Generation and Mapping of Fuel Types for Fire Risk Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Case: Spatial Delimitation
2.2. Materials, Data, and Analysis Techniques
2.2.1. Generation of the Basic Vegetation Cartography
- (A)
- Classification training sample
- (B)
- Input bands
- (C)
- Classification algorithm
- (D)
- Validation
2.2.2. Generation of the Cartography of Fuel Types
- (A)
- Horizontal fuel continuity
- (B)
- Biogeographic regions
- (C)
- Generation of the customized Iberian fuel types
- (D)
- Adaptation of the Iberian fuel types to the FBFT system
2.2.3. Fuel Parameters: Biomass
2.2.4. Intercomparison of the FBFT Fuel Map
3. Results
3.1. Vegetation Map
3.2. Fuel Type Map
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Intensity Category | Rate of Spread (m/min) | Flame Length (m) |
---|---|---|
Very low | 0–0.30 | 0–0.31 |
Low | 0.30–0.75 | 0.31–1.22 |
Moderate | 0.75–3.00 | 1.22–2.44 |
High | 3.00–7.50 | 2.44–3.66 |
Very high | 7.50–22.5 | 3.66–7.62 |
Extreme | >22.5 | >7.62 |
Category | Conif. | Evergr. Broad. | Decid. Broad. | Shr. | Grass. | Other Uses | Total | UA * (%) | CE * (%) |
---|---|---|---|---|---|---|---|---|---|
Conif. | 35 | 1 | 1 | 1 | 0 | 2 | 39 | 89.74 | 10.26 |
Evergr. broad. | 0 | 36 | 0 | 1 | 3 | 4 | 44 | 81.82 | 18.18 |
Decid. broad. | 4 | 2 | 35 | 3 | 0 | 2 | 46 | 76.09 | 23.91 |
Shrubs | 8 | 1 | 0 | 86 | 5 | 19 | 119 | 72.27 | 27.73 |
Grasses | 0 | 1 | 0 | 0 | 47 | 9 | 57 | 82.46 | 17.54 |
Other uses | 0 | 0 | 0 | 3 | 4 | 288 | 195 | 96.41 | 3.59 |
Total | 48 | 41 | 36 | 95 | 59 | 222 | 500 | ||
PA * (%) | 74.47 | 87.80 | 97.22 | 90.53 | 79.67 | 84.68 | Overall accuracy = 85.40% | ||
OE * (%) | 25.53 | 12.2 | 2.78 | 9.47 | 20.33 | 15.32 | Kappa = 0.805 |
Vegetation Horizontal Continuity | Area (km2) | ||||
---|---|---|---|---|---|
% * | Mean | SD ** | |||
Alpine | Conifers | 0–40 | 25.71 | 9.70 | 284 |
40–70 | 53.37 | 7.50 | 2699 | ||
70–100 | 71.87 | 0.87 | 1 | ||
Evergreen broadleaves | 0–40 | 26.63 | 8.93 | 698 | |
40–70 | 50.49 | 7.07 | 196 | ||
70–100 | 70.29 | 0.06 | 1 | ||
Deciduous broadleaves | 0–40 | 25.43 | 9.46 | 662 | |
40–70 | 52.08 | 7.33 | 1041 | ||
70–100 | 72.20 | 0.76 | 1 | ||
Shrubs | 0–40 | 24.47 | 11.00 | 392 | |
40–70 | 56.56 | 8.36 | 1728 | ||
70–100 | 73.70 | 2.82 | 59 | ||
Grasses | 0–40 | 33.95 | 3.23 | 1 | |
40–70 | 60.97 | 5.42 | 25 | ||
70–100 | 71.69 | 1.39 | 1 | ||
Atlantic | Conifers | 0–40 | 25.18 | 9.81 | 353 |
40–70 | 55.62 | 8.72 | 396 | ||
70–100 | 71.57 | 1.29 | 17 | ||
Evergreen broadleaves | 0–40 | 29.19 | 8.53 | 1247 | |
40–70 | 53.21 | 7.74 | 2266 | ||
70–100 | 71.70 | 1.32 | 28 | ||
Deciduous broadleaves | 0–40 | 26.81 | 8.67 | 3798 | |
40–70 | 52.45 | 7.78 | 25,616 | ||
70–100 | 71.69 | 1.31 | 11 | ||
Shrubs | 0–40 | 31.48 | 7.15 | 1911 | |
40–70 | 54.56 | 8.00 | 7674 | ||
70–100 | 72.58 | 2.22 | 308 | ||
Grasses | 0–40 | 32.15 | 6.67 | 724 | |
40–70 | 53.23 | 6.91 | 7901 | ||
70–100 | 73.64 | 2.79 | 59 | ||
Mediterranean | Conifers | 0–40 | 18.21 | 8.67 | 36,601 |
40–70 | 51.34 | 7.08 | 8934 | ||
70–100 | 71.33 | 0.85 | 3 | ||
Evergreen broadleaves | 0–40 | 17.29 | 9.58 | 34,559 | |
40–70 | 50.06 | 6.46 | 3957 | ||
70–100 | 71.64 | 1.16 | 2 | ||
Deciduous broadleaves | 0–40 | 20.08 | 10.73 | 14,248 | |
40–70 | 50.72 | 6.74 | 4275 | ||
70–100 | 71.39 | 1.07 | 2 | ||
Shrubs | 0–40 | 29.45 | 9.86 | 1632 | |
40–70 | 60.41 | 7.70 | 83,831 | ||
70–100 | 76.20 | 4.25 | 45,459 | ||
Grasses | 0–40 | 32.84 | 8.95 | 89 | |
