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Abstract: In coal mine engineering, numerical software is used to analyze the behavior of coal rock
damage and fluid migration. The order of the coefficient matrix used in numerical calculations is
increasing, and this increases the computation steps in obtaining the coefficient matrix solution. The
storage and solution of the coefficient matrix are key factors influencing the efficiency of the numerical
software. Therefore, to save storage space and reduce the computation steps, the coefficient matrix
must be effectively compressed and stored. In this work, the structural characteristics of different
coefficient matrices are analyzed in detail, and we find that for different computational regions, as
long as the nodes are numbered according to certain rules, the corresponding coefficient matrices
will have similar structural characteristics. The nonzero elements are symmetrically distributed
in the diagonal band, and all the elements on both sides outside the band are zero. Based on this,
the coefficient matrix is compressed by a pivoting scheme, and the compressed matrix is directly
eliminated by dislocation Gaussian elimination. Thus, a compressed storage method that integrates
the compression and solution of the coefficient matrix is established. The compressed storage and
calculation module is incorporated into our self-developed simulation software COMBUSS-3D to
simulate the evolution of the temperature field in the goaf of Luling Coal Mine. Compared with the
conventional method, the compressed storage module can significantly improve the computing rate
of the simulation, by approximately 80%.

Keywords: coefficient matrix; band matrix; sparse matrix; compressed storage; Gaussian elimination

1. Introduction

Common numerical calculation methods include the finite difference method, finite
element method, and finite volume method. A numerical calculation process eventually
evolves into a solution of large linear equations [1–5]. The matrix used to store such equa-
tions is called the coefficient matrix. To some extent, the solution speed of the coefficient
matrix determines the computational efficiency of the numerical software [6–10]. A coeffi-
cient matrix contains a large number of zero elements, occupying considerable space in
the matrix storage and calculation when solving by Gaussian elimination, resulting in an
unnecessarily high computational load [11,12]. Therefore, compressed storage is applied to
improve the computational efficiency of numerical software [13,14].

Many studies have focused on the compressed storage of sparse matrices, and some
feasible methods have been proposed to solve the compression process of various types of
matrices. Stabrowski proposed two methods for compressing asymmetric sparse matrices,
which were comprehensively compared with various matrices derived from engineer-
ing applications [15]. Lin et al. concluded that the compressed row/column storage
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schemes are not perfect and proposed two types of multidimensional sparse-matrix com-
pression schemes to obtain better results [16]. Katherine et al. developed two optimization
techniques to improve the storage efficiency of sparse-matrix vector multiplication and
evaluated their optimization results [17]. Other scholars studied targeted compression
schemes to meet the storage requirements of the various forms of sparse matrices [18–20].
The existing compression methods have been proposed to compress sparse matrices with a
general form. Although these compression schemes have a wide application scope, they do
not focus on the structural particularity of the coefficient matrix. Moreover, the existing
compression schemes are used for storage, which do not directly involve the solution of
the matrices and are not effectively combined with Gaussian elimination.

Gaussian elimination is a classical algorithm for solving large linear equations and
has been widely used in numerical computation. The core of the algorithm is to convert
the matrix elements into a triangular form by basic transformation. Optimization schemes
for Gaussian elimination have been proposed to improve the computational efficiency of
numerical software. Peña developed a pivoting strategy to modify the Gaussian elimination
process and applied it to some important matrix classes, and the results obtained using
this pivoting strategy were compared with those obtained by general partial rotation [21].
Alanelli and Hadjidimos proposed a block transformation strategy to optimize the Gaussian
elimination process and combined it with the conventional iterative method for the solution
of linear systems with a high convergence rate [6]. Xiao et al. integrated the elimination
processes of the coefficient and column matrices by analyzing the triangle process, and
the calculation results obtained using the improved Gaussian method implemented by
OpenCL were analyzed in detail [22]. The column pivot elimination is another improved
strategy of Gaussian elimination. The modification made to this strategy is the selection of
the column pivot element as the principal element in turn among the principal diagonal
elements of the coefficient matrix and the elements below it. Subsequently, by moving the
principal element to the principal diagonal, the elements below the principal diagonal can
be eliminated, and the matrix is finally transformed into a triangular system [23]. Through
the above optimization strategies for Gaussian elimination, it can be found that reducing
the calculation of the irrelevant elements in the elimination process can help effectively
improve the computing rate. In fact, based on the structural characteristics of the coefficient
matrix, the compressed storage and solution of the matrix can be integrated to improve the
computational efficiency.

