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Abstract: In seasonally dry environments, the amount of water held in living plant tissue—live fuel
moisture (LFM)—is central to vegetation flammability. LFM-driven changes in wildfire size and
frequency are particularly important throughout southern California shrublands, which typically
produce intense, rapidly spreading wildfires. However, the relationship between spatiotemporal
variation in LFM and resulting long-term regional patterns in wildfire size and frequency within these
shrublands is less understood. In this study, we demonstrated a novel method for forecasting the
LFM of a critical fuel component throughout southern California chaparral, Adenostema fasciculatum
(chamise) using gridded climate data. We then leveraged these forecasts to evaluate the historical
relationships of LFM to wildfire size and frequency across chamise-dominant California shrublands.
We determined that chamise LFM is strongly associated with fire extent, size, and frequency through-
out southern California shrublands, and that LFM–wildfire relationships exhibit different thresholds
across three distinct LFM domains. Additionally, the cumulative burned area and number of fires
increased dramatically when LFM fell below 62%. These results demonstrate that LFM mediates
multiple aspects of regional wildfire dynamics, and can be predicted with sufficient accuracy to
capture these dynamics. Furthermore, we identified three distinct LFM ‘domains’ that were charac-
terized by different frequencies of ignition and spread. These domains are broadly consistent with
the management thresholds currently used in identifying periods of fire danger.

Keywords: fuel moisture; live fuel moisture; forecasting; climate; burned area

1. Introduction

In seasonally dry environments around the world, the amount of water held in living
plant tissue—live fuel moisture (LFM)—is central to both drought survival and flammability
characteristics. Since the early research that linked LFM with actual fire occurrences in
California [1–3] and Spain [4], studies have established relationships between LFM and
wildfire across many ecosystems and regions, including southeastern Australia [5], central
Argentina [6], and southwestern China [7]. A recent focus on LFM has even helped
spawn the new sub-discipline of pyro-ecophysiology [8–11], which attempts to understand
coincident drought and flammability traits. Across the world, collaborative efforts are
now devoted to mapping LFM patterns in space and time [12]. Links between water
stress (e.g., plant responses to avoid negative impacts) and characteristics of combustion
(e.g., time to ignition, heat release) are clearly of growing interest. However, it remains
unclear whether distinct stages of the fire season respond differently to variations in LFM.
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LFM-driven changes in fire danger are particularly important throughout plant
communities occupying Mediterranean-climates, which typically produce intense, stand-
replacing fires that may spread rapidly [13]. These vegetation types also commonly occur
along the wildland–urban interface (WUI) and in close proximity to human habitation,
posing a significant threat to human life, structures, and essential infrastructure. Seasonal
and interannual variations in LFM represent a major driver of this fire danger, as laboratory
experiments have shown that fire spread is strongly linked to LFM among live chaparral
fuel beds [14,15]. Similarly, the occurrence of fire in portions of coastal southern California
has shown important linkages between LFM and the cumulative area burned, and has also
exhibited critical thresholds of LFM, below which the burned area increases rapidly [3].
Findings obtained from other Mediterranean ecosystems [16] and even non-Mediterranean
areas [6,7] also support the idea that there can be strong thresholds in the relationship
between LFM and fire behavior, although the nature and location of thresholds may vary
among vegetation types and among regions. Identifying links between LFM and resulting
fire behavior, with particular emphasis on the location and strength of critical LFM thresh-
olds in fire size and frequency, could thus be essential in forecasting fire danger in many
fire-prone landscapes.

Although modeling and forecasting the LFM of critical fuel components is important
for the prediction of local fire danger, spatially explicit forecasts of LFM and its relationship
with wildfire risk have until recently remained limited. The moisture content of dead
fuels can be easily modeled based on weather data [17,18]. However, the dynamics of live
fuel moisture can be substantially more complex and difficult to model. Remote-sensing
methods have been used successfully to determine historical patterns of spatiotemporal
variation in LFM, but are limited to the time period for which remote sensing data is
available, and cannot forecast future LFM [19,20]. Machine-learning [21] and statistical
modelling approaches [22] have shown great promise in evaluating patterns of variation
in LFM over space and time at broad spatial scales. However, the relationship between
spatiotemporal variation in LFM and in resulting variations in regional wildfire dynamics
remains unclear, as does the ability of such models to identify critical thresholds associated
with changes in wildfire risk.

