Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Timeframe
2.2. Datasets
2.2.1. Mapping the Extent of Burnt Areas
2.2.2. Mapping Individual Wildfires
2.2.3. Response Variables
2.2.4. Explanatory Variables
2.3. Statistical Analysis
3. Results
3.1. The Australian Black Summer Season
3.2. Characteristics of the Response Variables of the Fires
3.3. Characteristics of the Explanatory Variables of the Fires
3.4. Statistical Modelling of the Wildfires
3.4.1. Univariate Correlations
3.4.2. Multivariate Models
4. Discussion
4.1. The Factors Affecting the Size and Impact of the Black Summer Fires
4.2. Remote Sensing of Wildfires
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bowman, D.M.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Wildfires as an Ecosystem Service. Front. Ecol. Environ. 2019, 17, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Pausas, J.G.; Keeley, J.E. A Burning Story: The Role of Fire in the History of Life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A. The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Williamson, G.J.; Abatzoglou, J.T.; Kolden, C.A.; Cochrane, M.A.; Smith, A.M. Human Exposure and Sensitivity to Globally Extreme Wildfire Events. Nat. Ecol. Evol. 2017, 1, 1–6. [Google Scholar] [CrossRef]
- Bradstock, R.A. A Biogeographic Model of Fire Regimes in Australia: Current and Future Implications. Glob. Ecol. Biogeogr. 2010, 19, 145–158. [Google Scholar] [CrossRef]
- Kirchmeier-Young, M.C.; Gillett, N.P.; Zwiers, F.W.; Cannon, A.J.; Anslow, F.S. Attribution of the Influence of Human-induced Climate Change on an Extreme Fire Season. Earth Future 2019, 7, 2–10. [Google Scholar] [CrossRef]
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed Impacts of Anthropogenic Climate Change on Wildfire in California. Earth Future 2019, 7, 892–910. [Google Scholar] [CrossRef] [Green Version]
- Bowman, D.M.; Moreira-Muñoz, A.; Kolden, C.A.; Chávez, R.O.; Muñoz, A.A.; Salinas, F.; González-Reyes, Á.; Rocco, R.; de la Barrera, F.; Williamson, G.J. Human–Environmental Drivers and Impacts of the Globally Extreme 2017 Chilean Fires. Ambio 2019, 48, 350–362. [Google Scholar] [CrossRef]
- Prist, P.R.; Levin, N.; Metzger, J.P.; de Mello, K.; de Paula Costa, M.D.; Castagnino, R.; Cortes-Ramirez, J.; Lin, D.-L.; Butt, N.; Lloyd, T.J. Collaboration across Boundaries in the Amazon. Science 2019, 366, 699–700. [Google Scholar] [PubMed]
- Skipper, M.; Dhand, R.; Pearson, H. Take Action to Stop the Amazon Burning. Nature 2019, 573, 163. [Google Scholar]
- Nolan, R.H.; Boer, M.M.; Collins, L.; Resco de Dios, V.; Clarke, H.G.; Jenkins, M.; Kenny, B.; Bradstock, R.A. Causes and Consequences of Eastern Australia’s 2019–20 Season of Mega-Fires. Glob. Chang. Biol. 2020, 26, 1039–1041. [Google Scholar] [CrossRef] [Green Version]
- Boer, M.M.; de Dios, V.R.; Bradstock, R.A. Unprecedented Burn Area of Australian Mega Forest Fires. Nat. Clim. Chang. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Nagy, R.; Fusco, E.; Bradley, B.; Abatzoglou, J.T.; Balch, J. Human-Related Ignitions Increase the Number of Large Wildfires across US Ecoregions. Fire 2018, 1, 4. [Google Scholar] [CrossRef] [Green Version]
- Kganyago, M.; Shikwambana, L. Assessment of the Characteristics of Recent Major Wildfires in the USA, Australia and Brazil in 2018–2019 Using Multi-Source Satellite Products. Remote Sens. 2020, 12, 1803. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The Wildland–Urban Interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Bar-Massada, A.; Stewart, S.I.; Hammer, R.B.; Mockrin, M.H.; Radeloff, V.C. Using Structure Locations as a Basis for Mapping the Wildland Urban Interface. J. Environ. Manag. 2013, 128, 540–547. [Google Scholar] [CrossRef]
- Levin, N.; Tessler, N.; Smith, A.; McAlpine, C. The Human and Physical Determinants of Wildfires and Burnt Areas in Israel. Environ. Manag. 2016, 58, 549–562. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Yates, C.P.; Whitehead, P.J.; Smith, R.; Craig, R.; Allan, G.E.; Thackway, R.; Frakes, I.; Cridland, S.; Meyer, M.C. Bushfires ‘down under’: Patterns and Implications of Contemporary Australian Landscape Burning. Int. J. Wildland Fire 2007, 16, 361–377. [Google Scholar] [CrossRef]
- Murphy, B.P.; Bradstock, R.A.; Boer, M.M.; Carter, J.; Cary, G.J.; Cochrane, M.A.; Fensham, R.J.; Russell-Smith, J.; Williamson, G.J.; Bowman, D.M. Fire Regimes of Australia: A Pyrogeographic Model System. J. Biogeogr. 2013, 40, 1048–1058. [Google Scholar] [CrossRef]
