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Abstract

:

The methodology used by the First Street Foundation Wildfire Model (FSF-WFM) to compute estimates of the 30-year, climate-adjusted aggregate wildfire hazard for the contiguous United States at 30 m horizontal resolution is presented. The FSF-WFM integrates several existing methods from the wildfire science community and implements computationally efficient and scalable modeling techniques to allow for new high-resolution, CONUS-wide hazard generation. Burn probability, flame length, and ember spread for the years 2022 and 2052 are computed from two ten-year representative Monte Carlo simulations of wildfire behavior, utilizing augmented LANDFIRE fuel estimates updated with all the available disturbance information. FSF-WFM utilizes ELMFIRE, an open-source, Rothermel-based wildfire behavior model, and multiple US Federal Government open data sources to drive the simulations. LANDFIRE non-burnable fuel classes within the wildland–urban interface (WUI) are replaced with fuel estimates from machine-learning models, trained on data from historical fires, to allow the propagation of wildfire through the WUI in the model. Historical wildfire ignition locations and NOAA’s hourly time series of surface weather at 2.5 km resolution are used to drive ELMFIRE to produce wildfire hazards representative of the 2022 and 2052 conditions at 30 m resolution, with the future weather conditions scaled to the IPCC CMIP5 RCP4.5 model ensemble predictions. Winds and vegetation were held constant between the 2022 and 2052 simulations, and climate change’s impacts on the future fuel conditions are the main contributors to the changes observed in the 2052 results. Non-zero wildfire exposure is estimated for 71.8 million out of 140 million properties across CONUS. Climate change impacts add another 11% properties to this non-zero exposure class over the next 30 years, with much of this change observed in the forested areas east of the Mississippi River. “Major” aggregate wildfire exposure of greater than 6% over the 30-year analysis period from 2022 to 2052 is estimated for 10.2 million properties. The FSF-WFM represents a notable contribution to the ability to produce property-specific, climate-adjusted wildfire risk assessments in the US.
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1. Introduction


The threat of increasing wildfire risk across the United States has been described by a number of studies that discuss both the increasing incidence of wildfire and the increasing threat to forests and communities [1,2,3]. The implications of this growing risk threaten the economic stability, natural resources, and quality of life for the affected communities and local residents, and there are a number of resources (e.g., https://wildfireresearchcenter.org/, accessed on 13 June 2022; https://wildfirerisk.org/, accessed on 13 June 2022) now available to assist communities in meeting those growing risks. Westerling et al. [2] report that land management costs already exceeded USD 1 billion in costs nearly 10 years ago; however, a report from the Bureau of Land Management (BLM) and the Western Forestry Leadership Coalition (WFLC) highlighted the fact that this direct cost is simply a fraction of the larger economic costs of wildfires [4]. The WFLC report highlighted the fact that, beyond the direct dollars spent on land management and suppression, there are additional direct costs (such as firefighting crews), indirect costs (extensive and long-term implications of lost tax revenue, land recovery, and dips in property value), rehabilitation costs (watershed restoration, short term emergency loans, etc.), and additional uncharacterized costs (including human costs). The report estimates that the cost of wildfires reported through direct costs may only account for about 3% of all costs incurred from wildfires. In fact, NOAA reports over USD 79.8 billion in costs associated with the occurrence of wildfires between the most recent 5-year period of recorded events (2018 and 2021), not accounting for much of the cost associated with land management or long-term indirect and additional costs [5]. While the costs of wildfires have been exceedingly high in recent years, it is also growing at a rate that indicates its increasing impact on communities in the US, with the cost of the preceding 5 years of economic damages totaling only USD 8.5 billion (2012–2016) [5]. This increase in damages is nearly 10-fold and represents the growing risk to communities, and residents in those communities. A number of commercial fire risk products have been developed and are in wide use in the insurance industry (e.g., Verisk’s “FireLine” https://www.verisk.com/siteassets/media/downloads/underwriting/location/location-fireline.pdf, accessed on 1 June 2022), but these are statistically based solely upon past fires and related damages.