In this study, we examined novel methods for forecasting the LFM of Adenostema
fasciculatum (also known as chamise), a shrub species representing a critical fuel component
throughout southern California chaparral, as well as much of the southwestern United
States. Chamise is a dual-rooted shrub that possesses both a shallow root system capable of
capitalizing on winter rains, and a deep root system capable of tapping into subterranean
water throughout the dry season when near-surface soil moisture is low and precipitation
is unlikely [23–25]. The flammability of these fuels changes dramatically due to seasonal
shifts in LFM, and previous examinations of the relationship between fire and seasonal
LFM throughout Los Angeles County in California showed that fire activity increased
sharply once LFM fell below ~79% [3]. Additionally, fires throughout chamise-dominated
areas (see Materials and Methods) represent a major component of California fires, and
chaparral-dominated areas account for a greater proportion of area burned throughout
California than the proportion of the state they occupy. These attributes, alongside the
high flammability and prevalence of chamise among chaparral ecosystems, make it an
excellent candidate for LFM modeling efforts. However, the extensibility of these studies
to broader regional vegetation and fire dynamics remains unclear. Furthermore, there is
some question as to whether the observed thresholds in the relationship between burned
area and LFM are due to increases in fire frequency when LFM falls below these thresholds
(indicating more frequent and successful ignitions) or to increases in the sizes of individual
fires [26].

To resolve these questions, we first modeled spatiotemporal variation in LFM within
chamise-dominated areas, and then determined the precise relationship (and potential
thresholds of these relationships) between LFM and wildfire. However, the observation of
live fuel moisture is often spotty, with many spatial and temporal gaps in the observational
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record. As a result, many fire events do not occur in close spatial or temporal proximity to in
situ observations of LFM, making any attempt to determine the relationship between local
LFM and fire problematic. This observational limitation typically restricts examinations of
LFM–wildfire relationships to a relatively small number of fires, thereby limiting our ability
to make inferences about the relationship of LFM to regional wildfire dynamics, which
necessarily requires the evaluation of a large number of wildfire events. In this study, we
resolved this limitation by modeling the relationship between local conditions and LFM
over space and time, producing spatially and temporally explicit estimates of LFM for key
fuel components across southern California chaparral. We then used these spatiotemporal
estimates of LFM, in conjunction with in situ observations of LFM and records of past fire
events, to evaluate the relationships of LFM with (a) cumulative burned area, (b) mean fire
size, and (c) the cumulative number of fires.

2. Materials and Methods
2.1. Data Sets

All live fuel moisture data used in the model calibration were drawn from the Na-
tional Fuel Moisture Database (NFMD, https://www.wfas.net/nfmd/public/index.php
(accessed on 9 January 2020), and these consisted of 19,639 individual observations of
chamise fuel moisture across 61 sites throughout California, spanning the years 1977
through 2017. Climate data used in this study were drawn from the California Basin Char-
acterization Model v8 [27], and consisted of monthly estimates of cumulative water deficit
(CWD) and actual evapotranspiration (AET) measurements through the years 1951–2016.
This dataset represents a 270 m grid-based model of water balance calculations that incor-
porates not only climate inputs (through PRISM climate data [28]) but also solar radiation,
topographic shading, and cloudiness, along with soil properties to estimate evapotranspi-
ration [29]. Using these monthly values, we calculated the mean maximum temperature
(TMX), mean actual evapotranspiration (AET), mean climatic water deficit (CWD), mean
precipitation (PPT), and mean soil moisture storage (STR) at 1, 6, and 12-month periods
with lags of 1, 2, 3, 4, 5, and 6 months. Fire history data were drawn from FRAP fire
perimeter data [30], which incorporate the perimeters of all known fires from 1878 through
2017. Vegetation data used to identify chamise vegetation in this study were drawn from
both CALFIRE FRAP FVEG data [31] and the LANDFIRE 2016 Existing Vegetation Type
(EVT) dataset [32].