40–70 | 61.58 | 6.96 | 4139 | ||
70–100 | 78.20 | 4.55 | 55,696 |
Horizontal Continuity (%) * | FBFT Fuel Type Category | |||
---|---|---|---|---|
Iberian fuel types | Alpine | Conifers | 0–40 | TU2/TU3 |
40–70 | TL3/TL8 | |||
70–100 | TL5 | |||
Evergreen broadleaves | 0–40 | TL2 | ||
40–70 | TL6 | |||
70–100 | TL9 | |||
Deciduous broadleaves | 0–40 | TL2 | ||
40–70 | TL6 | |||
70–100 | TL9 | |||
Shrubs | 0–40 | SH3 | ||
40–70 | SH4 | |||
70–100 | SH6/SH8/SH9 | |||
Grasses | 0–40 | GR1 | ||
40–70 | GR3 | |||
70–100 | GR5/GR8/GR9 | |||
Atlantic | Conifers | 0–40 | TU2/TU3 | |
40–70 | TL3/TL8 | |||
70–100 | TL5 | |||
Evergreen broadleaves | 0–40 | TL2 | ||
40–70 | TL6 | |||
70–100 | TL9 | |||
Deciduous broadleaves | 0–40 | TL2 | ||
40–70 | TL6 | |||
70–100 | TL9 | |||
Shrubs | 0–40 | SH3 | ||
40–70 | SH4 | |||
70–100 | SH6/SH8/SH9 | |||
Grasses | 0–40 | GR1 | ||
40–70 | GR3 | |||
70–100 | GR5/GR8/GR9 | |||
Mediterranean | Conifers | 0–40 | TU4 | |
40–70 | TU5/TL3/TL8 | |||
70–100 | TL5 | |||
Evergreen broadleaves | 0–40 | TL2 | ||
40–70 | TL6 | |||
70–100 | TL6 | |||
Deciduous broadleaves | 0–40 | TL2 | ||
40–70 | TL6 | |||
70–100 | TL9 | |||
Shrubs | 0–40 | SH1 | ||
40–70 | SH2 | |||
70–100 | SH5/SH7 | |||
Grasses | 0–40 | GR1 | ||
40–70 | GR2 | |||
70–100 | GR4/GR7 |
References
- Archibald, S.; Lehmann, C.E.R.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T.; et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef] [Green Version]
- Koutsias, N.; Karteris, M. Classification analyses of vegetation for delineating forest fire fuel complexes in a Mediterranean test site using satellite remote sensing and GIS. Int. J. Remote Sens. 2003, 24, 3093–3104. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. A burning story: The role of fire in the history of life. BioScience 2009, 59, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Eva, H.; Lambin, E.F. Fires and land-cover change in the tropics: A remote sensing analysis at the landscape scale. J. Biogeogr. 2000, 27, 765–776. [Google Scholar] [CrossRef]
- Cano-Crespo, A.; Oliveira, P.J.C.; Boit, A.; Cardoso, M.; Thonicke, K. Forest edge burning in the Brazilian Amazon promoted by escaping fires from managed pastures. J. Geophys. Res. Biogeosci. 2015, 120, 2095–2107. [Google Scholar] [CrossRef] [Green Version]
- McCaffrey, S. Thinking of wildfire as a natural hazard. Soc. Nat. Resour. 2004, 17, 509–516. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; De Fries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Knorr, W.; Arneth, A.; Jiang, L. Demographic controls of future global fire risk. Nat. Clim. Chang. 2016, 6, 781–785. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef] [PubMed]
- Lizundia-Loiola, J.; Otón, G.; Ramo, R.; Chuvieco, E. A spatio-temporal active-fire clustering approach for global burned area mapping at 250 m from MODIS data. Remote Sens. Environ. 2020, 236, 1–18. [Google Scholar] [CrossRef]
- Kalabokidis, K.; Palaiologou, P.; Gerasopoulos, E.; Giannakopoulos, C.; Kostopoulou, E.; Zerefos, C. Effect of Climate Change Projections on Forest Fire Behaviour and Values-at-Risk in Southwestern Greece. Forests 2015, 6, 2214–2240. [Google Scholar] [CrossRef] [Green Version]
- De Rigo, D.; Libertà, G.; Durrant, T.H.; Vivancos, A.; San-Miguel-Ayanz, J. Forest Fire Danger Extremes in Europe under Climate Change: Variability and Uncertainty; Publications Office of the European Union: Luxembourg, 2017. [CrossRef]