First, the structural characteristics of the coefficient matrices were analyzed in detail by
combining three coal mine engineering examples. All the nonzero elements of the coefficient
matrix were confined within a band with diagonal symmetry, and the bandwidth was
related to the meshing method used and the number of adjacent nodes. Based on the
structural characteristics of the coefficient matrix, the zero elements outside the band were
removed, and the remaining elements were pivoted diagonally into a new matrix, thus
realizing the compressed storage of the coefficient matrix. Subsequently, the coefficient
matrix could be directly solved by dislocation Gaussian elimination of the compressed
matrix. The advantage of the compressed storage method was preliminarily verified
by comparing the calculation rates of coefficient matrices of different orders using the
conventional Gaussian method. Finally, a compressed storage module was incorporated
into our self-developed simulation software COMBUSS-3D to simulate the distributions
of the temperature and oxygen concentration in the goaf area of Luling Coal Mine, Anhui
Province, China. The incorporation of the compression module into the COMBUSS-3D
software significantly improved its computational efficiency, and the computational time
was reduced by approximately 80% on average. The proposed compression strategy
integrates the compressed storage and solution of the coefficient matrix, thus improving
the computational efficiency of the simulation software and enabling its application to
engineering calculations.
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2. Structural Analysis of Coefficient Matrix

For mesh generation, any grid node P is taken as an example. In the synthesis of linear
equations, all grid nodes adjacent to node P contribute to the node equation of node P,
whereas the grid nodes that are not adjacent to it do not. In the finite difference method, the
grid nodes adjacent to node P are the nodes above, below, left, and right of it, while in the
finite element method, the grid nodes adjacent to node P are the other nodes in the same
grid element with node P. Assuming that there are n nodes in the mesh generation and the
number of nodes adjacent to node P is m, the grid linear equation of node P will contain n
coefficients. The number of nonzero coefficients is m + 1, and the other coefficients are zero.
Since only the coefficients corresponding to the adjacent nodes in the node linear equation
are nonzero, the other nodes have no contribution to the equation. Therefore, the coefficient
matrix containing a large number of zero elements is a sparse matrix. To thoroughly explore
the general structural characteristics of coefficient matrices, the following analysis was
performed in combination with three engineering examples in the numerical simulation of
coal mines.

The first engineering example is a model of the spontaneous combustion of coal in
the goaf area of the coal mine, which involves solving a 2D rectangular computational
region using the finite difference method to simulate the temperature distribution in the
goaf area [24]. In fact, this example is representative of not only the simulation of heat
conduction, but also other mechanical or other physical field problems. As shown in
Figure 1, the rectangular computational region is meshed, and the grid nodes are numbered
in turn. The computational region is divided into 20 nodes, i.e., the linear system contains
20 linear equations. The internal nodes are adjacent to the four surrounding nodes at most,
and the number of nodes adjacent to the boundary nodes is less than four; therefore, each
node equation contains at most five nonzero coefficients. By writing the nodal equations
into a matrix, the coefficient matrix M of the computational region can be obtained, as
expressed in Equation (1). From Equation (1), it can be found that the nonzero elements in
the coefficient matrix M are distributed in a symmetrical band along the matrix diagonal,
with a bandwidth of 9.

M =



k0,0 k0,1 k0,4
k1,0 k1,1 k1,2 k1,5

k2,1 k2,2 k2,3
. . .

k3,2 k3,3
. . .

k4,0 k4,4 k4,5

k5,1 k5,4 k5,5
. . .

. . . . . . . . . k18,19
. . . k19,18 k19,19


20×20

(1)
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Here, kx,y represents the nonzero elements of the coefficient matrix, x and y represent
the row and column positions, respectively. The zero elements in the coefficient matrix
are omitted.