2.2. Data Preparation

Observations of LFM were merged with data recording the latitude and longitude
of each site and then filtered to exclude those observations not pertaining to chamise. As
an LFM below 50 can represent dead material on the sampled shrubs, observed in situ
estimates of LFM below 50% (which were exceedingly rare) were also excluded. Because
LFM within each site was often recorded at inconsistent intervals that did not align with
the monthly climate data used in this study, and many sites incorporated observations
from multiple individual plants (the number of which also varied over time), we then
calculated a single mean LFM within each month and site in which observations were
present. In order to reduce the computational load to a manageable scale, all climate data
were rescaled to 1 km pixels through spatial averaging, conducted using Rasterio in Python
v3.7 [33]. Six-month and twelve-month mean TMX and total PPT, AET, CWD, and STR
were then extracted at monthly timesteps using python v3.7.

2.3. Predicting Live Fuel Moisture across California

The most relevant climate parameters, lags, and window durations were identified by
regressing each LFM observation against the corresponding monthly climate parameters
(including TMX, PPT, AET, CWD, and STR) with lags of 1 to 6 months, as well as against
the six-month means of each parameter over the six months preceding each observation.
Overall relationships between chamise LFM and local climate at monthly timescales were

https://www.wfas.net/nfmd/public/index.php
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then modeled using a generalized additive model (GAM) framework. To minimize compu-
tational time while allowing for nonlinear relationships between local climate and LFM, a
maximum of five smoothing terms was allowed for each climate parameter.

In order to determine the ability of this modeling technique to predict LFM in both (a)
novel locations and (b) months not present in the training data, model performance was
assessed using multidimensional k-fold cross-validation. All data were divided by month
and year into to one of five randomly assigned temporal groups of equal size, and all were
similarly divided into five randomly assigned spatial groups. GAM models were then
constructed iteratively, while holding out one temporal and one spatial group as a testing
data set within each iteration. The ability of these models to successfully predict LFM at
monthly timescales was evaluated by calculating the mean Pearson correlation coefficient
between the predicted LFM at training sites and months not used in model development,
and the observed mean monthly LFM recorded at those sites and months across all model
iterations. In order to avoid unnecessary complexity within these models and to limit the
computational requirements, only parameters of which the inclusion increased the mean
Pearson correlation coefficient by 0.02 or more were excluded from the selected model. In
order to incorporate as long a wildfire series as possible, LFM was predicted monthly from
1952 through 2017.

2.4. Identifying Fires of Interest

First, we identified those fires in which chamise was likely to represent a major
component of the overall fuel by eliminating those fires in which <50% of the burned
area was predicted to consist of either Southern California coastal scrub or dry mesic
chaparral according to the FVEG land cover dataset produced by CALFIRE-FRAP. Similarly,
we eliminated all fires in which <50% of the burned area was predicted to consist of
either mixed chaparral, chamise-redshanks chaparral, or coastal scrub according to EVT
vegetation maps. Because of concerns surrounding mismatches among vegetation types
between FVEG land cover data and EVT vegetation maps, only those fire scars which met
both of these sets of criteria were selected for further analysis. It should be noted that
these vegetation maps were static over time and did not attempt to incorporate variation
in vegetation cover that may have occurred across the study period or immediately after
disturbance events. However, annual assessments of vegetation cover throughout the
study period were not available. Thus, although land cover may have fluctuated somewhat
throughout the study period and immediately after fires or other disturbance events, these
data nevertheless represented the best available data pertaining to the spatial distribution
of chamise-dominated vegetation across California.

To evaluate the relationship of chamise LFM to the mean fire size, frequency, and cu-
mulative area burned across southern Californian forests, it was first necessary to measure
the predicted (and observed) LFM within the area burned during each fire. In order to
summarize the predicted LFM within each fire at the time of ignition based on the gridded
LFM estimates produced in this study, the mean predicted LFM in the month and year in
which the initial ignition occurred was calculated across the entirety of each fire scar. The
resulting data included 1818 individual fires from the year 1952 through 2017 (Figure 1).