- Pickrell, J. Australian Blazes Will ‘Reframe Our Understanding of Bushfire’. Science 2019, 366, 937. [Google Scholar] [CrossRef]
- Bowman, D.; Williamson, G.; Yebra, M.; Lizundia-Loiola, J.; Pettinari, M.L.; Shah, S.; Bradstock, R.; Chuvieco, E. Wildfires: Australia Needs National Monitoring Agency. Nature 2020, 584, 188–191. [Google Scholar] [CrossRef]
- Borchers Arriagada, N.; Palmer, A.J.; Bowman, D.M.; Morgan, G.G.; Jalaludin, B.B.; Johnston, F.H. Unprecedented Smoke-related Health Burden Associated with the 2019–20 Bushfires in Eastern Australia. Med, J. Aust. 2020, 213, 282–283. [Google Scholar] [CrossRef] [PubMed]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s Catastrophic 2019/20 Bushfire Season on Communities and Environment. Retrospective Analysis and Current Trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Ward, M.; Tulloch, A.I.; Radford, J.Q.; Williams, B.A.; Reside, A.E.; Macdonald, S.L.; Mayfield, H.J.; Maron, M.; Possingham, H.P.; Vine, S.J. Impact of 2019–2020 Mega-Fires on Australian Fauna Habitat. Nat. Ecol. Evol. 2020, 4, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Hyman, I.T.; Ahyong, S.T.; Köhler, F.; McEvey, S.F.; Milledge, G.; Reid, C.A.; Rowley, J.J. Impacts of the 2019–2020 Bushfires on New South Wales Biodiversity: A Rapid Assessment of Distribution Data for Selected Invertebrate Taxa. Tech. Rep. Aust. Mus. Online 2020, 32, 1–17. [Google Scholar] [CrossRef]
- Godfree, R.C.; Knerr, N.; Encinas-Viso, F.; Albrecht, D.; Bush, D.; Cargill, D.C.; Clements, M.; Gueidan, C.; Guja, L.K.; Harwood, T. Implications of the 2019–2020 Megafires for the Biogeography and Conservation of Australian Vegetation. Nat. Commun. 2021, 12, 1–13. [Google Scholar] [CrossRef]
- Clarke, H.; Penman, T.; Boer, M.; Cary, G.J.; Fontaine, J.B.; Price, O.; Bradstock, R. The Proximal Drivers of Large Fires: A Pyrogeographic Study. Front. Earth Sci. 2020, 8, 90. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Xu, R.; Abramson, M.J.; Li, S.; Guo, Y. Bushfires in Australia: A Serious Health Emergency under Climate Change. Lancet Planet. Health 2020, 4, e7–e8. [Google Scholar] [CrossRef] [Green Version]
- Hughes, L.; Steffen, W.; Mullins, G.; Dean, A.; Weisbrot, E.; Rice, M. Summer of Crisis. 2020. Available online: https://www.climatecouncil.org.au/wp-content/uploads/2020/03/Crisis-Summer-Report-200311.pdf (accessed on 11 March 2020).
- Van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; van Weele, M.; Haustein, K.; Li, S.; Wallom, D. Attribution of the Australian Bushfire Risk to Anthropogenic Climate Change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Kooyman, R.M.; Taylor, C.; Ward, M.; Watson, J.E. Recent Australian Wildfires Made Worse by Logging and Associated Forest Management. Nat. Ecol. Evol. 2020, 4, 898–900. [Google Scholar] [CrossRef] [PubMed]
- Adams, M.A.; Shadmanroodposhti, M.; Neumann, M. Causes and Consequences of Eastern Australia’s 2019–20 Season of Mega-fires: A Broader Perspective. Glob. Chang. Biol. 2020, 26, 3756–3758. [Google Scholar] [CrossRef] [PubMed]
- Bradstock, R.A.; Nolan, R.; Collins, L.; Resco de Dios, V.; Clarke, H.; Jenkins, M.E.; Kenny, B.; Boer, M.M. A Broader Perspective on the Causes and Consequences of Eastern Australia’s 2019–20 Season of Mega-Fires: A Response to Adams et al. Glob. Chang. Biol. 2020, 26, e8–e9. [Google Scholar] [CrossRef]
- Bowman, D.M.; Williamson, G.J.; Gibson, R.K.; Bradstock, R.A.; Keenan, R.J. The Severity and Extent of the Australia 2019–20 Eucalyptus Forest Fires Are Not the Legacy of Forest Management. Nat. Ecol. Evol. 2021, 5, 1003–1010. [Google Scholar]
- Schroeder, W.; Prins, E.; Giglio, L.; Csiszar, I.; Schmidt, C.; Morisette, J.; Morton, D. Validation of GOES and MODIS Active Fire Detection Products Using ASTER and ETM+ Data. Remote Sens. Environ. 2008, 112, 2711–2726. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying Burn Severity in a Heterogeneous Landscape with a Relative Version of the Delta Normalized Burn Ratio (DNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Massetti, A.; Rüdiger, C.; Yebra, M.; Hilton, J. The Vegetation Structure Perpendicular Index (VSPI): A Forest Condition Index for Wildfire Predictions. Remote Sens. Environ. 2019, 224, 167–181. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L.; Ellicott, E.; Vadrevu, K.P.; Justice, C.O.; Wind, B. Active Fires from the Suomi NPP Visible Infrared Imaging Radiometer Suite: Product Status and First Evaluation Results. J. Geophys. Res. Atmos. 2014, 119, 803–816. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Sedano, F.; Hook, S.J.; Randerson, J.T.; Jin, Y.; Rogers, B.M. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data. Int. J. Wildland Fire 2014, 23, 655–667. [Google Scholar] [CrossRef] [Green Version]
