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Abstract: This study was motivated by the lack of understanding of the smoke control effect on an
ultra-wide tunnel fire, with different smoke exhaust patterns (sidewall and top exhaust patterns) and
longitudinal air supply volume (0, 30%, 50%, 70%, and 90%). A full-scale ultra-wide tunnel model
was constructed based on the FDS and the fire parameters were analyzed, such as the longitudinal
spread distance of smoke, the smoke layer height and the temperature at safe height. In addition, the
smoke exhaust efficiency was calculated based on the mass flux of CO2, and the smoke control effect
with different smoke exhaust patterns and air supply volumes was compared. Results show that
the smoke exhaust patterns and air supply ratios have a great influence on smoke spread distance
and exhaust efficiency. The smoke spread distance is shortened by increasing the longitudinal air
supply volume, and when the ratio of air supply volume to smoke exhaust volume is less than 50%,
the top exhaust pattern can control the spread of smoke better with a smaller smoke spread distance.
In addition, the height of the smoke layer is controlled above the safe height of 2 m under the top
smoke exhaust, and the temperature at both ends of the tunnel (25 ◦C) is lower than that under the
sidewall exhaust pattern (35 ◦C). The smoke exhaust efficiency was calculated based on the mass
flow rate of CO2, and the exhaust efficiency of the top exhaust pattern (~70%) is significantly higher
than that of the sidewall exhaust pattern (~55%). However, as the air supply volume increases, there
is a reduced increase in the exhaust efficiency. Therefore, taking the economic cost into account, the
air supply ratios of 30% and 50% are the best for top and sidewall exhaust patterns, respectively. The
results of this work provide important information about smoke distribution characteristics in an
ultra-wide tunnel fire and may guide its design of smoke exhaust.

Keywords: ultra-wide tunnel fire; smoke control; top exhaust pattern; longitudinal air supply;
exhaust efficiency

1. Introduction

In order to solve the transportation connection between bays and land, the application
of immersed tunnels is becoming more and more extensive, and it is developing towards
extra-long and ultra-wide. However, there is a high fire risk in the underwater tunnel
because of its long and narrow closed structure and the complex traffic environment. The
main dangers of fire in an underwater tunnel are high temperatures and toxic smoke, which
can lead to injury and death [1]. Therefore, smoke control is the key to decreasing the fire
hazard of tunnels, and it has attracted much attention [2–4].

Over the past few decades, studies on the design of smoke exhaust in tunnel fires
have been extensively reported [5–10]. It is an effective method to explore the effects of
different smoke designs through field experiments in tunnels, but it has high complexity
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and economic cost. Thus, most of the research was performed with numerical simulation.
For instance, the effects of the ventilation condition [11,12] and the layout of exhaust vents
(including the location, size and number of vents) [13,14] on the temperature, smoke distri-
bution and visibility were extensively studied. A series of papers [15–18] analyzed the issue
of the efficiency of ventilation through simulation and experiments. Oucherfi et al. [16]
evaluated the efficiency of a transversal ventilation system by simulation based on the
buoyancy fluxes and concluded that ventilation rate is the most influential parameter in
efficiency. In their experiments, Chaabat et al. [18] studied the confinement of smoke flow
between adjacent exhaust vents and quantified the influence of the shape and the position
of the dampers. Mechanical ventilation has widely been used in tunnel fires, which is an
important part of smoke control design, and the layout of vents (including exhaust vents
and air supply vents) has a significant impact on the smoke exhaust effect, which can be
characterized by smoke exhaust efficiency.