2.5. Identifying Critical Thresholds in LFM and Relationship to Burned Area

To evaluate the relationship between LFM and fire, and to identify critical LFM
thresholds associated with shifts in fire behavior, we first calculated the cumulative area
burned with decreasing (simulated) LFM for all selected fire scars. As previous studies
have shown that observed thresholds in LFM–wildfire relationships may be biased due
to differences in the frequency with which different values of LFM occur over space and
time [26], we converted these LFM values into percentile ranks based on the distribution
of simulated LFM across the duration and spatial extent of this study. By carrying out
this step, we corrected for any differences in the spatial or temporal frequency of LFM
across the study area, which might otherwise bias the apparent relationships to cumulative
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area burnt. Using these percentile LFM values, we then conducted piecewise or ‘broken
stick’ regression [34] in order to identify transition points in LFM that were associated
with an increasing burned area. After identifying thresholds in LFM–wildfire relationships
using LFM percentiles, these percentile ranks could then be converted back into actual
LFM values in order to identify the transition points in LFM–cumulative burned area
relationships. Although similar analyses were conducted using in-situ observations of
LFM, the sporadic spatiotemporal distribution of in-situ LFM observations precluded
corrections for biases caused by differences in the frequency with which different values of
LFM occur over space and time, and drastically reduced the number of fire events that for
which LFM could be estimated. These limitations render interpretation or comparison to
bias-corrected thresholds in LFM-wildfire relationships derived from gridded LFM data
problematic, and are described in greater detail within the appendix (Figure A1).
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Figure 1. Study area, marked in red. The study area encompassed the 1818 fire scars examined in this
study, which occurred from the year 1952 through 2017. Only fire scars in which ≥50% of the burned
area consisted of either Southern California coastal scrub or dry mesic chaparral according to the
FVEG land cover dataset produced by CALFIRE-FRAP, as well as ≥50% cover by mixed chaparral,
chamise-redshanks chaparral, or coastal scrub according to EVT vegetation maps, were included.

2.6. Identifying Critical Thresholds in LFM and Relationship to Mean Fire Size

In order to determine whether the mean size of wildfires varied significantly with
LFM, we similarly conducted piecewise analyses of the relationship between LFM and
the mean size of all wildfires in which the predicted LFM (based on the mean LFM value
across the burned area of each wildfire event) fell within a 5 percentile span (e.g., all fires
in which LFM fell within the 5th to the 9.99th percentile). By evaluating mean fire size
within set percentile ranges of LFM, this analysis eliminated any effects of differential fire
frequency across the range of LFM, and enabled us to evaluate only the relationship of
LFM to wildfire size. As with analyses of cumulative burned area, the identified percentile
thresholds in LFM–wildfire relationships could then be converted back into actual LFM
values in order to identify the actual transition points in LFM–mean-fire-size relationships.

2.7. Identifying Critical Thresholds in LFM and Relationship to Cumulative Number of Fires

Finally, in order to determine the degree to which low LFM was associated with a
higher number of fires, and to identify critical thresholds of LFM below which fires occurred
more frequently, we similarly conducted piecewise analyses of the relationship between
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LFM percentile ranks and the cumulative number of fire events that had occurred. As
with our analyses of the cumulative area burned, these analyses were conducted using
LFM percentiles rather than raw LFM in order to compensate for potential differences in
the spatial and temporal frequency of different ranges of LFM across the study area, and
then converted post hoc data into actual LFM data in order to identify the actual threshold
values. As percentile ranks of LFM inherently compensate for variable frequencies of
different ranges of LFM values over space and time, the rates at which fires accumulate
may be considered to be a measure of mean fire frequency within each range of LFM.

3. Results

GAM models successfully explained 65.4% of the observed variation in LFM among
months, years, and locations not used in model development (Table 1, Figure 2). Further-
more, these models showed that cumulative precipitation over the preceding six months
was the strongest predictor of LFM among chamise, followed by PPT and TMAX 2 months
prior to observation (Figure 3). The mean absolute error (MAE) of these predictions was
11.46%, with a root mean squared error of 16.023. However, predictions were substantially
more accurate during the dry season, in cases where LFM was low. When observed LFM
was below 100%, MAE fell to 8.99%, whereas the MAE of the predicted LFM in locations
and times where the observed LFM was 80% or less was only 8.33%.