- Sá, A.C.; Benali, A.; Fernandes, P.M.; Pinto, R.M.; Trigo, R.M.; Salis, M.; Russo, A.; Jerez, S.; Soares, P.M.; Schroeder, W. Evaluating Fire Growth Simulations Using Satellite Active Fire Data. Remote Sens. Environ. 2017, 190, 302–317. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.; Hoffmann, A.A.; Humber, M.; Hall, J.V. Collection 6 Modis Burned Area Product User’s Guide Version 1.0; NASA EOSDIS Land Process; DAAC: Sioux Falls, SD, USA, 2016. [Google Scholar]
- Boschetti, L.; Roy, D.P.; Giglio, L.; Huang, H.; Zubkova, M.; Humber, M.L. Global Validation of the Collection 6 MODIS Burned Area Product. Remote Sens. Environ. 2019, 235, 111490. [Google Scholar] [CrossRef]
- Levin, N.; Levental, S.; Morag, H. The Effect of Wildfires on Vegetation Cover and Dune Activity in Australia’s Desert Dunes: A Multisensor Analysis. Int. J. Wildland Fire 2012, 21, 459–475. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a Catastrophic Wildfire: The Black Saturday Kilmore East Fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Fromm, M.D.; McCarthy, N. Pyrocumulonimbus Lightning and Fire Ignition on Black Saturday in Southeast Australia. J. Geophys. Res. Atmos. 2017, 122, 7342–7354. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; Van Der Werf, G.R.; Randerson, J.T. The Global Fire Atlas of Individual Fire Size, Duration, Speed and Direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.N. Operational Space Technology for Global Vegetation Assessment. Bull. Am. Meteorol. Soc. 2001, 82, 1949–1964. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; van Dijk, A.I.; Cary, G.J. A Fuel Moisture Content and Flammability Monitoring Methodology for Continental Australia Based on Optical Remote Sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J.; Renzullo, L.J.; Barrett, D.J.; Marks, A.S.; Botha, E.J. Estimating Fractional Cover of Photosynthetic Vegetation, Non-Photosynthetic Vegetation and Bare Soil in the Australian Tropical Savanna Region Upscaling the EO-1 Hyperion and MODIS Sensors. Remote Sens. Environ. 2009, 113, 928–945. [Google Scholar] [CrossRef]
- Department of Agriculture, Water and the Environment. Australian Google Earth Engine Burnt Area Map, Canberra. 2020. Available online: https://www.environment.gov.au/system/files/pages/a8d10ce5-6a49-4fc2-b94d-575d6d11c547/files/ageebam.pdf (accessed on 27 July 2020).
- Gibson, R.; Danaher, T.; Hehir, W.; Collins, L. A Remote Sensing Approach to Mapping Fire Severity in South-Eastern Australia Using Sentinel 2 and Random Forest. Remote Sens. Environ. 2020, 240, 111702. [Google Scholar] [CrossRef]
- Finkele, K.; Mills, G.A.; Beard, G.; Jones, D.A. National Gridded Drought Factors and Comparison of Two Soil Moisture Deficit Formulations Used in Prediction of Forest Fire Danger Index in Australia. Aust. Meteorol. Mag. 2006, 55, 183–197. [Google Scholar]
- Dowdy, A.J. Climatological Variability of Fire Weather in Australia. J. Appl. Meteorol. Climatol. 2018, 57, 221–234. [Google Scholar] [CrossRef]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s Fire-danger Meters Expressed as Equations. Aust. J. Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Bird, R.B.; Bird, D.W.; Codding, B.F.; Parker, C.H.; Jones, J.H. The “Fire Stick Farming” Hypothesis: Australian Aboriginal Foraging Strategies, Biodiversity, and Anthropogenic Fire Mosaics. Proc. Natl. Acad. Sci. USA 2008, 105, 14796–14801. [Google Scholar] [CrossRef] [Green Version]
- Ansell, J.; Evans, J. Contemporary Aboriginal Savanna Burning Projects in Arnhem Land: A Regional Description and Analysis of the Fire Management Aspirations of Traditional Owners. Int. J. Wildland Fire 2019, 29, 371–385. [Google Scholar] [CrossRef]
- Russell-Smith, J.; Edwards, A.C.; Sangha, K.K.; Yates, C.P.; Gardener, M.R. Challenges for Prescribed Fire Management in Australia’s Fire-Prone Rangelands–the Example of the Northern Territory. Int. J. Wildland Fire 2019, 29, 339–353. [Google Scholar] [CrossRef]
- Preece, N. Aboriginal Fires in Monsoonal Australia from Historical Accounts. J. Biogeogr. 2002, 29, 321–336. [Google Scholar] [CrossRef]
- Royal Commission into National Natural Disaster Arrangements Background Paper: Cultural Burning Practices in Australia. 2020. Available online: https://naturaldisaster.royalcommission.gov.au/publications/background-paper-cultural-burning-practices-australia (accessed on 17 June 2020).