The second example is the calculation of the heat emitting from a surrounding rock
at the drifting face using the finite element method [25]. In the numerical simulation, the
drifting face can be considered axisymmetric; therefore, half of its section is taken as the
computational region. In this model, triangular elements are used as basic elements to
discretize the continuum in the computational region and divide the entire area into a
series of elements. The division of the elements should satisfy two requirements. (1) It
should be based on the temperature distribution in the computational region, elements in
the area with large temperature change should be encrypted, and elements in the area with
small temperature change should be reduced. (2) This model focuses on the temperature
distribution in the surrounding rock at the drifting face. Encryption elements are required
in the computational region close to the wall of the surrounding rock to obtain the node
temperature with a high accuracy. Therefore, by increasing the element size in equal
proportion, the element density near the wall of the surrounding rock can be increased, and
the element becomes smaller. The farther away from the wall of the surrounding rock, the
lower the element density and the larger the element. The nodes are numbered sequentially
from right to left and from near to far. There are 99 nodes in the computational region, and
99 equations are correspondingly obtained. Figure 2 shows the element division and node
number; only some representative nodes are identified in the figure. As shown in the red
region, each node equation has at most seven nonzero coefficients. The coefficient matrix
L is expressed in Equation (2), and the matrix order is 99 × 99. The nonzero elements are
distributed in the band with a bandwidth of 23.

L =



k0,0 k0,1 k0,11
k1,0 k1,1 k1,2 k1,11 k1,12

k2,1 k2,2 k2,3 k2,12 k2,13
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .
k11,0 k11,1 k11,11 k11,12 k11,22

k12,1 k12,2 k12,11 k12,12 k12,13 k12,22 k12,23
. . . . . . . . . . . . . . . . . . . . .


99×99

(2)
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The third example is the analysis of the heat dissipation in the surrounding rock of 
trapezoid roadways in a coal mine using the finite volume method [26,27]. To improve 
the adaptability of the element division to the wall and corner area of the surrounding 
rock, triangular elements are used as basic elements to divide the computational region. 
The computational region is divided into 16 elements along the circumference and 8 el-
ements along the radial direction. Figure 3 shows the mesh generation; only representa-
tive nodes are identified in the figure. Based on the characteristics of the temperature 
distribution in the surrounding rock, the element size is determined using the equal 
proportion increment method, and the element density is increased appropriately near 
the wall and corner area in the computational region; thus, the node temperature can be 
obtained with a relatively high accuracy. The nodes are numbered clockwise from out-
side to inside, totaling 144 nodes. There are at most seven nonzero coefficients in each 
node equation. The corresponding coefficient matrix is denoted by N. As expressed in 
Equation (3), the order of the matrix is 144×144, and the nonzero elements are distribut-
ed in the band with a bandwidth of 35. 

Figure 2. Mesh generation of the model of heat emitting from a surrounding rock at the drifting face.

The third example is the analysis of the heat dissipation in the surrounding rock of
trapezoid roadways in a coal mine using the finite volume method [26,27]. To improve the
adaptability of the element division to the wall and corner area of the surrounding rock,
triangular elements are used as basic elements to divide the computational region. The
computational region is divided into 16 elements along the circumference and 8 elements
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along the radial direction. Figure 3 shows the mesh generation; only representative nodes
are identified in the figure. Based on the characteristics of the temperature distribution in
the surrounding rock, the element size is determined using the equal proportion increment
method, and the element density is increased appropriately near the wall and corner area in
the computational region; thus, the node temperature can be obtained with a relatively high
accuracy. The nodes are numbered clockwise from outside to inside, totaling 144 nodes.
There are at most seven nonzero coefficients in each node equation. The corresponding
coefficient matrix is denoted by N. As expressed in Equation (3), the order of the matrix is
144 × 144, and the nonzero elements are distributed in the band with a bandwidth of 35.

N =



k0,0 k0,1 k0,15 k0,16 k0,17
k1,0 k1,1 k1,2 k1,17 k1,18

k2,1 k2,2 k2,3 k2,18 k2,19
. . . . . . . . . . . . . . . . . .

. . . . . . . . .
. . . . . . . . .

k15,0 k15,14 k15,15 k15,16
k16,0 k16,15 k16,16 k16,17
k17,0 k17,1 k17,16 k17,17 k17,18

. . . . . . . . . . . . . . . . . .