- Moreira, F.; Viedma, O.; Arianoutsou, M.; Curt, T.; Koutsias, N.; Rigolot, E.; Barbati, A.; Corona, P.; Vaz, P.; Xanthopoulos, G.; et al. Landscape—Wildfire interactions in southern Europe: Implications for landscape management. J. Environ. Manag. 2011, 92, 2389–2402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moritz, M.A.; Parisien, M.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- San-Miguel-Ayanz, J.; Moreno, J.M.; Camia, A. Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. For. Ecol. Manag. 2013, 294, 11–22. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Fire Danger Observed from Space. Surv. Geophys. 2020, 41, 1437–1459. [Google Scholar] [CrossRef]
- Pyne, S.J. Introduction to Wildland Fire: Fire Management in the United States; John Wiley & Sons: New York, NY, USA, 1984. [Google Scholar]
- Chuvieco, E.; Cocero, D.; Riaño, D.; Martin, P.; Martínez-Vega, J.; De La Riva, J.; Pérez, F. Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Marino, E.; Ranz, P.; Tomé, J.L.; Noriega, M.A.; Esteban, J.; Madrigal, J. Generation of high-resolution fuel model maps from discrete airborne laser scanner and Landsat-8 OLI: A low-cost and highly updated methodology for large areas. Remote Sens. Environ. 2016, 187, 267–280. [Google Scholar] [CrossRef]
- Chuvieco, E.; Riaño, D.; Van Wagtendok, J.; Morsdof, F. Fuel Loads and Fuel Type Mapping. In Wildland Fire Danger: Estimation and Mapping: The Role of Remote Sensing Data; Chuvieco, E., Ed.; World Scientific Publishing Co. Ltd.: Singapore, 2003; pp. 119–142. [Google Scholar]
- Scott, J.; Burgan, R. Standard Fire Behaviour Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; Rocky Mountain Research Station; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Washington, DC, USA, 2005.
- Ottmar, R.D.; Alvarado, E. Linking vegetation patterns to potential smoke production and fire hazard. In Proceedings of the Sierra Nevada Science Symposium, Kings Beach, CA, USA, 7–10 October 2002. [Google Scholar]
- Chuvieco, E.; Van Wagtendonk, J.W.; Riaño, D.; Yebra, M.; Wagtendonk, J.; Riaffo, D.; Yebra, I.; Ustin, S.L. Estimation of Fuel Conditions for Fire Danger Assessment. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Dordrecht, The Netherlands, 2009; pp. 83–96. [Google Scholar]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Burgan, R.E.; Klaver, R.W.; Klarer, J.M. Fuel models and fire potential from satellite and surface observation. Int. J. Wildland Fire 1998, 8, 159–170. [Google Scholar] [CrossRef]
- Dymond, C.C.; Roswintiarti, O.; Brady, M. Characterizing and mapping fuels for Malaysia and western Indonesia. Int. J. Wildland Fire 2004, 13, 323–334. [Google Scholar] [CrossRef]
- Lasaponara, R.; Lanorte, A. Remotely sensed characterization of forest fuel types by using satellite ASTER data. Int. J. Appl. Earth Obs. Geoinf. 2007, 9, 225–234. [Google Scholar] [CrossRef]
- Eftychidis, G.; Laneve, G.; Ferrucci, F.; Sebastian Lopez, A.; Lourenco, L.; Clandillon, S.; Tampellini, L.; Hirn, B.; Diagourtas, D.; Leventakis, G. PREFER: A European service providing forest fire management support products. In Proceedings of the SPIE 9535, Third International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2015), Paphos, Cyprus, 16–19 March 2015. [Google Scholar] [CrossRef]
- Anderson, H. Aids to Determining Fuel Models for Estimating Fire Behaviour; US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Washington, DC, USA, 1982.