- Penman, T.D.; Christie, F.J.; Andersen, A.N.; Bradstock, R.A.; Cary, G.J.; Henderson, M.K.; Price, O.; Tran, C.; Wardle, G.M.; Williams, R.J. Prescribed Burning: How Can It Work to Conserve the Things We Value? Int. J. Wildland Fire 2011, 20, 721–733. [Google Scholar] [CrossRef]
- Royal Commission into National Natural Disaster Arrangements Background Paper: Land Management—Hazard Reduction: A Literature Review. 2020. Available online: https://apo.org.au/node/306254 (accessed on 17 June 2020).
- Vilar, L.; Camia, A.; San-Miguel-Ayanz, J.; Martín, M.P. Modeling Temporal Changes in Human-Caused Wildfires in Mediterranean Europe Based on Land Use-Land Cover Interfaces. For. Ecol. Manag. 2016, 378, 68–78. [Google Scholar] [CrossRef]
- Guerschman, J.P.; Hill, M.J. Calibration and Validation of the Australian Fractional Cover Product for MODIS Collection 6. Remote Sens. Lett. 2018, 9, 696–705. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E. The Global 200: Priority Ecoregions for Global Conservation. Ann. Mo. Bot. Gard. 2002, 89, 199–224. [Google Scholar] [CrossRef]
- Lucas, C. On Developing a Historical Fire Weather Data-Set for Australia. Aust. Meteorol. Oceanogr. J. 2010, 60, 1. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, A.R.; Holzworth, R.; Harlin, J.; Dowden, R.; Lay, E. Performance Assessment of the World Wide Lightning Location Network (WWLLN), Using the Los Alamos Sferic Array (LASA) as Ground Truth. J. Atmos. Ocean. Technol. 2006, 23, 1082–1092. [Google Scholar] [CrossRef]
- Haklay, M. How Good Is Volunteered Geographical Information? A Comparative Study of OpenStreetMap and Ordnance Survey Datasets. Environ. Plan. 2010, 37, 682–703. [Google Scholar] [CrossRef] [Green Version]
- Dobson, J.E.; Bright, E.A.; Coleman, P.R.; Durfee, R.C.; Worley, B.A. LandScan: A Global Population Database for Estimating Populations at Risk. Photogramm. Eng. Remote Sens. 2000, 66, 849–857. [Google Scholar]
- Lymburner, L.; Tan, P.; McIntyre, A.; Thankappan, M.; Sixsmith, J. Dynamic Land Cover Dataset Version 2.1. 2015. Available online: https://researchdata.edu.au/dynamic-land-cover-version-21/1278349 (accessed on 22 May 2020).
- Cade, B.S.; Noon, B.R. A Gentle Introduction to Quantile Regression for Ecologists. Front. Ecol. Environ. 2003, 1, 412–420. [Google Scholar] [CrossRef]
- Ager, A.A.; Preisler, H.K.; Arca, B.; Spano, D.; Salis, M. Wildfire Risk Estimation in the Mediterranean Area. Environmetrics 2014, 25, 384–396. [Google Scholar] [CrossRef]
- Moreira, F.; Catry, F.X.; Rego, F.; Bacao, F. Size-Dependent Pattern of Wildfire Ignitions in Portugal: When Do Ignitions Turn into Big Fires? Landsc. Ecol. 2010, 25, 1405–1417. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Neto, M.B.; Pivello, V.R. Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies. Environ. Manag. 2000, 26, 675–684. [Google Scholar] [CrossRef] [PubMed]
- Minnich, R.A. Fire Mosaics in Southern California and Northern Baja California. Science 1983, 219, 1287–1294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viegas, D.X.; Viegas, M.T. A Relationship between Rainfall and Burned Area for Portugal. Int. J. Wildland Fire 1994, 4, 11–16. [Google Scholar] [CrossRef]
- Blackmarr, W.H. Moisture Content Influences Ignitability of Slash Pine Litter; Res. Note SE-173; Department of Agriculture, Forest Service, Southeastern Forest Experiment Station: Asheville, NC, USA, 1972. [Google Scholar]
- Plucinski, M.P.; Anderson, W.R. Laboratory Determination of Factors Influencing Successful Point Ignition in the Litter Layer of Shrubland Vegetation. Int. J. Wildland Fire 2008, 17, 628–637. [Google Scholar] [CrossRef]