However, the effectiveness and applicability of the smoke exhaust design are rarely
studied from the perspective of smoke exhaust efficiency. Xu et al. [19] carried out many
fire tests in tunnels to explore the smoke exhaust efficiency in longitudinal and transverse
smoke exhaust systems, and it was found that the exhaust efficiency reaches 35% and
50%, respectively, for transverse longitudinal smoke exhaust. In addition, the exhaust
efficiency is improved when the number and area of the exhaust vents in the tunnel are
increased. Zhu et al. [20] used CFD simulation software to carry out a fundamental study
on the influence of the layout of exhaust vents on the exhaust efficiency, considering the
distance between adjacent exhaust vents, and the location and size of vents. It was found
that the location and area of the exhaust vents are major factors in determining the exhaust
efficiency, and the heat and smoke exhaust efficiency are dependent on the layout and
distance of the vents. Furthermore, the smoke exhaust patterns also have an important
influence on the smoke efficiency. Liu et al. [21] analyzed the smoke efficiency of exhaust
patterns with different opening modes of vents, which is based on the results of many full-
scale fire experiments in a three-lane underwater tunnel. The higher ventilation rate and
number of vents significantly improved the exhaust efficiency. However, these studies were
performed using conventional tunnels (such as shield tunnels), and few of them involved
ultra-wide tunnels. In fact, smoke can spread more widely in ultra-wide tunnels, posing
new challenges in the smoke control of tunnel fires. Buchanan et al. [22] and Chen et al. [23]
found that it is difficult to achieve the expected effect of smoke exhaust for an ultra-wide
tunnel through the traditional smoke exhaust design of setting different layouts of vents,
and proposed a coupling method of mechanical smoke exhaust and air supply. In addition,
the opening direction of vents, up or sideways (corresponding to top and sidewall exhaust
patterns), has different smoke exhaust effect, but it is rarely explored.

To fill this gap, this paper studied the smoke control effect for an ultra-wide tunnel fire
based on FDS simulation. The effects of smoke exhaust patterns and longitudinal air supply
volume on the smoke spread distance, smoke layer height, temperature at the safe height,
and smoke exhaust efficiency in the tunnel were analyzed based on the numerical results.

2. Numerical Simulation
2.1. Model Tunnel

The Fire Dynamics Simulator (FDS 6.7) is extensively used in the simulation calculation
of tunnel fires to explore the smoke control effect of its smoke spread and temperature
distribution, and its applicability and accuracy have been verified [24–26]. The Large
Eddy Simulation (LES) method was used in this study, including conservations of mass,
momentum, energy and species, with the combustion, turbulence and radiation models set
as default [27,28]. The main governing equations are as follows:

Conservation of mass:
∂ρ

∂t
+∇·(ρu) = 0 (1)
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Conservation of momentum:

ρ

(
∂u
∂t

+ (u·∇)u
)
+∇p− ρg = f +∇·τ (2)

Conservation of energy:

∂

∂t
(ρh) +∇·ρhu =

∂p
∂t

+ u·∇p−∇·qr −∇(k∇T) + ∑i∇(hiρDi∇Yi) (3)

Conservation of species:

∂

∂t
(ρYi) +∇·ρYiu = ∇·ρDi∇Yi +

.
m′′i (4)

where ρ is the gas density, kg/m3; t is the time, s; u is the velocity vector, m/s; p is the
pressure, Pa; g is the gravitational acceleration, m/s2; f is the external force vector, N; τ
is the stress tensor, N; h is the sensible enthalpy, J/kg; qr is the heat release rate per unit
volume from a chemical reaction, W/m2; Di, Yi, and

.
m′′i are the diffusion coefficient, mass

fraction and loss rate of unit volume.
Figure 1 shows the physical model of the tunnel with different smoke exhaust patterns.

In this paper, the tunnel model was constructed based on an ultra-wide cross-sea tunnel,
which is twin-bore with eight traffic lanes. To reduce the computing cost, a single-bore
tunnel model was constructed, as shown in Figure 1, with dimensions of 600 m in length,
18 m in width and 7.5 m in height, respectively. The top, bottom, and sidewalls of the
tunnel were set as “INERT”. The entrance and exist of the tunnel were parallel to the XOZ
plane. A “VENT” surface was arranged at the cross-section of the entrance (y = 0 m) and
exit (y = −600 m), which the directions of the airflow were positive and negative along the
Y-axis. Both ends of the tunnel were opened to the environment, simulating the open space
outside the tunnel. The ambient temperature was set to 293 K. In addition, the simulation
calculation time was set to 1200 s to ensure that the smoke could adequately spread and
the calculation amount is reduced to improve the accuracy.
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Figure 1. Schematic diagram of tunnel model with different exhaust patterns: (a) sidewall; (b) top.