- Forestry Canada Fire Danger Group. Development and Structure of the Canadian Fire Behaviour Prediction System; Information Report ST-X-3; Forestry Canada: Ottawa, ON, Canada, 1992.
- Riaño, D.; Chuvieco, E.; Salas, J.; Palacios-Orueta, A.; Bastarrika, A. Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Can. J. For. Res. 2002, 32, 1301–1315. [Google Scholar] [CrossRef]
- Alonso-Benito, A.; Arroyo, L.A.; Arbelo, M.; Hernández-Leal, P.; González-Calvo, A. Pixel and object-based classification approaches for mapping forest fuel types in Tenerife Island from ASTER data. Int. J. Wildland Fire 2013, 22, 306–317. [Google Scholar] [CrossRef]
- Palaiologou, P.; Kalabokidis, K.; Kyriakidis, P. Forest mapping by geoinformatics for landscape fire behaviour modelling in coastal forests, Greece. Int. J. Remote Sens. 2013, 34, 4466–4490. [Google Scholar] [CrossRef]
- Rothermel, R. How to Predict the Spread and Intensity of Forest and Range Fires; National Wildfire Coordinating Group, USDA Forest Service Intermountain Research Station: Boise, ID, USA, 1983.
- Albini, F. Estimating Wildfire Behaviour and Effects; General Technical Report INT-30; USDA Forest Service, Intermountain Forest and Range Experiment Station: Odgen, UT, USA, 1976.
- Chuvieco, E.; Aguado, I.; Salas, J.; García, M.; Yebra, M.; Oliva, P. Satellite Remote Sensing Contributions to Wildland Fire Science and Management. Curr. For. Rep. 2020, 6, 81–96. [Google Scholar] [CrossRef]
- Gale, M.G.; Cary, G.J.; Van Dijk, A.I.J.M.; Yebra, M. Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote Sens. Environ. 2021, 255. [Google Scholar] [CrossRef]
- García, M.; Popescu, S.; Riaño, D.; Zhao, K.; Neuenschwander, A.; Agca, M.; Chuvieco, E. Characterization of canopy fuels using ICESat/GLAS data. Remote Sens. Environ. 2012, 123, 81–89. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P.; Gitas, I.Z.; Karteris, M. Local-scale fuel-type mapping and fire behaviour prediction by employing high-resolution satellite imagery. IEEE J. Sel. Top. Appl. Earth. Obs. Remote Sens. 2008, 1, 230–239. [Google Scholar] [CrossRef]
- Salas, J.; Chuvieco, E. Aplicación de imágenes Landsat-TM a la cartografía de modelos combustibles. Rev. Teledetec. 1995, 5, 1–12. [Google Scholar]
- Castro, R.; Chuvieco, E. Modeling Forest fire danger from geographic information systems. Geocarto Int. 1998, 13, 15–23. [Google Scholar] [CrossRef]
- Domingo, D.; de la Riva, J.; Lamelas, M.T.; García-Martín, A.; Ibarra, P.; Echeverría, M.; Hoffrén, R. Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires. Remote Sens. 2020, 12, 3660. [Google Scholar] [CrossRef]
- Stefanidou, A.; Gitas, I.Z.; Katagis, T. A national fuel type mapping method improvement using sentinel-2 satellite data. Geocarto Int. 2020, 1, 1–21. [Google Scholar] [CrossRef]
- Marino, E.; Yebra, M.; Guillén-Climent, M.; Algeet, N.; Tomé, J.L.; Madrigal, J.; Guijarro, M.; Hernando, C. Investigating live fuel moisture content estimation in fire-prone shrubland from remote sensing using empirical modelling and RTM simulations. Remote Sens. 2020, 12, 2251. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Healey, S.P.; Cohen, W.B.; Cocero, D.; Manzanera, J.A. Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. J. Geophys. Res. Biogeosci. 2006, 111, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behaviour. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Alonso-Benito, A.; Arroyo, L.A.; Arbelo, M.; Lorenzo-Gil, A.; Hernández-Leal, P.; Núñez, L. Cartografiado de modelos de combustible mediante la Fusión de Imágenes WorldView-2 y datos LiDAR. Un caso de estudio en la isla de Tenerife. In Proceedings of the XV Simposio Internacional, Cayenne, France, 19–23 November 2021. [Google Scholar]