- Cawson, J.G.; Duff, T.J. Forest Fuel Bed Ignitability under Marginal Fire Weather Conditions in Eucalyptus Forests. Int. J. Wildland Fire 2019, 28, 198–204. [Google Scholar] [CrossRef] [Green Version]
- Levin, N.; Saaroni, H. Fire Weather in Israel—Synoptic Climatological Analysis. GeoJournal 1999, 47, 523–538. [Google Scholar] [CrossRef]
- Verhoeven, E.M.; Murray, B.R.; Dickman, C.R.; Wardle, G.M.; Greenville, A.C. Fire and Rain Are One: Extreme Rainfall Events Predict Wildfire Extent in an Arid Grassland. Int. J. Wildland Fire 2020, 29, 702–711. [Google Scholar] [CrossRef]
- McCaw, W.L.; Gould, J.S.; Cheney, N.P.; Ellis, P.F.; Anderson, W.R. Changes in Behaviour of Fire in Dry Eucalypt Forest as Fuel Increases with Age. For. Ecol. Manag. 2012, 271, 170–181. [Google Scholar] [CrossRef]
- Moritz, M.A.; Batllori, E.; Bradstock, R.A.; Gill, A.M.; Handmer, J.; Hessburg, P.F.; Leonard, J.; McCaffrey, S.; Odion, D.C.; Schoennagel, T. Learning to Coexist with Wildfire. Nature 2014, 515, 58–66. [Google Scholar] [CrossRef]
- Miller, C.; Plucinski, M.; Sullivan, A.; Stephenson, A.; Huston, C.; Charman, K.; Prakash, M.; Dunstall, S. Electrically Caused Wildfires in Victoria, Australia Are over-Represented When Fire Danger Is Elevated. Landsc. Urban Plan. 2017, 167, 267–274. [Google Scholar] [CrossRef]
- Plucinski, M.P.; McCaw, W.L.; Gould, J.S.; Wotton, B.M. Predicting the Number of Daily Human-Caused Bushfires to Assist Suppression Planning in South-West Western Australia. Int. J. Wildland Fire 2014, 23, 520–531. [Google Scholar] [CrossRef]
- Collins, K.M.; Price, O.F.; Penman, T.D. Spatial Patterns of Wildfire Ignitions in South-Eastern Australia. Int. J. Wildland Fire 2015, 24, 1098–1108. [Google Scholar] [CrossRef]
- Collins, K.M.; Penman, T.D.; Price, O.F. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others. PLoS ONE 2016, 11, e0162083. [Google Scholar] [CrossRef] [PubMed]
- Sharples, J.J.; Lewis, S.C.; Perkins-Kirkpatrick, S.E. Modulating Influence of Drought on the Synergy between Heatwaves and Dead Fine Fuel Moisture Content of Bushfire Fuels in the Southeast Australian Region. Weather Clim. Extrem. 2021, 31, 100300. [Google Scholar]
- Fox-Hughes, P.; Yebra, M.; Kumar, V.; Dowdy, A.; Hope, P.; Peace, M.; Narsey, S.; Delage, F.; Zhang, H. Soil and Fuel Moisture Precursors of Fire Activity during the 2019-20 Fire Season, in Comparison to Previous Seasons. 2021. Available online: https://www.bnhcrc.com.au/research/understanding-and-mitigating-hazards/7928 (accessed on 1 September 2021).
- De Dios, V.R.; Hedo, J.; Camprubí, À.C.; Thapa, P.; Del Castillo, E.M.; de Aragón, J.M.; Bonet, J.A.; Balaguer-Romano, R.; Díaz-Sierra, R.; Yebra, M. Climate Change Induced Declines in Fuel Moisture May Turn Currently Fire-Free Pyrenean Mountain Forests into Fire-Prone Ecosystems. Sci. Total Environ. 2021, 797, 149104. [Google Scholar] [CrossRef]
- Clarke, H.; Gibson, R.; Cirulis, B.; Bradstock, R.A.; Penman, T.D. Developing and Testing Models of the Drivers of Anthropogenic and Lightning-Caused Wildfire Ignitions in South-Eastern Australia. J. Environ. Manag. 2019, 235, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Wooster, M.J.; Kaneko, T.; He, J.; Zhang, T.; Fisher, D. Major Advances in Geostationary Fire Radiative Power (FRP) Retrieval over Asia and Australia Stemming from Use of Himarawi-8 AHI. Remote Sens. Environ. 2017, 193, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Owens, D.; O’Kane, M. Final Report of the NSW Bushfire Inquiry. 2020. Available online: https://apo.org.au/node/307786 (accessed on 2 September 2020).