The fire source was set in the center of the single-bore tunnel (x = 300 m, y = 9 m,
z = 0 m). The length and width of the fire source were 5 m and 2 m, respectively, with a
surface of 10 m2. The tunnel fire was simulated by the burning of diesel, and the chemical
formula for fuel was simplified as C12H23 (C is carbon and H is hydrogen). Previous
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research [29] reported that the power of a tunnel fire can reach its maximum value within a
very short time. It is a relatively quick t2 combustion model, which can be expressed as:

Q = αt2 (5)

where Q is the fire power, kW; α is the fire increasing modulus with a value of 0.1876 [24],
and t represents the duration time of fire growing, s. In this paper, the fire power was set
to 20 MW, which is equivalent to the heat release rate of a coach fire. Therefore, the fire
scenario was constructed on the basis of a coach fire occurring in the tunnel.

For the sidewall smoke exhaust pattern (as Figure 1a), the exhaust vents, with dimen-
sions of 4 m in length and 1.5 m in height, were arranged in the sidewall of the tunnel
(x = 18 m) and the number of vents was 6. The distance from the bottom of the exhaust
vent to the carriageway was 6 m (z = 6 m). For the top smoke exhaust pattern (as Figure 1b),
3 rows of exhaust vents were arranged at the top of the tunnel (z = 7.5 m). Each row has
6 smoke vents. The length and width of the exhaust vent are 4 m and 1.5 m, respectively.
In addition, these smoke vents were symmetrically distributed with the central surface of
the fire source, and they were 138 m from the ends of the tunnel. In addition, the tunnel
model is devoid of vehicles, ignoring the obstacles to simplify the simulation calculation.

The difference between the two exhaust patterns is not only reflected in the layout of
the vents, including the location and number of vents, but also in the exhaust volume rate.
The determination of the exhaust volume rate was based on the plume model proposed by
Heskestad [30], and the total exhaust volume was set at 120 m3/s for both patterns. The ve-
locity boundary conditions at the exhaust vents were set at 3.33 m/s for the sidewall pattern
and 1.11 m/s for the top pattern, respectively. At the same time, five ratios of air supply
volume rate to exhaust volume rate, 0, 30%, 50%, 70% and 90%, were selected to study the
influence of this ratio on smoke control in tunnel fires. Therefore, the boundary conditions
of the air-supply vents with different ratios were set as 0, 3, 5, 7, and 9 m/s respectively.

In addition, many measuring points were arranged to monitor the smoke temperature,
the smoke layer height and the mass flux of CO2, as follows:

(1) Layer zoning device: 61 Layer zoning devices were set in the longitudinal centerline
of the tunnel with an interval at 10 m to monitor the smoke layer height.

(2) Thermocouples: To monitor the temperature variation at a safe height (2 m), a series
of thermocouples were installed every 10 m along the longitudinal centerline of the
tunnel, 2 m above the ground. In addition, near the fire source within 10 m, the
thermocouples were arranged at a longitudinal interval of 1 m.

(3) CO2: The mass flux of CO2 around each exhaust vent was monitored using the
parameter “MASS FLUX Z”, SPEC-ID = “carbon dioxide”. Coordinate parameters
were equal to those of the exhaust vents.

2.2. Mesh Size

Mesh size is the most important aspect for numerical simulation because it determines
the reliability and accuracy of the results. In general, a smaller mesh size results in more
precise computation results, but it will increase the computing amount and economic cost.
For FDS simulation, when the mesh is less than 0.1 of the characteristic diameter D*, it can
make sure that the results are acceptable and reliable [31]. The characteristic diameter can
be determined by [32]:

D∗ =
[

Q
ρ∞cpT∞

√
g

]2/5
(6)

where Q is the heat release rate of fire, kW; ρ∞ is the density of ambient air, kg/m3; cp is the
specific heat capacity of air at constant pressure, J/kg/K); T∞ is the temperature of ambient
air, K; and g is the gravitational acceleration, m/s2. D* is calculated to be 3.1 m when
the heat release rate of fire is 20 MW, thus 0.1 D* is approximately 0.31 m, and then the
calculated mesh size is smaller than smoke layer height and vent size (~2 m). The fire source
is more sensitive to the density of mesh, thus the mesh size near the fire source (275–325 m)
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is divided into 0.25 × 0.25 × 0.25 m, and the mesh size in other area is 0.5 × 0.25 × 0.25 m.
Mesh distribution is shown in Table 1. The convergence criteria were set as 10−4.

Table 1. Distribution of mesh size.

Fire Power 0.1 D* Position Mesh Size Total Number of Mesh

20 MW 0.31 m
0–275 m 0.5 × 0.5 × 0.5 m

1,227,400275–325 m 0.25 × 0.25 × 0.25 m
325–600 m 0.5 × 0.5 × 0.5 m

3. Results and Discussion
3.1. Smoke Spread

A large amount of high-temperature, toxic and harmful smoke is produced in the
tunnel fire, which poses great threat to people. Therefore, it is important to understand
the distribution of smoke and temperature for smoke exhaust design. Figure 2 shows
the temperature distribution in the central surface under different air supply ratios. It is
observed that the temperature distribution is symmetrical to the fire source and that the
temperature at the top of the tunnel (200 ◦C) is much higher than that at the bottom of the
tunnel. The difference in temperature is mainly attributed to the spread and distribution of
smoke. In fact, the temperature distribution of the tunnel center surface can represent the
smoke spread and its distribution in the tunnel. In a tunnel fire, the smoke first spreads
upward because of the thermal buoyancy and then spreads around after encountering
the tunnel ceiling. The smoke accumulates in the top of the tunnel and then descends
downward, resulting in the difference between the upper and lower regions. In addition,
the distance from the fire source to the temperature front of 60 ◦C, defined as the smoke
spread distance, is continuously reduced when increasing the longitudinal air supply
ratio. This is mainly caused by two aspects, on the one hand, the supplementary fan
keeps supplying air into the tunnel and blowing the smoke closer to the smoke exhaust
vent, which can exhaust smoke quickly. On the other hand, the pressure difference in the
tunnel is decreased because of the increase in air supply ratio, which enhances the smoke
exhaust efficiency.

For different smoke exhaust patterns, sidewall exhaust and top exhaust, the smoke
spread distance shows some differences, as shown in Figure 3. When the air supply volume
is less than 50% of the smoke exhaust volume, the smoke spread distance is about 10 m
farther for the sidewall exhaust pattern than that of the top exhaust pattern, which means
the sidewall exhaust pattern has a better smoke control effect under low air supply ratio
(<50%). However, there is an opposite smoke control effect when the ratio of air supply is
70%. That is, the smoke spread distance for the top exhaust pattern is higher than that for
the sidewall exhaust pattern. The smoke control effect is better for the top exhaust pattern
with an air supply ratio of 70%. The spread of smoke can be controlled to a smaller area
(−196~196 m), and the smoke spread distance for two exhaust patterns is similar after the
air supply ratio is increased to 90%. In addition, when the air supply increases to 70% of
the smoke exhaust, for sidewall pattern, the reduction of smoke spread distance is obvious
(from 230 m to 210 m), but this obvious reduction is observed when it is increased to 90%
for top pattern (from 218 m to 196 m). It can be seen that the smoke control effect has a
significant improvement with a smaller air supply ratio for the sidewall exhaust pattern,
but this significant improvement for the top exhaust pattern occurs when the air supply
ratio is larger.
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3.2. Smoke Layer Height