Table 1. Parameters, lags, and R2 values of the selected GAM model. Individual R2 values indicate
R2 values of GAM models which include only that parameter. Note that smoothing results for
single-parameter models may be different from those of the multi-parameter model. Cumulative R2

values indicate R2 values of the model as parameters were added in stepwise fashion, and represent
mean cross-validated R2 values among times and locations not used in model development. Cross
validation was accomplished by dividing all data by month and year into to one of five randomly
assigned temporal groups of equal size, and all were similarly divided into five randomly assigned
spatial groups.

Parameter Lag (Months) Edf Individual R2 Cumulative R2

6-Month PPT 0 3.985 0.538 0.538

Monthly PPT 2 2.978 0.490 0.633

Monthly TMAX 2 3.995 0.463 0.654
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Figure 3. Smoothed coefficients of (a) cumulative precipitation over the prior six months, (b) monthly
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models used to predict LFM. Smoothed values (y-axis) represent contributions of each parameter to
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Both PPT and TMAX exhibited nonlinear relationships to LFM, with both 6 month
and monthly lagged precipitation exhibiting strong positive relationships between PPT and
LFM until reaching a saturation point, above which the relationship between precipitation
and LFM were weakened and reversed. However, the sharp increases in the margins of
error above these saturation points (roughly 800 mm in 6 month cumulative PPT and 350
mm in monthly PPT), implied a weak and nondeterministic relationship to LFM when
PPT was high. In contrast, the relationship between LFM and TMAX remained strong
throughout the entire observed temperature range, with low LFM predicted in association
with low temperatures, reflecting winter dormancy, followed by high LFM predicted
under temperatures ranging from approximately 25 to 22 ◦C, which likely reflected the
peak growing season. TMAX showed minimal relationships with LFM above 25 ◦C,
likely reflecting a reduced relationship between temperature and fuel moisture during
the summer and autumn dry season when conditions are dry and transpiration is low
regardless of temperature. Overall, these results would indicate that LFM during the dry
season (corresponding to summer and autumn) is likely driven primarily by winter and
spring precipitation, rather than by summer and fall temperatures.

3.1. LFM versus Cumulative Area Burned

Strong thresholds were detected in the relationship between cumulative burned area
and live fuel moisture (Figure 4). Examinations of the relationship between cumulative
burned area and simulated LFM identified two distinct thresholds in the relationship
between cumulative burned area and simulated LFM (Figure 4). The burned area remained
low while the simulated LFM remained above 76.9% (i.e., within the upper 57.7% of
LFM values across the study area and period). However, the cumulative burned area
was observed to increase rapidly with declining LFM once the simulated LFM fell below
76.9%, with an even sharper increase in the cumulative burned area once LFM fell below
61.1% (Figure 4). Notably, this indicates that approximately 40% of the total burned area
occurred when LFM was below 61.1%, (in the lowest 8th percentile of LFM conditions), and
approximately 80% of the burned area occurred under conditions within the lowest 42.3%
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of LFM conditions. Although estimates of LFM thresholds calculated without adjustments
to correct for the variable frequency of different LFM conditions across the study area did
exhibit minor differences from these thresholds, threshold placement remained relatively
similar (<5% change in both upper and lower thresholds, Figure A2a), and, in the case of
the lower threshold, exhibited a much sharper transition in the cumulative burned area
than was visible when examining LFM percentiles (Figure A2a).
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actual LFM).