- Alonso-Benito, A.; Arroyo, L.A.; Arbelo, M.; Hernández-Leal, P. Fusion of WorldView-2 and LiDAR data to map fuel types in the Canary Islands. Remote Sens. 2016, 8, 669. [Google Scholar] [CrossRef] [Green Version]
- Bright, B.C.; Hudak, A.T.; Meddens, A.J.; Hawbaker, T.J.; Briggs, J.S.; Kennedy, R.E. Prediction of Forest Canopy and Surface Fuels from Lidar and Satellite Time Series Data in a Bark Beetle-Affected Forest. Forests 2017, 8, 322. [Google Scholar] [CrossRef] [Green Version]
- García, M.; Saatchi, S.; Casas, A.; Koltunov, A.; Ustin, S.; Ramirez, C.; Balzter, H. Extrapolating Forest Canopy Fuel Properties in the California Rim Fire by Combining Airborne LiDAR and Landsat OLI Data. Remote Sens. 2017, 9, 394. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Neuwirth, M.; Böck, S.; Brenner, H.; Vuolo, F.; Atzberger, C. Optimal Input Features for Tree Species Classification in Central Europe Based on Multi-Temporal Sentinel-2 Data. Remote Sens. 2019, 11, 2599. [Google Scholar] [CrossRef] [Green Version]
- Pettinari, M.L.; Ottmar, R.D.; Prichard, S.J.; Andreu, A.G.; Chuvieco, E. Development and mapping of fuel characteristics and associated fire potentials for South America. Int. J. Wildland Fire 2014, 23, 643–654. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Cartografía de combustible y potenciales de incendio en el continente Africano utilizando FCCS. Rev. Teledetec. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Pettinari, M.L.; Chuvieco, E. Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences 2016, 13, 2061–2076. [Google Scholar] [CrossRef] [Green Version]
- EFFIS Data and Services. EFFIS Fuel Map. 2000. Available online: https://effis.jrc.ec.europa.eu/applications/data-and-services (accessed on 21 May 2021).
- Cardoso-Castro-Rego, F.; Moreno-Rodríguez, J.M.; Vallejo-Calzada, V.R.; Xanthopoulos, G. Forest Fires—Sparking Firesmart Policies in the EU. Research & Innovation Projects for Policy; Faivre, N., Ed.; Publications Office of the European Union: Luxembourg, 2018.
- San-Miguel-Ayanz, J.; Rodrigues, M.; de Oliveira, S.S.; Pacheco, C.K.; Moreira, F.; Duguy, B.; Camia, A. Land Cover Change and Fire Regime in the European Mediterranean Region. In Post-Fire Management and Restoration of Southern European Fores; San-Miguel-Ayanz, J., Rodrigues, M., de Oliveira, S.S., Pacheco, C.K., Moreira, F., Duguy, B., Camia, A., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 21–43. [Google Scholar]
- San-Miguel-Ayanz, J.; Durrant, T.; Boca, R.; Maianti, P.; Libertà, G.; Artes Vivancos, T.; Jacome Felix Oom, D.; Branco, A.; De Rigo, D.; Ferrari, D.; et al. Forest Fires in Europe, Middle East and North Africa 2019; Publications Office of the European Union: Luxembourg, 2020.
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- European Environment Agency. Biogeographical Regions. 2016. Available online: https://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-3 (accessed on 12 May 2021).
- EFFIS Data and Services. Download Real-Time updated Burnt Areas Database. 2021. Available online: https://effis.jrc.ec.europa.eu/applications/data-and-services (accessed on 21 May 2021).