144×144

(3)
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A further analysis, as presented in Figure 1, shows two adjacent nodes at the 0th, 
3rd, 16th, and 19th nodes, and the linear equations of these nodes have three nonzero 
coefficients. Similarly, there are four adjacent nodes in the 5th, 6th, 9th, 10th, 13th, and 
14th nodes, and the linear equations of these nodes contain five nonzero coefficients. The 
linear equations of the remaining nodes contain four nonzero coefficients. Thus, as 
shown in Figure 1, the coefficient matrix M has at least three nonzero elements and at 
most five nonzero elements per row. For example, the 0th and 4th nodes are adjacent to 
each other; therefore, 𝑘,ସ and 𝑘ସ, are nonzero elements and symmetrical about the 
diagonal. In other words, all the diagonal elements of the coefficient matrix M are non-
zero elements, and the remaining nonzero elements appear in pairs with diagonal sym-
metry. Similarly, the coefficient matrices L and N also conform to the above rules. Figure 
4 shows the general form of the coefficient matrix. The red and blue circles in the figure 
represent the diagonal elements and the remaining nonzero elements, respectively. Ac-
cording to the examples of the three numerical calculation methods mentioned above, 
regardless of the shape of the basic element and regardless of whether the element size 

Figure 3. Mesh generation of the model of surrounding rock heat dissipation for trapezoid roadways
in a coal mine.

A further analysis, as presented in Figure 1, shows two adjacent nodes at the 0th,
3rd, 16th, and 19th nodes, and the linear equations of these nodes have three nonzero
coefficients. Similarly, there are four adjacent nodes in the 5th, 6th, 9th, 10th, 13th, and
14th nodes, and the linear equations of these nodes contain five nonzero coefficients. The
linear equations of the remaining nodes contain four nonzero coefficients. Thus, as shown
in Figure 1, the coefficient matrix M has at least three nonzero elements and at most five
nonzero elements per row. For example, the 0th and 4th nodes are adjacent to each other;
therefore, k0,4 and k4,0 are nonzero elements and symmetrical about the diagonal. In other
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words, all the diagonal elements of the coefficient matrix M are nonzero elements, and
the remaining nonzero elements appear in pairs with diagonal symmetry. Similarly, the
coefficient matrices L and N also conform to the above rules. Figure 4 shows the general
form of the coefficient matrix. The red and blue circles in the figure represent the diagonal
elements and the remaining nonzero elements, respectively. According to the examples
of the three numerical calculation methods mentioned above, regardless of the shape
of the basic element and regardless of whether the element size changes or not, as long
as the nodes are numbered in sequence according to certain rules, the coefficient matrix
will exhibit the following common characteristics: (1) It contains a large number of zero
elements; (2) its nonzero elements are regularly distributed in the band; (3) its diagonal
elements are all nonzero elements; (4) the nonzero elements outside the diagonal have
diagonal symmetry; (5) its bandwidth depends on the number of adjacent nodes in the grid
and the numbering method of the nodes.
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3. Compressed Storage and Solution Method

On the one hand, the coefficient matrix is a sparse matrix containing a large number
of zeros and occupies considerable storage space. On the other hand, in the process of
Gaussian elimination, if all the zero elements are involved in the elimination, the calculation
steps will be significantly high. Hence, to improve the computational efficiency of the
numerical software, the coefficient matrix must be compressed. Many studies have been
conducted on compressed storage, mainly focusing on the compression of general sparse
matrices. These compression methods have a wide range of applications, and there is no
restriction on the matrix structure when compressing a sparse matrix. They are applicable
for almost any large sparse matrix. However, through the previous analysis, it can be
concluded that the distinct structural characteristics of the coefficient matrix should be
utilized to further optimize the compressed storage. Based on the diagonally symmetrical
band distribution of the nonzero elements in the coefficient matrix, a concise compressed
storage and solution scheme is proposed in this paper. The flowchart is shown in Figure 5.
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3.1. Compressed Storage of Coefficient Matrix

The compression scheme involves deleting a large number of zero elements on both
sides of the band of the coefficient matrix, and the remaining elements are pivoted clockwise
by 45◦. Taking the coefficient matrix M as an example, the bandwidth of the matrix is 9.
All the zero elements in the lower left and upper right of the nine column elements along
the diagonal direction are deleted, and the matrix is rotated clockwise by 45◦. Figure 6
shows the compression process of the coefficient matrix. The different colored circles in the
figure represent the diagonal, nonzero, and zero elements. Thus, the original coefficient
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matrix M is compressed into a new matrix M′ of 20 rows and 9 columns, as expressed in
Equation (4).