The growing risk has been linked to a series of different drivers in the literature. Some explanations have drawn on anthropogenic changes in industry-associated latent consequences, such as forest regrowth following a decline in logging in the late 19th century, which allowed for structural changes to the biomass (fuels) in those areas driven by the lack of the natural regulation from regularly occurring fires [2]. Competing explanations focus on the impact of variability in climate conditions associated with the increasing risk of wildfires, including increasing variability in moisture conditions, increasing drought frequency, and warming temperatures [6]. Finally, these explanations are further compounded by the fact that the areas most at risk of wildfires in direct relation to residential land uses have grown extensively in recent years [7]. This interface, referred to as the wildlands–urban interface (WUI), has shown significant growth in the last 20 years, with Radeloff and colleagues [7] reporting about an 8% growth in WUI area and a nearly 35% growth in population and housing units. In total, the research reports that half of all homes built in the 1990s, and about 40% in the 2000s, were built in the WUI. Recent statistical analyses at the property level have shown that 97% of home losses are found in the WUI [8]. Such rapid growth in high-risk areas means that even more properties are at risk of wildfire. Beyond the impact on magnitude, the larger WUI populations simply mean there is more opportunity for fire as the vast majority are ignited by human cases [9].



In response to the need to respond to this growing nationwide risk at the community level, the U.S. Federal Government supported the creation and publication of the publicly available Wildfire Risk to Communities (hereafter WRC; see WildfireRisk.org) [10], which conveys the relative risk for communities based on a 270 m horizontal resolution analysis. The tool is primarily intended to provide insight for community level wildfire solutions in a way that allows for communities to understand their relative risk comparatively with other areas, so that resources can be allocated in a measured and efficient way, with the goal of combating economic and human loss from wildfires. Wildfire Risk to Communities’ estimates are based on fire simulations that incorporate the US Forest Service’s 2014 Landscape Fire and Resource Management Planning Tools database v2.0.0 [11], with some modifications (Smail, personal comm. 2021), which provides open data describing the composition and state of fuels across the contiguous United States (CONUS). However, WRC’s focus is on community risk and actions to reduce those risks, and the metrics computed are not focused on individual properties and homes, nor does WRC include the impacts of climate change on future risk.



The development of the WRC tool served as a milestone in giving communities the ability to assess risk in their area and plan for resource allocation in relation to that risk. However, the developers of the tool acknowledge that it is a community level tool and should be used for community level purposes. This research aims to build upon the wildfire community’s considerable research on wildfire risk modeling [12], and to complement the WRC community level tool with a high-resolution model developed specifically for the property level at a national scale, the First Street Foundation-Wildfire Model (FSF-WFM). Given the increase in wildfire occurrence and the subsequent economic consequences [13], there remains a need to quantify the probable changes in wildfire exposure for US property owners and residents to provide to them with an improved awareness of their specific, property-level wildfire risk now and their expected risk in the future. The use of wildfire hazard estimates to provide property-level vulnerability estimates has been demonstrated in numerous studies, e.g., [14,15]. As the number of communities in the built environment suffering extensive losses grows (e.g., losses in the WUI exemplified by Gatlinburg, TN 2016; Paradise, CA 2018; Grand County, CO 2020; Boulder County, CO 2021), there is also a recognized need to describe the spread and risk of wildfire specifically within the WUI [16]. The development of such a model is based on the unique risk each individual property faces, based on property-level characteristics, and can be scaled nation-wide to provide homeowners with mitigation solutions, such as those included in the “resilience pathways” described in [17].



Building upon the WRC approach, the LANDFIRE database, climate projections, and existing open-source fire behavior models, the remainder of this document is designed to provide a transparent understanding of the framework and methodology that went into the development of the property-level wildfire model, taking an open science approach (https://earthdata.nasa.gov/esds/open-science, accessed on 13 June 2022). This study does not attempt to provide quantitative comparisons between the outputs of the FSF-WFM and the WRC approaches. While comparisons may be useful in understanding the nuances of the fuels used and model implementations, any direct quantitative estimates of the differences are difficult to interpret, not just due to those differences, but also because the models were developed with different purposes in mind. Direct quantitative comparisons with the aforementioned property-level statistical models typically used in insurance applications may be useful, since they are more similar in purpose, but due to the proprietary nature of and costs associated with those models’ outputs, the authors do not currently have access to those outputs at a sufficiently large scale to conduct such a comparison. Any such comparisons of results may be the subject of a future study, but would specifically be a comparison of methodological differences of scale and purpose versus a comparison of accuracy of the models. To that point, the model described in this paper is specifically designed to measure property risk and should be thought of as complementary to the larger community risk products.