- Trigo, R.M.; Sousa, P.M.; Pereira, M.G.; Rasilla, D.; Gouveia, C.M. Modelling wildfire activity in Iberia with different atmospheric circulation weather types. Int. J. Climatol. 2013, 36, 2761–2778. [Google Scholar] [CrossRef]
- Loidi, J. The Vegetation of the Iberian Peninsula; Springer: Utrecht, The Netherlands, 2017. [Google Scholar]
- Sentinel-3: Visión Panorámica Para Copérnico. Available online: https://www.esa.int/Space_in_Member_States/Spain/Sentinel-3_Vision_panoramica_para_Copernico (accessed on 5 April 2021).
- Sentinel-3 Synergy Introduction. Available online: https://sentinel.esa.int/web/sentinel/user-guides/sentinel-3-synergy (accessed on 17 April 2021).
- Wooster, M.J.; Xu, W.; Nightingale, T. Sentinel-3 SLSTR active fire detection and FRP product: Pre-launch algorithm development and performance evaluation using MODIS and ASTER datasets. Remote Sens. Environ. 2012, 120, 236–254. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Polehampton, E.; Yemelyanova, R.; Zhang, T. Sentinel-3 active fire detection and FRP product performance-Impact of scan angle and SLSTR middle infrared channel selection. Remote Sens. Environ. 2021, 261, 112460. [Google Scholar] [CrossRef]
- Sørensen, K. Implementing an Ensemble Convolutional Neural Network on Sentinel-1 Synthetic Aperture Radar data and Sentinel-3 Radio-Metric Data for the Detecting of Forest Fires; Technical University of Denmark: Kongens Lyngby, Denmark, 2020. [Google Scholar]
- Rashkovetsky, D.; Mauracher, F.; Langer, M.; Schmitt, M. Wildfire Detection from Multisensor Satellite Imagery Using Deep Semantic Segmentation. IEEE J. Sel. Top. Appl. Earth. Obs. Remote. Sens. 2021, 14, 7001–7016. [Google Scholar] [CrossRef]
- Lizundia-Loiola, J.; Pettinari, M.L.; Chuvieco, E. ESA CCI ECV Fire Disturbance: D2.1.2 Algorithm Theoretical Basis Document (ATBD)—Sentinel-3, Version 1.1. 2020. Available online: https://www.esa-fire-cci.org/documents (accessed on 2 August 2021).
- Copernicus Open Access Hub. Available online: https://scihub.copernicus.eu/dhus/#/home (accessed on 25 April 2021).
- Lydersen, J.M.; Collins, B.M.; Knapp, E.E.; Roller, G.B.; Stephens, S. Relating fuel loads to overstorey structure and composition in a fire-excluded Sierra Nevada mixed conifer forest. Int. J. Wildland Fire 2015, 24, 484–494. [Google Scholar] [CrossRef]
- Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Huete, A.R.; Justice, C.; Liu, H. Development of vegetation and soil indices for MODIS-EOS. Remote Sens. Environ. 1994, 49, 224–234. [Google Scholar] [CrossRef]
- Gao, B.C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Julien, Y.; Sobrino, J.A.; Mattar, C.; Ruescas, A.B.; Jiménez-Muñoz, J.C.; Sòria, G.; Hidalgo, V.; Atitar, M.; Franch, B.; Cuenca, J. Temporal analysis of normalized difference vegetation index (NDVI) and land surface temperature (LST) parameters to detect changes in the Iberian land cover between 1981 and 2001. Int. J. Remote Sens. 2011, 32, 2057–2068. [Google Scholar] [CrossRef]
- DiMiceli, C.M.; Carrol, M.L.; Sohlberg, R.A.; Huang, C.; Hansen, M.C.; Townsend, J.R.G. MOD44B MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 250 m SIN Grid V006. Available online: https://lpdaac.usgs.gov/products/mod44bv006/ (accessed on 6 September 2021).