M’ =



k0,0 k0,1 0 0 k0,4
k1,0 k1,1 k1,2 0 0 k1,5

0 k2,1 k2,2 k2,3 0 0 k2,6
0 0 k3,2 k3,3 0 0 0 k3,7

k4,0 0 0 0 k4,4 k4,5 0 0 k4,8
...

...
...

...
...

...
...

...
...

k15,11 0 0 k15,14 k15,15 0 0 0 k15,19
k16,12 0 0 0 k16,16 k16,17 0 0
k17,13 0 0 k17,16 k17,17 k17,18 0
k18,14 0 0 k18,17 k18,18 k18,19
k19,15 0 0 k19,18 k19,19


20×9

(4)
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For an arbitrary matrix Mm×n, it is assumed that the matrix storage is R in bytes. The
size (double) represents the size of a double-precision floating-point variable. The storage
of the coefficient matrix can be calculated using Equation (5):

R = m× n× Size(double) (5)

The coefficient matrix M contains 400 elements, of which 81 are nonzero. According
to Equation (5), the storage values of matrix M and compressed matrix M′ are calculated,
as shown in Table 1.

Table 1. Comparison of the coefficient matrix storage.

Coefficient Matrix Uncompressed Matrix M Compressed Matrix M′

Matrix storage (Bytes) 3200 1440

As shown in Table 1, the storage capacity of the coefficient matrix can be significantly
reduced using the proposed compressed storage scheme. Theoretically, with the increase
in the dimension and sparsity of the coefficient matrix, the compression efficiency should
increase. The most important advantage of this storage method is that the compressed
matrix can be directly eliminated by Gaussian elimination, which integrates the storage
and solution of the matrix.
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3.2. Solution of Coefficient Matrix

By compressing the coefficient matrix M, the solution of matrix M is transformed into
a solution of the compressed matrix M′. Unlike the conventional Gaussian elimination
scheme, where the original coefficient matrix is eliminated, the proposed compression
scheme eliminates the compressed coefficient matrix, thus avoiding the substitution of
a large number of zero elements for calculation and improving the calculation efficiency.
Notably, the address of the compressed matrix M′ is used directly in the programming. The
relationship between the matrices M and M′ in terms of their row and column positions is
expressed in Equation (6): {

I = i
J − I + 5 = j

(6)

Here, I and J are the row and column positions of matrix M, respectively. i and j are
the row and column positions of matrix M′, respectively.

Similarly, the row–column positions of an arbitrary coefficient matrix before and after
the compression can be expressed as follows:{

I = i
J − I + B

2 + 1 = j
(7)

Here, B represents the bandwidth of the coefficient matrix.
Taking the calculation of matrix M as an example, it is assumed that:

MX = b (8)

Here, b represents the constant vector.
The original coefficient matrix M is compressed into a new coefficient matrix M′. The

constant vector b is stored in the 0th column of the matrix such that an augmented matrix
A can be obtained, as expressed in Equation (9). The matrix A is the matrix actually stored
and solved in the computer.

A =



b0 a0,5 a0,6 0 0 a0,9
b1 a1,4 a1,5 a1,6 0 0 a1,9
b2 0 a2,4 a2,5 a2,6 0 0 a2,9
b3 0 0 a3,4 a3,5 0 0 0 a3,9
b4 a4,1 0 0 0 a4,5 a4,6 0 0 a4,9
...

...
...

...
...

...
...

...
...

...
b13 a13,1 0 0 a13,4 a13,5 a13,6 0 0 a13,9
b14 a14,1 0 0 a14,4 a14,5 a14,6 0 0 a14,9
b15 a15,1 0 0 a15,4 a15,5 0 0 0 a15,9
b16 a16,1 0 0 0 a16,5 a16,6 0 0
b17 a17,1 0 0 a17,4 a17,5 a17,6 0
b18 a18,1 0 0 a18,4 a18,5 a18,6
b19 a19,1 0 0 a19,4 a19,5


20×10

(9)

Here, ax,y represents the nonzero elements of the augmented matrix, and bx,y repre-
sents the elements of the constant vector.