2. Model Development


The FSF-WFM approach is based on the application of a fire behavior model to explore the incidence, severity, and probability of wildfires that occur at a property-level resolution across CONUS. This general approach has been shown to be useful at large scales in the aforementioned WRC using FSim [18], and on regional scales, such as the use of WyoFire [19]. Here, we use an open-source wildfire behavior model, ELMFIRE (Eulerian Level Set Model of Fire Spread), which has likewise been shown to produce useful results in this type of application [20], but also extends its use to estimate future wildfire hazards based on climate predictions.



The development of the FSF-WFM includes a series of steps associated with the integration of fuels, fire weather, and ignition locations into ELMFIRE. While each of these components will be explained in detail below, a definition/purpose of each component as they relate to the wildfire model is provided here for context.




	
Fuels: estimation of the fuels that support wildfires across the US at 30 m horizontal resolution, including assembly of new fuel estimates updated with disturbance descriptions for the previous 10 years and the conversion of buildings within the WUI into a burnable fuel type that allows the appropriate progression of wildfire throughout the WUI in the fire behavior model.



	
Fire weather: assembly of the weather data to drive the fire behavior model under a representative range of fire weather conditions for 2022 and 2052. Fire weather was derived from the National Oceanic and Atmospheric Administration’s (NOAA’s) surface weather reanalysis for 2011–2020 to create the 2022 hazard layers, and was driven by the same time series in 2052 with air temperature, precipitation, and humidity scaled to 2052 conditions, as represented by downscaled International Panel on Climate Change (IPCC) climate model ensemble results.



	
Ignition locations: identification of the likely ignition locations, temporal fire occurrence patterns, and conditions most likely for fire spread for future wildfires.



	
Fire behavior model: application of a fire incidence and landscape behavior model across the contiguous United States in a Monte Carlo simulation to build probabilistic estimates of 2022 and 2052 wildfire hazards in terms of burn likelihood, fire intensity, and spread of embers at 30 m horizontal resolution.








The resulting wildfire hazards product is based on the data sources listed, which were used to update the data to May 2021 (see Appendix A).



2.1. Fuels


The wildfire hazard estimate is heavily dependent upon estimates of the type, quantity, age, and condition of the combustible fuels across the US. Version 2.0.0 of the canonical U.S. Forest Service (USFS) LANDFIRE [11] fuels dataset at 30 m horizontal resolution is utilized as a baseline for provision of this fuel information, and is updated to characterize the risks in the present through the inclusion of all known disturbances from May 2021 to create a current fuels layer that is useful for assessing wildfire risk for the year 2022. One must note that not all disturbances were able to be adequately documented or described, and different US states exhibit different levels and styles of reporting. States with the highest fire risk in the Western and Southeastern US (e.g., California, Oregon, Arizona, Colorado, Washington, Idaho, and New Mexico) were prioritized to ensure their adequate inclusion in this study. These disturbances were incorporated as changes to surface and canopy fuels by modifying the geographically referenced LANDFIRE classifications, and include recent wildfires, prescribed burns, harvests, and other forest management practices, as reported by the data sources listed in Appendix B. Modification of the fuel descriptions was carried out in accordance with the LANDFIRE fuel classes and methodologies, and is congruent with the LANDFIRE disturbance code schema, which consists of thematic three-digit code values corresponding to disturbance type, severity, and time since disturbance, respectively, per the LANDFIRE Fuel Disturbance Attribute Data Dictionary [21]. A representation of the processes is shown in Figure 1 that describes the methods used to create the fuels estimate for this study.



2.1.1. Disturbances


Disturbances from wildfires across CONUS were incorporated by using data shared by the Monitoring Trends in Burn Severity (MTBS) [22] program, which maps the burn severity and extent of large fires across all lands in the US. At the time of analysis, the MTBS dataset included fires of an area larger than 500 acres through 2019. Therefore, for the year 2020, the MTBS dataset was augmented with data from all fires of size <500 acres from the National Interagency Fire Center (NIFC).



To ensure the consistency of fire severity characterizations between the MTBS and NIFC datasets, burn severity was informed by calculating the normalized burn ratio (NBR) [23] for one pre-fire and one ninety-day-window post-fire cloud-filtered composite image corresponding to each fire. The pre-fire NBR was then subtracted from the post-fire NBR to create the relative difference normalized burn ratio (RdNBR) index [23]. “Miller’s threshold” [23] was then applied to the RdNBR image to create a five-class burn severity classification.



