rede: Um Olhar Interdisciplinar; Canal6 Editora: São Paulo, Brazil, 2017. [Google Scholar]
- Sano, E.E.; Rosa, R.; Scaramuzza, C.A.D.M.; Adami, M.; Bolfe, E.L.; Coutinho, A.C.; Esquerdo, J.C.D.M.; Maurano, L.E.P.; da Silva Narvaes, I.; de Oliveira Filho, F.J.B.; et al. Land use dynamics in the Brazilian Cerrado in the period from 2002 to 2013. Pesqui. Agric. Bras. 2019, 54. Available online: https://www.scielo.br/j/pab/a/GQYcBYK993bQksGszxwkcsf/?lang=en (accessed on 1 July 2021). [CrossRef]
- Alencar, A.A.; Brando, P.M.; Asner, G.P.; Putz, F.E. Landscape fragmentation, severe drought, and the new Amazon forest fire regime. Ecol. Appl. 2015, 25, 1493–1505. [Google Scholar] [CrossRef] [PubMed]
- Alencar, A.; Nepstad, D.; Diaz, M.C.V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO years: Area burned and committed carbon emissions. Earth Interact. 2006, 10, 1–17. [Google Scholar] [CrossRef]
- Jimenez, J.C.; Takahashi, K. Tropical Climate Variability and Change: Impacts in the Amazon. Front. Earth Sci. 2019, 7, 215. [Google Scholar] [CrossRef]
- Ji, L.; Peters, A.J. Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens. Environ. 2003, 87, 85–98. [Google Scholar] [CrossRef]
- Levine, N.M.; Zhang, K.; Longo, M.; Baccini, A.; Phillips, O.L.; Lewis, S.L.; Alvarez-Dávila, E.; de Andrade, A.C.S.; Brienen, R.J.; Erwin, T.L.; et al. Ecosystem heterogeneity determines the ecological resilience of the Amazon to climate change. Proc. Natl. Acad. Sci. 2016, 113, 793–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwomoh, F.K.; Wimberly, M.C.; Cochrane, M.A.; Numata, I. Forest degradation promotes fire during drought in moist tropical forests of Ghana. For. Ecol. Manag. 2019, 440, 158–168. [Google Scholar] [CrossRef]
- Morgan, W.T.; Darbyshire, E.; Spracklen, D.V.; Artaxo, P.; Coe, H. Non-deforestation drivers of fires are increasingly important sources of aerosol and carbon dioxide emissions across Amazonia. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, W.A.; Jaconis, S.Y.; McKinley, K.L.; Geiger, E.L.; Gotsch, S.G.; Franco, A.C. Fuels or microclimate? Understanding the drivers of fire feedbacks at savanna–forest boundaries. Austral Ecol. 2012, 37, 634–643. [Google Scholar] [CrossRef]
- Franco, A.C.; Rossatto, D.R.; Silva, L.D.C.R.; da Silva Ferreira, C. Cerrado vegetation and global change: The role of functional types, resource availability and disturbance in regulating plant community responses to rising CO 2 levels and climate warming. Theor. Exp. Plant Physiol. 2014, 26, 19–38. [Google Scholar] [CrossRef]
- Lemes, P.; Loyola, R. Mudanças climáticas e prioridades para a conservação da biodiversidade. Rev. De Biol. Neotrop. 2014, 11, 1. [Google Scholar]
- Fonseca, M.G.; Alves, L.M.; Aguiar, A.P.D.; Arai, E.; Anderson, L.O.; Rosan, T.M.; Shimabukuro, Y.E.; de Aragão, L.E.O.E.C. Effects of climate and land-use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Glob. Chang. Biol. 2019, 25, 2931–2946. [Google Scholar] [CrossRef]
- Mistry, J.; Berardi, A.; Andrade, V.; Krahô, T.; Krahô, P.; Leonardos, O. Indigenous fire management in the cerrado of Brazil: The case of the Krahô of Tocantíns. Hum. Ecol. 2005, 33, 365–386. [Google Scholar] [CrossRef]
- Pivello, V.R. The use of fire in the Cerrado and Amazonian rainforests of Brazil: Past and present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Ribeiro, J.F.; Walter, B.M.T. As principais fitofisionomias do bioma Cerrado. Cerrado Ecol. Flora 2008, 1, 151–212. [Google Scholar]
- Strassburg, B.B.; Brooks, T.; Feltran-Barbieri, R.; Iribarrem, A.; Crouzeilles, R.; Loyola, R.; Latawiec, A.E.; Oliveira Filho, F.J.; de M. Scaramuzza, C.A.; Scarano, F.R.; et al. Moment of truth for the Cerrado hotspot. Nat. Ecol. Evol. 2017, 1, 1–3. [Google Scholar] [CrossRef]
- Hoffmann, W.A.; Adasme, R.; Haridasan, M.; de Carvalho, M.T.; Geiger, E.L.; Pereira, M.A.; Gotsch, S.G.; Franco, A.C. Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 2009, 90, 1326–1337. [Google Scholar] [CrossRef] [Green Version]
- Pilon, N.A.; Hoffmann, W.A.; Abreu, R.C.; Durigan, G. Quantifying the short-term flowering after fire in some plant communities of a cerrado grassland. Plant Ecol. Divers. 2018, 11, 259–266. [Google Scholar] [CrossRef]