3.2. LFM versus Mean Fire Size

As with cumulative burned area, mean fire size was observed to begin systematically
increasing in association with lower LFM once LFM fell below 95.9% (representing the
67.4th percentile of LFM, Figure 5), and exhibited an even sharper relationship between
increased fire size and reduced LFM as LFM fell below 62.1% (representing the 17.5th
percentile of LFM across the study area, Figure 5). Thus, it appears that, independently
of the number of fires that occurred across different LFM conditions, there was a strong
relationship between reductions in LFM and increases in the average size of wildfires
throughout the study area.
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3.3. LFM versus Cumulative Number of Fires

As with the cumulative burned area, thresholds were detected in the relationship
between the cumulative number of fire events and live fuel moisture (Figure 6). After cor-
recting for the variable frequency of LFM conditions over space and time, the fire frequency
was observed to increase when LFM dropped below 60.9% (representing the lowest 7.3% of
observed LFM conditions over space and time). Similarly, the fire frequency was observed
to be quite low when LFM rose above 89.0% (representing the 57.8th percentile of LFM
conditions). Thus, the lower of these thresholds also remained similar to those observed in
the relationship between simulated LFM and cumulative burned area (Figure 4), although
the LFM threshold above which ignitions were less common appears to be higher than that
observed in relation to cumulative burned area. Although estimates of LFM thresholds
calculated without adjustments to correct for the variable frequency of different LFM con-
ditions across the study area did exhibit minor differences from these thresholds, overall
thresholds remained relatively similar (<5% change in both upper and lower thresholds,
Figure A2b).
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4. Discussion

This study demonstrated that the live fuel moisture of chamise can be predicted based
on monthly climate data with a high degree of accuracy. As with previous examinations
of chamise, antecedent precipitation appears to be the largest factor in determining LFM
over space and time [3]. Predictions of LFM are also most accurate when in situ LFM is low,
with more unexplained variance in LFM occurring when LFM is high (Figure 2). As fire
risk is typically most sensitive to variations in LFM during the fire season when LFM is
low [3] and is comparatively unaffected by variations in LFM during the wetter portions of
the year, the observed model performance throughout the portion of the year when fire
risks are high is likely much better than its overall performance across the entire range of
conditions (R2 = 0.654, MAE = 11.46, RMSE = 16.02, Figure 2). The modeled LFM produced
in this study demonstrated similar predictive accuracy to remote-sensing based methods of
forecasting LFM [19,35]. Unlike methods that depend on remote sensing data, however, this
method relies solely on climate data, and can therefore be projected forward in time when
future climate projections are available, or used to produce near-real-time estimates of LFM
on the basis of local climate data in order to identify upcoming periods of high fire danger.
Additionally, although the models presented here depend on precipitation and temperature
(which were the best predictors of historical LFM across California), this framework can
also be applied to model LFM directly based on gridded estimates of climatic water deficit
(CWD) and actual evapotranspiration (AET). Although models utilizing these metrics
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have exhibited mildly inferior predictive power to those driven solely by TMAX and PPT
(Figures A3 and A4), they do provide a more mechanistic framework through which to
understand the relationship of LFM to local conditions as experienced by plants. Thus, such
models provide a unique opportunity to forecast LFM under projected future conditions
(including possible non-analog future conditions which have no precedent in the historical
record), in which estimates of temperature and precipitation may be less useful. Due to
limitations in the temporal resolution of the climate data used in this study, these LFM
predictions were limited to a monthly resolution. As in situ observations of LFM reflect
the fuel moisture status of a plant on the day on which it was observed (which was then
averaged across all observations in a given month), this may lead to some loss in predictive
power in comparison to models developed with daily climate data [36]. However, the
RMSE values of these monthly predictions were similar to those of daily predictions
produced using more sophisticated models (RMSE = 16.023 in this study vs. RMSE = 15.34,
as reported by Capps et al. [36]). Thus, these data were likely sufficient to evaluate broad
trends in the relationships of LFM to burned area, wildfire size, and wildfire frequency
across southern California shrublands.