The specific elimination step is first to eliminate the 5th column elements of the
augmented matrix to 1, i.e., the diagonal elements of the original coefficient matrix M.
Subsequently, the matrix elements are dislocation eliminated from top to bottom, while the
constant-vector elements are eliminated directly from the 0th row to the 19th row. Finally,
all the elements before the 5th column of the augmented matrix are eliminated to zero.
Figure 7 shows the elimination process of the augmented matrix, in which the black circles
represent the constant-vector elements, and the arrows represent the elimination direction.
Notably, the blank areas in Equation (9), which are generated by the rotation of the original
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coefficient matrix, do not actually exist; therefore, they are not involved in the calculation.
The compressed storage program module can be written using Visual Basic. The program
module can be found in the Appendix A.
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The compressed storage module has been applied in a simulation software developed
by the authors of this study; this module not only helps perform accurate calculations, but
also significantly improves the calculation rate of the software [28–31]. The advantages
of the compressed storage method can be initially verified by solving sparse matrices of
different sizes. Taking the solution of AX = b as an example and assuming that the matrix
is An×n with a bandwidth of 9, the operation times of the two methods for n = 20, 50, and
200 were recorded. The average of 10 simulations of solving the same matrix was taken as
the calculation time. Table 2 presents the results.

Table 2. Comparison of the computation time.

Matrix Order 20 × 20 50 × 50 200 × 200

Computation time without compression (s) 0.000148 0.002077 0.092566
Computation time of compressed storage (s) 0.000064 0.000118 0.000388

Computation time of compression storage
Computation time without compression

0.432 0.0568 0.00419

The results show that the compressed storage method requires significantly less
computation time than the conventional Gaussian elimination. With the increase in the
order of the matrix, the advantages of the compressed storage method become more
prominent. In a numerical calculation, the solution to large linear equations is a key
factor affecting the calculation rate. The proposed method that combines the matrix
compressed storage and solution can play a certain role in improving the efficiency of
numerical calculations.

4. Engineering Application

The compressed storage module is proposed to optimize the numerical software and
apply it to engineering calculations. To further verify the practicality of the compression
strategy, the compressed storage module is applied to a field engineering calculation,
and the effect of the compression module on improving the efficiency of the engineering
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calculation is explored. Spontaneous combustion in the goaf is a common disaster in coal
mines, causing economic losses and casualties. Model research and numerical simulations
of the spontaneous combustion in goaf areas have been widely conducted. COMBUSS-3D
is a numerical simulation software for simulating the spontaneous combustion in the goaf
area, developed independently to solve the distributions of the temperature and oxygen
concentration in the goaf area and provide theoretical support for controlling spontaneous
combustion. The COMBUSS-3D software used in this work is self-developed, which
adopts serial mode and single thread calculation. For wider engineering applications, more
works of processor vectorization and processor hyper threading will be presented in our
further work. By matching field measurement results obtained from engineering projects,
this software has been verified as an effective method for predicting the spontaneous
combustion in goaf areas [29,32].

The Luling Coal Mine, located in Huaibei City, Anhui Province, China, was taken as
the study object. Figure 8 shows the computational region of the goaf area. As shown, the
two wings of the working face are the directions of the air intake roadway and air return
roadway, and Γ1, Γ2, Γ3, and Γ4 are the boundaries of the computational region.
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The physical model of spontaneous combustion in goaf includes the interaction be-
tween flow field, oxygen concentration field, gas temperature field, and solid temperature
field. The partial differential equations of the four fields are shown in Equations (10)–(13).

Flow field:

∑ K
g ·

∂P
∂x cos α∆S + ∑ K

g ·
(

∂P
∂y + ρgg sin θ

)
cos β∆S+

∑ K
g ·
(

∂P
∂z + ρgg cos θ

)
cos γ∆S−∑ n ∂ρg

∂t ∆V = 0
(10)

Here, K represents the permeability coefficient of porous media, m/s; g represents the
gravitational acceleration, m/s2; ρg represents the air density, kg/m3; P represents the sum
of static pressure and dynamic pressure, Pa; and n represents the porosity of float coal, %;

Oxygen concentration field:

∑ nvko2

∂Co2

∂
→
n

∆S−∑ Co2

(
vx cos α + vy cos β + vz cos γ

)
∆S−

∑ u(t)∆V −∑ n
∂Co2

∂t ∆V = 0
(11)
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Here, CO2 represents the oxygen concentration, mol/m3; kO2 represents the constant
term of oxygen diffusion coefficient; →

n
represents the normal vector outside the unit

of the area element on the boundary of the control volume; u(t) represents the oxygen
consumption per unit volume of coal in unit time, mol·m−3·s−1.