- Townshed, J. User Guide for the MODIS Vegetation Continuous Fields Product Collection 6 Version 1; Universiy of Maryland: College Park, MD, USA, 2017. [Google Scholar]
- Barthlott, W.; Hostert, A.; Kier, G.; Küper, W.; Kreft, H.; Mutke, J.; Rafiqpoor, M.D.; Sommer, J.H. Geographic patterns of vascular plant diversity at continental to global scales. Erdkunde 2007, 61, 305–316. [Google Scholar] [CrossRef]
- Kreft, H.; Jetz, W. Global patterns and determinants of vascular plant diversity. Proc. Natl. Acad. Sci. USA 2007, 104, 5925–5930. [Google Scholar] [CrossRef] [Green Version]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.A.; Mitchard, E.T.A.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef] [Green Version]
- Baccini, A.; Goetz, S.J.; Walker, W.S.; Laporte, N.T.; Sun, M.; Sulla-Menashe, D.; Hackler, J.; Beck, P.S.A.; Dubayah, R.; Friedl, M.A.; et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2012, 2, 182–185. [Google Scholar] [CrossRef]
- Banin, L.; Lewis, S.L.; Lopez-Gonzalez, G.; Baker, T.R.; Quesada, C.A.; Chao, K.-J.; Burslem, D.F.R.P.; Nilus, R.; Abu Salim, K.; Keeling, H.C.; et al. Tropical forest wood production: A cross-continental comparison. J. Ecol. 2014, 102, 1025–1037. [Google Scholar] [CrossRef] [Green Version]
- Thurner, M.; Beer, C.; Santoro, M.; Carvalhais, N.; Wutzler, T.; Schepaschenko, D.; Shvidenko, A.; Kompter, E.; Ahrens, B.; Levick, S.R.; et al. Carbon stock and density of northern boreal temperate forests. Global Ecol. Biogeogr. 2014, 23, 297–310. [Google Scholar] [CrossRef]
- Lehmann, C.E.R.; Anderson, M.T.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffman, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna vegetation-fire-climate relationships differ among continents. Science 2014, 343, 548–552. [Google Scholar] [CrossRef] [PubMed]
- Rogers, B.M.; Soja, A.J.; Goulden, M.L.; Randerson, J.T. Influence of tree species on continental differences in boreal fires and climate feedback. Nat. Geosci. 2015, 8, 228–234. [Google Scholar] [CrossRef]
- U.S. Department of the Interior. 40 Scott and Burgan Fire Behavior Fuel Models. 2012. Available online: https://landfire.gov/fbfm40.php (accessed on 26 May 2021).
- Santoro, M.; Cartus, O. ESA Biomass Climate Change Initiative (Biomass cci): Global Datasets of Forest Above-Ground Biomass for the Years 2010, 2017 and 2018, v2. Centre for Environmental Data Analysis, 2021. Available online: https://catalogue.ceda.ac.uk/uuid/84403d09cef3485883158f4df2989b0c (accessed on 7 June 2021).
- Santoro, M.; Quegan, S. CCI Biomass Product User Guide Year 2, Version 2.0; ESA Climate Change Initiative—Biomass Project 2020; Aberystwyth University and Gamma Remote Sensing: Wales, UK, 2018. [Google Scholar]
- Pettinari, M.L. Global Fuelbed Dataset; Department of Geology, Geography and Environment, University of Alcala: Alcala, Spain, 2015; Available online: https://doi.pangaea.de/10.1594/PANGAEA.84980 (accessed on 15 May 2021).