We found that LFM plays an important role in the spatiotemporal distribution of fire
at landscape to regional scales, supporting previous evidence that fire is more prevalent at
times and locations in which LFM falls below certain thresholds [2,3,5,6]. Independently,
the relationship observed here between LFM and the average size of wildfires (Figure 5)
demonstrates that lower LFM is conducive to greater spread by individual fire events. These
results confirm the findings of previous studies that showed the more rapid spread of fire
among low-moisture fuels in laboratory experiments [14,37]. Furthermore, studies in the
Chaco Serrano subregion of Argentina have also shown that high LFM often constrains
the size of fire events [6], resulting in a greater frequency of large fires during periods of
time when LFM is low. Similar patterns have also been found throughout Mediterranean
shrublands, where low LFM among shrub species has been associated with a high burned area
and greater frequency of large fires [4]. Thus, low LFM is strongly associated with both greater
ignition success and the initial establishment of wildfire events (Figure 5), as well as a greater
likelihood that each individual fire event will, once established, spread successfully to cover a
wide area. It should be noted, however, that the thresholds identified in this study represent
optimal breakpoints as identified through segmented regression, and do not necessarily
imply sudden or drastic state changes in LFM–wildfire relationships. Instead, they should be
interpreted as marking general transition points in the different phases of the fire season and
in wildfire dynamics, as ignitability and fire spread rates change with progressively drier fuels.
These dynamics will also likely be affected differently by local topography, fuel structure,
microclimate, seasonal wind patterns, and many other factors that may affect the relationship
of LFM with local wildfire dynamics [38,39]. Nevertheless, thresholds of dry fuel moisture
have been implicated as the triggers for dynamic transformations of forest flammability across
multiple continents and vegetation types [5,40]. Thus, as live fuel also makes up a significant
component of the flammable material across the landscape, it is likely that the changes in LFM
will also impact wildfire behavior.

Our finding of two thresholds in the relationship between simulated LFM and the
burned area, mean fire size, and cumulative number of fires indicates that there are multiple
domains of LFM–fire dynamics for this shrubland system. These findings support previous
studies that identified multiple LFM–wildfire domains across both Europe and northern
Africa [41]. The first domain represents conditions in which fuels are moist, and as a result,
ignition rates are low, fire sizes remain small, and the cumulative burned area remains
low. As fuels remain sufficiently hydrated as to limit both the ignition and spread of
fire throughout this domain, changes in LFM within this domain appear to have only
minimal effects on ignitability, fire size, and the rates at which the burned area increases.
There is a wide range of variation in the LFM that limits this first domain (~77–96%)
depending on which metric is being examined, indicating that this transition point is likely
somewhat gradual, and may occur at slightly different LFMs depending on the aspect of
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wildfire being measured. The second domain represents the range of LFM in which fuels
become sufficiently dry for progressive reductions in LFM to impact ignitability and fire
spread more strongly. Throughout this middle domain, progressive reductions in LFM
appear to be associated with moderate increases in both ignitability and fire spread rates
(as measured through examinations of mean fire size). However, these increases begin
somewhat gradually in the upper portion of this domain, and only produce systematic
increases in the rate of cumulative burned area accumulation throughout the lower half
of this domain (when conditions range from ~62–77% LFM, Figures 4 and A2). The third
and most distinct domain represents the driest conditions, in which any reduction in LFM
results in dramatic increases both in ignitability (as measured via the cumulative number
of fires) and fire size. This domain consists of conditions when LFM falls below ~62% and
represents conditions in which fuel is extremely dry. In this domain, both fire frequency
and size increase dramatically with reductions in LFM relative to conditions experiencing
LFM values above this threshold, leading to rapid increases in the cumulative burned
area, mean fire size, and fire frequency. In contrast to the transition between the first
two (moister) LFM domains, which experienced a comparatively gradual transition in the
relationships between LFM and ignitability and fire spread, this domain exhibits sudden,
sharp increases in the cumulative number of fires, fire size, and cumulative burned area
once LFM falls below ~62%, particularly when viewed in terms of actual LFM, rather than
the LFM percentile (Figure A2). Thus, this lowest LFM threshold likely represents a critical
indication of hazard for high fire conditions, as both fire frequency, mean fire size, and
cumulative area burned were observed to increase sharply below this threshold.