Gas temperature field:

∑ nλg
∂Tg

∂
→
n

∆S + ∑ KeSe
(
Ts − Tg

)
∆V −∑ nρgCgtg

→
v ·→n ∆S−∑ nρgCg

∂Tg

∂t
∆V = 0 (12)

Here, Tg represents the gas temperature, K; λg represents the thermal conductivity of
gas, W/(m·K); Cg represents the specific heat of gas, KJ/(kg·K).

Solid temperature field:

∑(1− n)λs
∂Ts

∂
→
n

∆S−∑ KeSe
(
Ts − Tg

)
∆V + ∑ q(t)∆V −∑(1− n)ρsCs

∂Ts

∂t
∆V = 0 (13)

Here, λs represents the thermal conductivity of coal and rock, W/(m·K); Ts represents
the solid temperature, K; Se represents the surface area of solid per unit volume in goaf,
m2; Ke represents the convective heat transfer coefficient, J/

(
m2·s·K

)
; ρs represents the

density of coal and rock, kg/m3; Cs represents the specific heat capacity of coal and rock,
KJ/(kg·K).

The calculation area was divided into hexahedral meshes. The number of grid points
was 5320, and the boundary conditions and mesh or grid points in different simulations
were not changed. The mesh size and types are shown in Figure 9.
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Here, 𝑇 represents the gas temperature, 𝐾; 𝜆 represents the thermal conductivity 
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Here, 𝜆௦ represents the thermal conductivity of coal and rock, 𝑊/(𝑚 ∙ 𝐾); 𝑇௦ rep-
resents the solid temperature, 𝐾; 𝑆 represents the surface area of solid per unit volume 
in goaf, 𝑚ଶ ; 𝐾  represents the convective heat transfer coefficient, 𝐽/(𝑚ଶ ∙ 𝑠 ∙ 𝐾); 𝜌௦ 
represents the density of coal and rock, 𝑘𝑔/𝑚ଷ; 𝐶௦ represents the specific heat capacity 
of coal and rock, 𝐾𝐽/(𝑘𝑔 ∙ 𝐾). 
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Figures 10 and 11 show the simulation results of the temperature and oxygen concen-
tration distributions in the goaf, respectively.

The compressed storage module can be incorporated into the spontaneous combustion
simulation software COMBUSS-3D. Under the same initial simulation conditions, the
distributions of the temperature and oxygen concentration in the goaf area of the Luling
Coal Mine were simulated. The computation times of the original COMBUSS-3D software
and the COMBUSS-3D software with the compressed storage module were recorded.
The calculation efficiency of Gaussian elimination method was compared with that of
compression storage method, and the calculation results were exactly the same. The
compression method does not affect the quality of solved fields. The time required to
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perform ten simulations was recorded, as shown in Table 3, in hours, with two decimal
digits reserved.
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Table 3. Comparisons of the computation time.

Computation Time after
Incorporating the

Compression Module T’ (h)

Computation Time without
the Compression Module T

(h)

Increase in the
Computational Efficiency

1− T’

T (%)

2.66 13.23 79.89
2.64 13.49 80.43
2.61 13.16 80.17
2.69 13.34 79.84
2.66 13.03 79.59
2.60 12.95 79.92
2.65 13.12 79.80
2.67 13.25 79.85
2.66 13.36 80.09
2.67 13.33 79.97

In fact, when the initial simulation conditions did not change considerably, the compu-
tation time required to simulate the same operating point was less different. Therefore, the
difference in the computation times between the software for ten simulations was only a
few minutes. As shown in Table 3, after incorporating the compressed storage module, the
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average computation time of the software was approximately 2.65 h; the average computa-
tion time of the original software was approximately 13.23 h. The average computation
efficiency was improved by 79.96%. Therefore, the compressed storage module was verified
to be effective in engineering calculations and can significantly improve the calculation rate
of numerical software.