In general, if the smoke cannot be extracted in time, it will accumulate in the top tunnel
to form the smoke deposition phenomenon. The smaller smoke layer height is accompanied
by a more serious smoke deposition and worsened smoke exhaust effect. Thus, the smoke
layer height is an important parameter to characterize the smoke deposition. Figure 4
shows the distribution of the smoke layer height on the central surface of the tunnel, which
presents as a “W” shape with the variation of the distance from the fire source. It is observed
that for the two exhaust patterns, the distribution of smoke layer height is symmetrical
to the fire source, and the smoke layer height near the fire source is significantly higher
than both ends because of the thermal buoyancy. In addition, the height of the smoke
layer near the fire source has little difference between the two exhaust patterns, and the
distribution of the smoke layer height has a consistent trend with different longitudinal air
supply. However, the effects of air supply ratios and smoke exhaust patterns on the smoke
layer height at the ends of the tunnel can be distinguished.
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For the sidewall exhaust pattern, the smoke layer height at the end of the tunnel
(−300 m~−150 m and 150 m~300 m) is close to the safe height (2 m, the maximum height
that the human eye can tolerate [33]), especially if it is less than the safe height with a lower
air supply ratio (<50%). It means that a larger air supply ratio is more conductive to the
smoke exhaust, so that the smoke deposition is reduced. However, the smoke layer height
of the top exhaust pattern is obviously higher than the safe height, including in the absence
of longitudinal air supply. When the longitudinal air supply ratio is small (30~50%), the
smoke layer height at the ends of the tunnel is smaller, especially if there is no longitudinal
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air supply, which is attributed to the decrease in pressure difference and the strong blowing
effect. It can be seen that the smoke deposition is significantly weakened, and the smoke
layer height is above the safe height (2 m) in the top exhaust pattern, but it occurs with
a higher air supply ratio in the sidewall exhaust pattern, which means the top exhaust
pattern has a better smoke control effect.

3.3. Temperature at Safe Height

The harm induced by high-temperature smoke may be caused by direct contact and
heat radiance. The critical temperature of 68 ◦C was selected in this study as it is a harmful
temperature to the human body, at which the human body will be irreparably damaged [33].
In general, the temperature inside the tunnel rises sharply because of the movement and
accumulation of smoke. Figure 5 shows the temperature distribution at the safe height (2 m)
with different air supply ratios and the comparison of the smoke exhaust effects between the
two smoke exhaust patterns is also carried out in terms of personnel escape. It was found
that the influence of air supply ratio on the temperature is not obvious, and the temperature
curves under different longitudinal air supply are almost consistent. In addition, the
temperature at the safe height is below the critical temperature (68 ◦C), except for the
region near the fire source (−10 m~10 m), and it decreases continuously with the increase
in the distance from the fire source. This decrease is mainly attributed to the reduction of
radiation from flame. This is mainly because a large amount of high-temperature smoke
is accumulated in the region of the fire source and the radiation from the flame, resulting
in its high temperature. During the process of smoke movement (including spread and
deposition), the high-temperature smoke is continuously mixed with the ambient air and
rubbed against the tunnel wall, causing heat exchange and heat loss, hence the temperature
of smoke is gradually decreased.
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(b) top exhaust.

However, the influence of the smoke exhaust pattern on the temperature distribution
is obvious, mainly including the effects on the fire source region (−10 m~10 m) and the
ends of the tunnel. First, the temperature near the fire source for the top exhaust pattern
reaches 250 ◦C, which is much higher than that for the sidewall exhaust pattern (120 ◦C).
This difference is attributed to the accumulation of smoke at the exhaust vents. The smoke
spreads upward due to the thermal buoyancy and moves to the top exhaust vents because
of the mechanical smoke exhaust, which results in the accumulation of smoke in the tunnel
ceiling and a higher temperature in the top exhaust pattern. In addition, for the non-fire
region (>10 m), the safe height temperature for the sidewall smoke exhaust (35 ◦C) is
slightly higher than that for the top smoke exhaust (25 ◦C), where it will not cause harm to
escaping people. From the variation of smoke layer height, there is little smoke at the safe
height for the top exhaust pattern, and thus the smoke temperature is close to the ambient
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temperature. The smoke temperature is raised for sidewall exhaust pattern due to the heat
radiation from the lower smoke layer (close to safe height 2 m).