- Storey, M.A.; Price, O.F.; Sharples, J.J.; Bradstock, R.A. Drivers of Long-Distance Spotting during Wildfires in South-Eastern Australia. Int. J. Wildland Fire 2020, 29, 459–472. [Google Scholar] [CrossRef]
- Teague, B.; McLeod, R.; Pascoe, S. Final Report, 2009 Victorian Bushfires Royal Commission; Parliament of Victoria: Melbourne, Australia, 2010. [Google Scholar]
- Kogan, F.N. Global Drought Watch from Space. Bull. Am. Meteorol. Soc. 1997, 78, 621–636. [Google Scholar] [CrossRef]
- Li, J.; Roy, D.P. A Global Analysis of Sentinel-2A, Sentinel-2B and Landsat-8 Data Revisit Intervals and Implications for Terrestrial Monitoring. Remote Sens. 2017, 9, 902. [Google Scholar] [CrossRef] [Green Version]
- Claverie, M.; Ju, J.; Masek, J.G.; Dungan, J.L.; Vermote, E.F.; Roger, J.-C.; Skakun, S.V.; Justice, C. The Harmonized Landsat and Sentinel-2 Surface Reflectance Data Set. Remote Sens. Environ. 2018, 219, 145–161. [Google Scholar] [CrossRef]
- Mouillot, F.; Schultz, M.G.; Yue, C.; Cadule, P.; Tansey, K.; Ciais, P.; Chuvieco, E. Ten Years of Global Burned Area Products from Spaceborne Remote Sensing—A Review: Analysis of User Needs and Recommendations for Future Developments. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 64–79. [Google Scholar] [CrossRef] [Green Version]
- Hawbaker, T.J.; Vanderhoof, M.K.; Schmidt, G.L.; Beal, Y.-J.; Picotte, J.J.; Takacs, J.D.; Falgout, J.T.; Dwyer, J.L. The Landsat Burned Area Algorithm and Products for the Conterminous United States. Remote Sens. Environ. 2020, 244, 111801. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A Spatio-Temporal Active-Fire Clustering Approach for Global Burned Area Mapping at 250 m from MODIS Data. Remote Sens. Environ. 2020, 236, 111493. [Google Scholar] [CrossRef]
- Fisher, R.; Edwards, A.C. Fire Extent and Mapping: Procedures, Validation and Website Application; Carbon Accounting and Savanna Fire Management; Murphy, B.P., Edwards, A.C., Meyer, C.P., Russell-Smith, J., Eds.; CSIRO Publishing: Melbourne, Australia, 2015; pp. 57–72. [Google Scholar]
- Goodwin, N.R.; Collett, L.J. Development of an Automated Method for Mapping Fire History Captured in Landsat TM and ETM+ Time Series across Queensland, Australia. Remote Sens. Environ. 2014, 148, 206–221. [Google Scholar] [CrossRef]
- Andela, N.; Kaiser, J.W.; Van der Werf, G.R.; Wooster, M.J. New Fire Diurnal Cycle Characterizations to Improve Fire Radiative Energy Assessments Made from MODIS Observations. Atmos. Chem. Phys. 2015, 15, 8831–8846. [Google Scholar] [CrossRef] [Green Version]
- Xu, G.; Zhong, X. Real-Time Wildfire Detection and Tracking in Australia Using Geostationary Satellite: Himawari-8. Remote Sens. Lett. 2017, 8, 1052–1061. [Google Scholar] [CrossRef]
- Liu, X.; He, B.; Quan, X.; Yebra, M.; Qiu, S.; Yin, C.; Liao, Z.; Zhang, H. Near Real-Time Extracting Wildfire Spread Rate from Himawari-8 Satellite Data. Remote Sens. 2018, 10, 1654. [Google Scholar] [CrossRef] [Green Version]
- Hally, B.; Wallace, L.; Reinke, K.; Jones, S.; Skidmore, A. Advances in Active Fire Detection Using a Multi-Temporal Method for next-Generation Geostationary Satellite Data. Int. J. Digit. Earth 2019, 12, 1030–1045. [Google Scholar] [CrossRef]
- Clarke, H.G.; Smith, P.L.; Pitman, A.J. Regional Signatures of Future Fire Weather over Eastern Australia from Global Climate Models. Int. J. Wildland Fire 2011, 20, 550–562. [Google Scholar] [CrossRef]
- Lucas, C.; Hennessy, K.; Mills, G.; Bathols, J. Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts; Bushfire Cooperative Research Centre, Australian Bureau of Meteorology and CSIRO Marine and Atmospheric Research: Melbourne, Australia, 2007. [Google Scholar]
- Abram, N.J.; Hargreaves, J.A.; Wright, N.M.; Thirumalai, K.; Ummenhofer, C.C.; England, M.H. Palaeoclimate Perspectives on the Indian Ocean Dipole. Quat. Sci. Rev. 2020, 237, 106302. [Google Scholar] [CrossRef]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate Change and Disruptions to Global Fire Activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S. A Human-Driven Decline in Global Burned Area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, A.E.; Hayes, P.; Strickland, R. Organizational Learning from Prescribed Fire Escapes: A Review of Developments over the Last 10 Years in the USA and Australia. Curr. For. Rep. 2020, 6, 41–59. [Google Scholar] [CrossRef]
- Clark, M. The Australian Space Agency. J. Proc. R. Soc. N. S. Wales 2020, 153, 58–60. [Google Scholar]
Variable | Short Name | Comments | Source |
---|---|---|---|
Area | Area | Wildfire area based on burn date mapping from VIIRS active fires and the MODIS burnt area MCD64A1 product | |
Days | Days | The number of days that it took for 90% of a wildfire to burn, based on burn date mapping from VIIRS active fires and the MODIS burnt area MCD64A1 product | |