5. Discussions

Method applicability to numerical simulation of spontaneous combustion in goaf is
confirmed, and its compressed storage and solution in numerical simulation study should
be applied more widely. As long as the grid division and node numbering are carried
out according to the fixed law, the compressed storage and solution method can be used
to optimize the calculation. In fact, each coefficient matrix has an optimal node number-
ing scheme to further reduce the bandwidth and improve the computational efficiency.
Through the above analysis, compared with the computational efficiency of Gaussian elimi-
nation method, the proposed method has significant advantages. For very large coefficient
matrices, the significant advantages of the method cannot be proven compared with the
iterative method. However, the matrix size required in the current engineering examples
simulation could be compressed by the proposed method. In addition, in the numerical
calculation software using the iterative method, the method proposed in this paper can
also be used to improve the efficiency of partial matrix calculation.

6. Conclusions

In this study, a method that integrates compressed storage and solution for coefficient
matrices was developed to improve the computational rate of the Gaussian elimination
method. The following conclusions can be drawn from the study:

(1) In numerical calculations, as long as the nodes are numbered according to certain
rules, the coefficient matrix will exhibit evident structural characteristics. Typically, the
nonzero elements are symmetrically distributed in the diagonal band, and all the elements
on both sides outside the band are zero.

(2) Based on the structural characteristics of the coefficient matrix, a new scheme
that integrates compressed storage and Gaussian elimination was developed. In this
compression method, a large number of zero elements is deleted through a pivoting scheme,
and the matrix order is reduced, thus significantly saving the storage space required for the
coefficient matrix.

(3) When solving the coefficient matrix, a compressed coefficient matrix can be directly
solved by dislocation Gaussian elimination. Compared with conventional methods, this
method significantly improves the computing rate by solving matrices of different sizes.
The higher the order and greater the sparsity of the coefficient matrix, the more evident the
advantages of this compression method.

(4) By incorporating the compression method into the COMBUSS-3D software, it was
found that the compressed storage module can significantly improve the computing rate of
the simulation, by approximately 80%. Thus, the compressed storage method can be used
to improve the computational efficiency of numerical simulation software, which is of great
significance for efficiently solving engineering problems.

(5) For very large coefficient matrices, the significant advantages of the method cannot
be proven compared with the iterative method; more studies will be presented in our
further work.
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Appendix A

Public Sub Solve(A() As Double)
Dim M%, N%, i%, j%, k%, ii%, jj%
M = UBound(A, 1)
N = UBound(A, 2)
jj = (N − 1)/2
ii = M − jj
For i = 0 To ii
A(i, 0) = A(i, 0)/A(i, jj + 1)
For j = N To jj + 1 Step −1
A(i, j) = A(i, j)/A(i, jj + 1)
Next j
For k = 1 To jj
A(i + k, 0) = A(i + k, 0) − A(i + k, jj + 1 − k) × A(i, 0)
For j = N To jj + 1 Step −1
A(i + k, j − k) = A(i + k, j − k) − A(i + k, jj + 1 − k) × A(i, j)
Next j
Next k
Next i
For i = ii + 1 To M − 1
A(i, 0) = A(i, 0)/A(i, jj + 1)
For j = N To jj + 1 Step −1
A(i, j) = A(i, j)/A(i, jj + 1)
Next j
For k = 1 To M − i
A(i + k, 0) = A(i + k, 0) − A(i + k, jj + 1 − k) × A(i, 0)
For j = N − i + ii + 1 To jj + 1 Step −1
A(i + k, j − k) = A(i + k, j − k) − A(i + k, jj + 1 − k) × A(i, j)
Next j
Next k
Next i
A(M, 0) = A(M, 0)/A(M, jj + 1)
A(M, jj + 1) = 1

“***********************
For i = M To jj Step −1
For k = 1 To jj
A(i − k, 0) = A(i − k, 0) − A(i − k, jj + 1 + k) × A(i, 0)
Next k
Next i
For i = jj − 1 To 1 Step −1
For k = 1 To i
A(i − k, 0) = A(i − k, 0) − A(i − k, jj + 1 + k) × A(i, 0)
Next k
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Next i
End Sub
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