3.4. Smoke Exhaust Efficiency

Smoke exhaust efficiency is a main parameter for evaluating the smoke exhaust effect
of tunnel fires [34], which is regarded as the ratio of the total smoke exhaust volume to the
total smoke generation volume. Since it is difficult to directly obtain the exhaust volume of
each exhaust vent in the FDS calculation, the calculation of the exhaust efficiency can be
replaced by the mass flux of CO2. Thus, the exhaust efficiency can be calculated as:

η =
me

mp
× 100% = ∑ ηi =

∑ mei
mp

× 100% (7)

where η is the exhaust efficiency, %; me is the total exhaust rate of CO2 from all exhaust
vents, kg/s; mei is the mass flux of CO2 from i-th exhaust vent, kg/s; mp is the total
generation rate of CO2 from fire source, kg/s.

The calculation of the generation of CO2 is complex because of the air entertainment.
In the FDS calculation, the fuel can be assumed to be in complete combustion with only a
product of CO2, and complete combustion of diesel is simplified as:

C12H23 + 17.634O2 → 11.868CO2 + 11.5H2O + 0.032CO + 0.1Soot (8)

The generation rate of CO2 is about 3.32 kg/s, which is calculated from the reaction
equation and heat of combustion of 47 MJ/kg [13].

Figure 6 shows the calculated smoke exhaust efficiency with different longitudinal
air supply ratios. It is clearly found that the exhaust efficiency for the top exhaust pattern
is about 70%, which is significantly higher than that for the sidewall exhaust pattern of
55%, which means the top exhaust pattern has a better smoke exhaust effect. In addition,
the longitudinal air supply ratio has a different impact on the smoke exhaust efficiency for
different exhaust patterns. For the top exhaust pattern, the exhaust efficiency is improved
slowly as longitudinal air supply ratio increases, especially when the longitudinal air
supply ratio increases from 30% to 90%, the smoke exhaust efficiency only increases by
2.5 percentage points. Thus, an excessively large amount of air supply will not significantly
improve the exhaust efficiency of the top exhaust pattern, and it is reasonable to set the
longitudinal air supply at 30%, taking into account the economic cost. In the case of
the sidewall exhaust pattern, the longitudinal air supply does not increase linearly with
the smoke exhaust efficiency. After the air supply ratio is increased to 70%, the exhaust
efficiency will decrease instead. Obviously, air supply of 70% is optimal for the sidewall
exhaust pattern.
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4. Conclusions

In this paper, a full-scale ultra-wide tunnel model was constructed based on the FDS,
with different smoke exhaust patterns (sidewall and top exhaust patterns) and longitudinal
air supply ratios (0, 30%, 50%, 70%, and 90%), to explore the smoke control effect for
ultra-wide tunnel fires. The fire parameters were analyzed, such as the longitudinal spread
distance of smoke, the smoke layer height and the temperature at safe height. In addition,
the smoke exhaust efficiency was calculated based on the mass flux of CO2, and the smoke
control effect with different smoke exhaust patterns and air supply volume were compared.
The main conclusions are summarized as follows:

(1) As a result of the increase in the longitudinal air supply ratio, the smoke spread
distance is shortened. The smoke spread distance for the top exhaust pattern is
generally shorter than that for the sidewall exhaust pattern, except for the air supply
ratio of 70%;

(2) The height of the smoke layer is higher than the safe height of 2 m for the top exhaust
pattern, but for the sidewall exhaust pattern, the height is lower than 2 m when the
longitudinal air supply volume is less than 50% of the smoke exhaust volume.

(3) The smoke exhaust pattern has a great impact on the temperature near the fire source,
which reaches 250 ◦C for the top exhaust pattern and 120 ◦C for the sidewall exhaust
pattern. In addition, the longitudinal air supply volume has no influence on the
temperature, and its distribution is almost consistent.

(4) The exhaust efficiency of the top exhaust pattern (~70%) is significantly higher than
that of the sidewall exhaust pattern (~55%). The best air supply ratios are 30% for the
top exhaust pattern and 50% for the sidewall exhaust pattern, respectively, taking the
economic cost into account.
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