- Stanaway, J.D.; Afshin, A.; Gakidou, E.; Lim, S.S.; Abate, D.; Abate, K.H.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
ILs Name | Ethnicity | Legal Situation | Modalities | Population | Area (ha) |
---|---|---|---|---|---|
Kanela | Canela Ramkokamekrá | Regularized | Traditionally Occupied | 2103 | 125.577 |
Kanela Memortumré | Canela Ramkokamekrá | Delimited | Traditionally Occupied | 1961 | 100.301 |
Porquinhos | Canela Apanyekrá | Regularized | Traditionally Occupied | 677 | 79.410 |
Porquinhos dos Canela-Apanyekrá | Canela Apanyekrá | Declared | Traditionally Occupied | 569 | 221.838 |
Bacurizinho | Guajajara | Regularized and Declared | Traditionally Occupied | 3663 | 133.978 |
Urucu/Juruá | Guajajara | Regularized | Traditionally Occupied | 835 | 12.751 |
Cana Brava | Guajajara | Regularized | Traditionally Occupied | 4510 | 136.473 |
Lagoa Comprida | Guajajara | Regularized | Traditionally Occupied | 805 | 13.245 |
Rodeador | Guajajara | Regularized | Dominial Land | 126 | 2.324 |
ILs 5 km buffer | - | - | - | - | 386.488 |
Total | Indigenous Population: 15.836 | ||||
ILs area: 825.897 ha | |||||
Study area: 1.212.385 ha |
Sensor/Satellite | Spectral Bands Blue, Green, Red, NIR, SWIR, and SWIR2 | Filtered Collection | Spatial Resolution |
---|---|---|---|
TM Landsat-5 | B1, B2, B3, B4, B5, and B7 | 2008 to 2011 | 30 m |
ETM+ Landsat-7 | B1, B2, B3, B4, B5, and B7 | 2008 to 2017 | 30 m |
OLI Landsat-8 | B2, B3, B4, B5, B6, and B7 | 2013 to 2017 | 30 m |
Dry Season | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Year | Early Dry Season (EDS) | Middle Dry Season (MDS) | Late Dry Season (LDS) | Precipitation (Rainy Season—RS) (mm) | ||||||
Start | End | Length (Days) | Start | End | Length (Days) | Start | End | Length (Days) | ||
2008 | 12/05 | 25/05 | 14 | 26/05 | 18/10 | 146 | 19/10 | 12/12 | 55 | 1084 |
2009 | 21/05 | 12/06 | 23 | 13/06 | 22/08 | 71 | 23/08 | 08/12 | 108 | 1396 |
2010 | 20/04 | 15/07 | 87 | 16/07 | 23/10 | 100 | 24/10 | 12/12 | 50 | 829 |
2011 | 21/05 | 09/07 | 50 | 10/07 | 30/09 | 83 | 01/10 | 17/10 | 17 | 1239 |
2012 | 26/03 | 21/07 | 118 | 22/07 | 14/10 | 85 | 15/10 | 03/12 | 50 | 792 |
2013 | 26/05 | 20/07 | 56 | 21/07 | 06/10 | 78 | 07/10 | 28/10 | 22 | 728 |
2014 | - | - | 0 | 26/05 | 23/09 | 121 | 24/09 | 18/01 | 117 | 1179 |
2015 | 14/04 | 06/06 | 54 | 07/06 | 19/10 | 135 | 20/10 | 30/12 | 72 | 549 |
2016 | 17/05 | 11/06 | 26 | 12/06 | 16/09 | 97 | 17/09 | 17/12 | 92 | 611 |
2017 | 03/05 | 12/06 | 41 | 13/06 | 30/10 | 140 | - | - | 0 | 830 |
Year | Dry Season | Rainy Season | Total (ha) | ||
---|---|---|---|---|---|
EDS | MDS | LDS | |||
2008 | 8 | 110,001 | 19,423 | 1996 | 131,428 |
2009 | 18 | 84,435 | 72,742 | 3578 | 160,773 |
2010 | 37,631 | 232,146 | 16,915 | 145 | 286,837 |
2011 | 5037 | 135,980 | 0 | 274 | 141,291 |
2012 | 4248 | 298,826 | 8326 | 0 | 311,400 |
2013 | 620 | 108,770 | 1678 | 4553 | 115,621 |
2014 | 0 | 149,371 | 25,879 | 6 | 175,256 |
2015 | 0 | 199,320 | 23,906 | 7 | 223,233 |
2016 | 10 | 95,709 | 104,379 | 3239 | 203,337 |
2017 | 0 | 522,872 | 0 | 17,514 | 540,386 |
Burned Area (ha) | 47,572 | 1,937,430 | 273,248 | 31,312 | 2,289,562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Melo, P.; Sparacino, J.; Argibay, D.; Sousa Júnior, V.; Barros, R.; Espindola, G. Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado. Fire 2021, 4, 34. https://doi.org/10.3390/fire4030034
Melo P, Sparacino J, Argibay D, Sousa Júnior V, Barros R, Espindola G. Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado. Fire. 2021; 4(3):34. https://doi.org/10.3390/fire4030034
Chicago/Turabian StyleMelo, Pedro, Javier Sparacino, Daihana Argibay, Vicente Sousa Júnior, Roseli Barros, and Giovana Espindola. 2021. "Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado" Fire 4, no. 3: 34. https://doi.org/10.3390/fire4030034
APA StyleMelo, P., Sparacino, J., Argibay, D., Sousa Júnior, V., Barros, R., & Espindola, G. (2021). Assessing Wildfire Regimes in Indigenous Lands of the Brazilian Savannah-Like Cerrado. Fire, 4(3), 34. https://doi.org/10.3390/fire4030034