Fire radiative power | FRP | Average FRP values, as recorded for active fires detected by MODIS | https://firms.modaps.eosdis.nasa.gov/ (accessed 21 February 2020) |
Change in Vegetation Health Index | VHI diff = VHI before–VHI after | Change in VHI, before and after the fire. This index is based on normalising the vegetation condition and temperature condition for each grid cell (4 km). The values of VHI range between 0 and 100. | https://www.star.nesdis.noaa.gov/smcd/emb/vci/VH/vh_ftp.php (accessed 13 February 2020) [50] |
Change in Live Fuel Moisture Content | LFMC diff = LFMC before–LFMC min | Change in LFMC before the fire and the minimum value of LFMC while the fire was burning | Australian Flammability Monitoring System http://wenfo.org/afms/ (accessed 1 April 2020) [51] |
Change in fractional cover of photosynthetic vegetation | PV diff = PV before–PV after | Change in PV before and after the fire | https://eo-data.csiro.au/remotesensing/v310/australia/8-day / (accessed 24 March 2020) [66] |
Change in fractional cover of photosynthetic and non-photosynthetic vegetation | PV+NPV diff = PV+NPV before– PV+NPV after | Change in PV+NPV, before and after the fire | https://eo-data.csiro.au/remotesensing/v310/australia/8-day/ (accessed 24 March 2020) [66] |
Fire Extent and Severity Mapping v. 2.1 | NSW FESM | Data available for the Black Summer fires in New South Wales | [54] https://data.gov.au/dataset/ds-nsw-c28a6aa8-a7ce-4181-8ed1-fd221dfcefc8/details?q= (accessed 13 May 2020) |
Australia Google Earth Engine Burnt Area Map (GEEBAM) Fire Severity Map | AUS FESM | Data available for 351 out of the 391 Black Summer fires | [53] http://www.environment.gov.au/biodiversity/bushfire-recovery/research-and-resources (accessed 27 July 2020) |
Variable | Short Name | Comments | Source |
---|---|---|---|
Climlatic variables (12) | |||
Biomes | % Area biomes 1,4,10 % Area biome 7 % Area biome 12 % Area biome 13 | Percentage of burnt area within WWF biomes (Figure 2) | [67] |
Rainfall in the last year before the fire started | Rain last year | This variable will be a proxy of the amount of herbaceous vegetation (fine fuel accumulation) | ERA5 Daily aggregates—Latest climate reanalysis produced by ECMWF/Copernicus Climate Change Service https://developers.google.com/earth-engine/datasets/catalog/ECMWF_ERA5_DAILY#bands https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed 30 April 2020) |
Rainfall in the last year before the fire started, relative to the average annual rainfall | Rain last year % | This variable will be a proxy of whether this was a drought year | |
Days since last significant rainfall (week with more than 4% of annual rainfall) | Days since rain | This variable will indicate the drying of the vegetation since the last rainfall event | |
Days since ignition until rainfall started (week with more than 4% of annual rainfall) | Days until rain | This variable may indicate how much time the fire had to burn until rainfall may have contributed to extinguishing the fire | |
Fire Danger Index (FDI) | FDI start (FDI value when the fire started) FDIstart4max (FDI maximum value in the four days preceding the fire) FDI99pct (99 percentile of FDI within the burnt area during the fire) | Daily fire weather index, based on a drought factor, air temperature, wind speed and relative humidity. | [68] |
Total lightning strikes during the fire, within the burnt area | Lightning strikes (lightning strikes per km2 per days the fire burnt) | This variable was not included in the multivariate analysis | The World Wide Lightning Location Network (WWLLN), http://wwlln.net/ (accessed 17 February 2020)[69] |
Vegetation fuel variables (9) | |||
Tree cover layer | Tree cover | The amount of tree cover within the wildfire polygon before the fire started (tree cover as of 2017) | http://dapds00.nci.org.au/thredds/catalog/ub8/au/treecover/250m/catalog.html (accessed 6 March 2020) |
Continuity of vegetation within 10 km of the ignition | Forest continuity | Based on patches of tree cover (>90%), after a spatial filter of minimum 3 × 3, total sum within 10 km buffer of ignition. The greater the continuity of vegetation, the more area that can potentially burn. Based on the Australia tree cover layer (>90%) | |
VHI LFMC PV PV+NPV | VHI start LFMC start PV start PV+NPV start | The average values of these variables within the area that eventually burnt, based on the temporally closest dataset when the wildfire started | |
Frequency of fires in the previous 8 years | % Burnt 8 years (% of the wildfire area, which was burnt in the previous 8 years) Times burnt 8 years (number of times fires were detected within the wildfire area, in the previous 8 years, normalised by the fire area) | Based on the number of MODIS active fires that were detected from 2001 onwards | |