Previous examinations of LFM in Los Angeles county identified only a single sharp
threshold in the relationship between the LFM of chamise and the cumulative burned
area [3], which occurred at 79% LFM. This observed threshold coincides with the observed
threshold between the wettest and middle domains in the LFM–burned-area relationship
(at 77% LFM) that was observed in this study, although examinations of the relationships
between LFM and mean fire size or cumulative number of fires exhibited some variation in
the placement of this threshold (77–96% LFM). The sharpest and most consistent threshold
observed in this study, however, occurred under much drier conditions, at ~61–62% LFM,
representing the transition point into the third and driest domain observed in this study.
This lower threshold also corresponds to the perceived LFM thresholds often used by
firefighters to determine local fire danger throughout southern California [15]. Previous
examinations of fire size distributions have also showed that fire sizes across many Cali-
fornia ecosystems exhibit a three-domain distribution, which supports the results of this
study [42]. These findings also indicate that LFM may be the driver (or one of the primary
drivers) in generating such a distribution of fire sizes. Inconsistencies in the upper LFM
threshold (~77–95%) may be partially due to the greater error in predictions of LFM during
conditions when fuel moisture is increasingly wet, and may also represent a more gradual
transition between the wettest and middle LFM domains. Additionally, some aspects of
differences in LFM–wildfire relationships among these domains may be influenced by sea-
sonal differences in wind and the confluence between the timing of progressive reductions
in LFM and the occurrence of Santa Ana winds and other extreme events that are closely
associated with extreme fire sizes and rapid fire spreads [43]. As LFM predictions in this
study were driven by local climate conditions, as well as many effects of long-term climate
shifts (such as increasing temperatures or drought conditions) that may have occurred
across the study period should be reflected in predicted LFM values, it should also be noted
that this study does not explicitly account for any potential non-stationarities across the
study period that may have resulted from changes in land use or anthropogenic ignition
rates. Thus, despite the strong concurrence observed with commonly used LFM thresholds
based on expert information [15], it is not yet known how generalizable our findings are to
other regions or vegetation types.
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5. Conclusions

In this study, we demonstrated that LFM impacts wildfire throughout southern Cal-
ifornia through multiple mechanisms, by altering both the frequency of wildfire events
and the probability that small wildfire events will expand to become larger fires. We
also identified three distinct domains in the relationship between wildfires and LFM, and
identifies consistent thresholds in the relationship between LFM and wildfire behavior
that are consistent with the management thresholds used by firefighters in identifying
periods of high fire danger. Furthermore, we have demonstrated a novel methodology
for estimating LFM that is capable not only of predicting in situ LFM with a high degree
of accuracy over space and time, but of capturing broad patterns in the spatiotemporal
distribution of wildfire across chaparral in Southern California. As these methods advance
and additional data become available, such techniques may be expanded to accommodate
a wider array of plant taxa that represent major fuel components throughout the western
United States. In particular, our goal is to further examine the effects of historical and
projected changes in climate on LFM, to identify whether the three domains found in this
study are representative of fire regimes across other vegetation types and climate regimes.
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Appendix A

To examine the relationships between fire and observed LFM, we included all fires
located within a 20 km site in which chamise was observed in the same month and year as
the ignition of the fire. This method parallels a previously established methodology used to
evaluate the relationship between LFM and cumulative area burned throughout the Santa
Monica mountains in southern California [3]. The resulting data included 353 individual
fires (Figure 1) from the years 1952 through 2017. It should be noted, however, that
thresholds in LFM–burned-area relationships obtained using these data cannot be corrected
in regard to the differing frequency of LFM conditions over space and time, and are
therefore not equivalent to the thresholds calculated using simulated LFM. Furthermore, in
these analyses we utilized only 353 fire events, rather than the 18,18 fires available for the
analysis of simulated LFM. However, these analyses are presented here for comparison, and
to demonstrate that despite their restricted sample size and the inability to compensate for
the variable frequency of LFM conditions, broad similarities do exist in the LFM–burned-
area and LFM–fire-frequency relationships derived using these data and those derived

https://frap.fire.ca.gov/
https://www.wfas.net/nfmd/public/index.php
https://www.sciencebase.gov/catalog/item/5f29c62d82cef313ed9edb39
https://doi.org/10.25349/D9HS51
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from simulated LFM. Due to the limited number of fires for which in situ observations of
LFM were available, however, comparisons of the relationship between LFM and mean fire
size were not appropriate.
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