For non-wildfire disturbances, including harvest, fuel mitigation treatments, and prescribed burns, there are no uniform naming or reporting conventions for forest management practices across the U.S. and the quality of data entry varies considerably from state to state. To ensure that every feature is assigned a standardized disturbance class, all unique treatment names from every dataset were compiled for review by forestry field experts who are included in the authorship of this paper. Each unique disturbance name in the document was assigned a LANDFIRE disturbance type, and assigned the appropriate three digit LANDFIRE disturbance code that captures disturbance types, severity, and time since disturbance. A distribution associated with the types and severity of disturbances is reported in Table 1.



The disturbance types most frequently found in our dataset and listed in Appendix B were fire (disturbance type 1), mechanical add (disturbance type 2, when fuels are mechanically mowed or chipped and transitioned to surface fuels), and mechanical remove (disturbance type 3, when fuels are removed via cutting, felling, burning, or harvest). We assigned a disturbance type of “other” (disturbance type 8) to chemical treatments and grazing. We excluded treatments or activities included in the datasets that would not have impacted fuels (including but not limited to seeding, habitat restoration, and invasive species removal). Treatment disturbances, such as hand thinning, piling, prescribed fire, and other treatments where canopy cover is not altered were assigned a disturbance value of 1 (low severity); mechanical thinning and harvest were assigned a disturbance value of 2 (medium severity); and clear cuts were assigned a disturbance value of 3 (high severity). For wildfire disturbances, we followed the MTBS conventions, whereby fire severity class 2 are low severity, 3 are medium severity, and 4 are high severity classifications. Classes 1 (unburned/unchanged) and 5 (increased greenness) were considered undisturbed. The code for time-since-disturbance was determined based on the year of treatment and the LANDFIRE zone. Time-since-disturbance was categorized as 1 (disturbances that occurred in 2020), 2 (disturbances that occurred in 2015–2019), and 3 (disturbances that occurred in 2011–2014). Due to differences in overall fire risk topographies, for disturbances that occurred in the LANDFIRE Southeast Super Zone (Zones 46, 55, 56, 58, and 99), the time-since-disturbance categories are 1 (disturbances that occurred in 2020), 2 (disturbances that occurred in 2017–2019), and 3 (disturbances that occurred in 2011–2016). Finally, the treatment and wildfire layers were combined into a single disturbance layer using a priority ranking ruleset informed by LANDFIRE analysts (Smail, personal comm. 2021) to ensure the most fuels-relevant disturbance value is assigned in cases of spatial overlap.



Validation with the CONUS scale is most practically accomplished with remote sensing techniques. The Hansen Global Forest Change dataset [24] provides a ‘loss year’ band that represents the year(s) when there was detectable canopy loss during the period 2000–2020 at the 30 m per pixel scale. We leveraged this band to create a forest loss bitmask for 2011–2020 and applied it to screen our final aggregate disturbance layer to remove false positives of moderate and high severity harvest [24].




2.1.2. Fuel Layers


Using LANDFIRE v2.0.0 as the base, four canopy fuel layers (canopy cover, canopy height, canopy base height, canopy bulk density) and one surface fuel layer (40 Scott and Burgan Fire Behavior Fuel Model, hereafter FM40) [25] were generated with an effective year of 2021 for use as inputs into the fire models. Fuels were only transitioned in areas that were disturbed between 2011 and 2020. Initial layers that represented lookup rulesets in the LANDFIRE Total Fuel Change Tool (LFTFCT) database were generated. First, canopy cover and height midpoint layers are derived from the LANDFIRE Fuel Vegetation Cover (FVC) and Fuel Vegetation Height (FVH) rasters based on the LFTFCT lookup table values. Next, using the new updated disturbance layer, a canopy guide layer was generated by using the LFTFCT master lookup table applied to unique combinations of the disturbance code, biophysical Settings (BPS), fuel vegetation cover (FVC), fuel vegetation height (FVH), and fuel vegetation type (FVT). The four canopy fuel layers are then generated using the following regression equation:


  C a n o p y   F u e l =  C X  +  H y  + b  



(1)




where C is the canopy cover midpoint, H is the canopy height midpoint, x and y are the scale factors, and b is an intercept value derived from a lookup of unique disturbance code and FVT combinations from the LFTFCT lookup table. For canopy cover and canopy height regressions, the cover and height midpoint values are derived from the initial FVC and FVH midpoint layers described above, while for canopy base height and canopy bulk density, the midpoint values are derived from the new canopy cover and height layers that were generated in the step described above. Additionally, canopy bulk density uses a ruleset to create two stand height coefficients from the canopy height midpoint value for pixels following the rules described in [26]. Each canopy fuel regression output is post-processed to ensure values are within the LFTFCT’s valid value range (CC: 0–95; CH: 0–510; CBH: 0–100; CBD: 0–45), scaled properly, and binned, if necessary, to defined midpoint values [21]. Finally, the LFTFCT canopy guide layer is applied to each layer using rulesets based on canopy cover thresholds [21].