- Zar, J.H. Spearman rank correlation. In Encyclopedia of Biostatistics; Armitage, P., Colton, T., Eds.; John Wiley and Sons: Chichester, UK, 2005. [Google Scholar]
- Thomlinson, J.R.; Bolstad, P.V.; Cohen, W.B. Coordinating methodologies for scaling landcover classifications from site-specific to global: Steps toward validating global map products. Remote Sens. Environ. 1999, 70, 16–28. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Fire behaviour simulation from global fuel and climatic information. Forests 2017, 8, 179. [Google Scholar] [CrossRef] [Green Version]
- Ottmar, R.D.; Sandberg, D.V.; Riccardi, C.L.; Prichard, S.J. An overview of the fuel characteristic classification system—Quantifying, classifying, and creating fuelbeds for resource planning. Can. J. For. Res. 2007, 37, 2383–2393. [Google Scholar] [CrossRef]
Initial Training Categories | Final Target Categories |
---|---|
Conifers | Conifers |
Evergreen broadleaves | Evergreen broadleaves |
Atlantic deciduous broadleaves, Mediterranean deciduous broadleaves | Deciduous broadleaves |
Landa, thermophilic Mediterranean shrubs | Shrubs |
Grasses | Grasses |
Water, burnt areas, urban areas, bare soil, rainfed crops, irrigated crops, floodplains | Other uses |
FBFT Fuel Type | Brief Fuel type Description | Area (km2) | Mean Biomass (Mg/ha) | Potential Spread Rate | Potential Flame Length |
---|---|---|---|---|---|
GR1 | Short patchy grass, A-SA | 814 | 0.99 | M | L |
GR2 | Moderately coarse continuous grass, A-SA | 4139 | 2.72 | H | M |
GR3 | Very coarse grass, SH-H | 7926 | 3.95 | H | M |
GR4/GR7 | Moderately coarse continuous grass, A-SA | 55,696 | 10.56 | VH | VH |
GR5/GR8/GR9 | Dense, heavy, and very heavy coarse continuous grass, SH-H | 59 | 17.05 | VH-E | VH-E |
FBFT Fuel Type | Brief Fuel Type Description | Area (km2) | Mean Biomass (Mg/ha) | Potential Spread Rate | Potential Flame Length |
---|---|---|---|---|---|
SH1 | Low shrub fuel load, A-SA | 1632 | 4.20 | L | VL |
SH2 | Moderate shrub fuel load, A-SA | 83,831 | 12.85 | L | L |
SH3 | Moderate heavy shrub load, SH-H | 2303 | 16.43 | L | L |
SH4 | Low to moderate shrub and litter load, SH-H | 9402 | 8.40 | H | M |
SH5/SH7 | Heavy and very heavy shrub load, A-SA | 45,459 | 16.56 | VH | VH |
SH6/SH8/SH9 | Dense shrubs, SH-H | 367 | 19.56 | H | H-VH |
FBFT Fuel Type | Brief Fuel Type Description | Area (km2) | Biomass (Mg/ha) | Potential Spread Rate | Potential Flame Length | ||
---|---|---|---|---|---|---|---|
Mean | Mean (CCI Biomass) | SD (CCI Biomass) | |||||
TL2 | Low broadleaf load | 55,211 | 3.46 | 36.81 | 34.23 | VL | VL |
TL3/TL8 | Moderate load conifer litter | 3095 | 7.78 | 100.78 | 55.48 | VL-M | L |
TL5 | High load conifer litter | 21 | 2.84 | 152.15 | 65.12 | L | L |
TL6 | Moderate broadleaf load | 37,353 | 5.93 | 95.89 | 48.22 | M | L |
TL9 | Very high load broadleaf litter | 43 | 16.43 | 136.03 | 57.58 | M | M |
TU2/TU3 | Moderate litter load with grass/shrub, SH-H | 636 | 4.94 | 37.19 | 34.95 | M-H | L-M |
TU4 | Short conifer trees with grass or moss understory | 36,601 | 16.06 | 29.07 | 29.41 | M | M |
TU5/TL3/TL8 | Moderate-high conifer load litter with/without shrub | 8934 | 12.54 | 95.41 | 66.55 | VL -M | L-M |
Fuel Group | This Work: FBFT a | CCI Biomass b | Global Fuel Map c | European Fuel Map d |
---|---|---|---|---|
Grass | (T) 8.88 (5.02) | - | (T) 6.99 (5.25) [−0.10] * | (T) 12.59 (7.92) [0.11] * |
Shrub | (T) 8.98 (4.95) | - | (SH) 15.11 (6.30) [−0.03] * | (T) 13.70 (7.92) [0.13] * |
Tree | (TU) 8.51 (4.89) | (TR) 54.60 (46.21) [−0.17] * | (TR) 122.77 (147.93) [−0.20] * [0.45] ** (U) 9.23 (4.78) [−0.08] * [0.25] ** | (TL) 13.84 (7.69) [0.17] * [−0.11] ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragoneses, E.; Chuvieco, E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 2021, 4, 59. https://doi.org/10.3390/fire4030059
Aragoneses E, Chuvieco E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire. 2021; 4(3):59. https://doi.org/10.3390/fire4030059
Chicago/Turabian StyleAragoneses, Elena, and Emilio Chuvieco. 2021. "Generation and Mapping of Fuel Types for Fire Risk Assessment" Fire 4, no. 3: 59. https://doi.org/10.3390/fire4030059
APA StyleAragoneses, E., & Chuvieco, E. (2021). Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire, 4(3), 59. https://doi.org/10.3390/fire4030059