Previously burnt areas by nearby wildfires | Burnt 25 km | Percentage of area burnt within 25 km of the ignition point in the previous eight months | Based on burn date mapping from VIIRS and MODIS |
Anthropogenic variables (15) | |||
Average distance to the nearest paved road (Motorway, Trunk, Primary, Secondary, Tertiary) within the burnt area | Dist roads (average distance from roads within the burnt area) Dist roads start (distance from roads where the fire started) | Open Street Map http://download.geofabrik.de/australia-oceania.html (accessed 5 March 2020) [70] | |
Distance from electricity transmission lines | Dist electricity | Average distance within wildfire polygon to electricity transmission lines | https://data.gov.au/dataset/ds-ga-1185c97c-c042-be90-e053-12a3070a969b/details?q= (accessed 3 March 2020) |
Population within 10 km of the ignition | Pop 10 km | https://landscan.ornl.gov/ (accessed 14 March 2020) [71] | |
Total population size within the burnt area | Total pop (population in the burnt area) Mean pop (average population density in the burnt area) | https://landscan.ornl.gov/ (accessed 14 March 2020) [71] | |
Aboriginal lands | % Indigenous PA % native title Y (percentage of burnt area within native title lands, where native title exists) % native title Y/N (percentage of burnt area within native title lands, whether it exists or does not exist) | Percentage of burnt area within indigenous protected areas and native title lands | http://www.nntt.gov.au/assistance/Geospatial/Pages/DataDownload.aspx https://www.environment.gov.au/land/nrs/science/capad (accessed 6 April 2020) |
Protected areas (PA) | % PA | Percentage of burnt area within protected areas (based on the Collaborative Australian Protected Area Database, as of 2018) | https://www.environment.gov.au/land/nrs/science/capad (accessed 6 March 2020) |
Dynamic Land Cover Dataset Version 2.1. | DLCD FAI DLCD FGI DLCD WUI | Used to calculate the forest–agricultural interface (FAI), forest–grassland interface (FGI), and wildland–urban interface (WUI), following [65]. See Table S1 for the codes used to calculate these interfaces. | [72] Geoscience Australia, Canberra. http://pid.geoscience.gov.au/dataset/ga/83868 (accessed 22 May 2020) |
Land Use and Management Information for Australia | AGRI FAI AGRI WUI | https://www.agriculture.gov.au/abares/aclump (accessed 23 May 2020) |
Response Variables | Black Summer Non-Forest Fires n = 186 | Black Summer Forest Fires n = 205 | Black Summer Forest Fires in SE Australia n = 63 |
---|---|---|---|
Area (km2) | 445 (±607) | 584 (±1137) | 1097 (±1864) |
Days 90% (days) | 8.5 (±6.6) | 17.5 (±12.4) | 22.2 (±13.8) |
FRP M6 MODIS (MW) | 97 (±85) | 100 (±93) | 118 (±104) |
Area 90%/Days 90% (km2/day) | 54 (±50) | 33 (±42) | 48 (±63) |
Change in vegetation health index (VHI) (%) | 16.2 (±14.7) | 21.7 (±13.5) | 18.0 (±14.2) |
Change in live fuel moisture content (LFMC) (%) | 11.8 (±11.2) | 14.2 (±19.2) | 26.6 (±23.9) |
Change in photosynthetic vegetation (PV) (%) | 4.6 (±3.4) | 15.6 (±8.6) | 22.6 (±8.2) |
Change in PV and non-PV (NPV) (%) | 19.4 (±6.6) | 18.5 (±5.4) | 14.8 (±5.0) |
AUS FESM (%) | 54.4 (±25.6) | 80.1 (±45.0) | 117.6 (±37.9) |
Area | Days | FRP M6 MODIS | Area/Days | Change in VHI | Change in LFMC | Change in PV | Change in PV+NPV | AUS FESM | NSW FESM | |
---|---|---|---|---|---|---|---|---|---|---|
Area (km2) | 0.30 * | 0.15 | 0.74 *** | 0.23 | 0.45 *** | 0.44 *** | 0.26 * | 0.42 *** | 0.24 | |
Days | −0.56 *** | −0.29 * | 0.06 | 0.36 ** | 0.06 | −0.22 | −0.12 | −0.37 * | ||
FRP M6 MODIS (MW) | 0.53 *** | 0.20 | −0.05 | 0.38 ** | 0.59 *** | 0.52 *** | 0.65 *** | |||
Area/Days (km2/day) | 0.23 | 0.23 | 0.43 *** | 0.51 *** | 0.42 ** | 0.43 ** | ||||
Change in vegetation health index) (%) | 0.37 ** | 0.50 *** | 0.34 ** | 0.19 | 0.18 | |||||
Change in live fuel moisture content (LFMC) (%) | 0.60 *** | −0.08 | 0.05 | −0.16 | ||||||
Change in photosynthetic vegetation (PV) (%) | 0.44 *** | 0.39 ** | 0.28 | |||||||
Change in PV and non-PV (NPV) (%) | 0.52 *** | 0.69 *** | ||||||||
AUS FESM | 0.65 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, N.; Yebra, M.; Phinn, S. Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020. Fire 2021, 4, 58. https://doi.org/10.3390/fire4030058
Levin N, Yebra M, Phinn S. Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020. Fire. 2021; 4(3):58. https://doi.org/10.3390/fire4030058
Chicago/Turabian StyleLevin, Noam, Marta Yebra, and Stuart Phinn. 2021. "Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020" Fire 4, no. 3: 58. https://doi.org/10.3390/fire4030058
APA StyleLevin, N., Yebra, M., & Phinn, S. (2021). Unveiling the Factors Responsible for Australia’s Black Summer Fires of 2019/2020. Fire, 4(3), 58. https://doi.org/10.3390/fire4030058