The FM40 surface fuel estimates are generated in the same way as the canopy guide, using the LFTFCT master lookup table applied to unique combinations of the disturbance code, BPS, FVC, FVH, and FVC. Products generated include the necessary LANDFIRE fuel and vegetation datasets for the workflow described here, derived fire severity, canopy cover and canopy height midpoint, as well as disturbance estimates. Included with the 2021 fuel profile used in this study are the following five updated 2021 fuel layers: FM40, canopy cover (CC), canopy height (CH), canopy base height (CBH), and canopy bulk density (CBD). Figure 2 highlights the spatial location of the canopy and surface fuel updates across the CONUS, with Figure 3 highlighting the update of surface fuels in a more local context.




2.1.3. WUI Surface Fuel Updates


Typically, homes and other buildings in the built environment, including the WUI, are classified as non-burnable fuels within LANDFIRE. However, in order to allow the estimate of wildfire hazards within the WUI under the full range of fire weather conditions, those properties within the WUI need to be replaced by a burnable fuel estimate to permit the wildfire behavior model to estimate how wildfire could move through the WUI more accurately.



The first step of developing the WUI fuel model was to derive a current map of WUI areas. WUI areas are defined by the following two factors: building density and the distance from wildland vegetation [27]. We used the 2016 NLCD existing vegetation cover layer to identify areas of wildland vegetation, and derived our own building-density layer from MapBox building footprints (Appendix A), following evidence from Caggiani et al. [8] that such higher-resolution analyses enable more precise evaluations of wildfire risks. The WUI influence zone, WUI intermix, and WUI interface layers were defined as the following [16]:




	
Influence zone is >75% land coverage of wildland vegetation within 1 mile of a residence.



	
Intermix is >1 residence per 40 acres and groups of residences larger than 50 acres, with >50% land coverage of wildland vegetation.



	
Interface is defined as >1 residence per 40 acres and groups of residences larger than 50 acres, with <50% land coverage of wildland vegetation, and within 1 mile of wildland vegetation.








Non-burnable pixels were converted to a burnable FM40 fuel type in the WUI intermix and interface only, as much of the WUI influence zone is already estimated as burnable in LANDFIRE and does not need to have non-burnable cells converted to burnable cells to enable the fire behavior model in those areas. Any unnecessary conversions within the influence zone could potentially result in biased fire behavior by changing the FM40 fuel types in those areas.



Properties within the WUI with a non-burnable classification in the 2021 fuel profile were replaced by an effective fuel type by estimating it from a statistical analysis of 549 historical fire perimeters in the WUI from 2014–2019 (see Appendix C). These past fires were used to train a random forest machine learning algorithm to predict the appropriate fuel classification. One must note that the fuel layers do not take into account fuel estimates for the structures themselves in the WUI that could lead to increased house-to-house ignition probability; such an approach could be incorporated into a future effort. To convert non-burnable pixels in the WUI intermix and interface to allow the fire behavior model in those regions, we used a machine learning approach, as described below.



The 2021 FM40 fuel types derived in the fuel workflow (see Figure 1) described above are used as the response variable. The training and testing datasets were composed of pixels in the WUI intermix and interface that were within the fire perimeters from our disturbance dataset (2011–2020) or within a 1 km buffer around the fire perimeter, in order to capture areas that remained unburned in those incidents. Other variables included vegetation products from LANDFIRE v2.0.0 [11], Landsat data derived from 4-month composites encompassing each training fire’s ignition date (coastal, blue, green, red, NIR, NDVI, SWIR1, SWIR2, NDVI, MNDWI, BAI), GRIDMET data derived from 1-month composites encompassing each training fire’s fire ignition date (tmin, tmax, fm1000, vs, mndwi, erc, bi), topography variables from USGS (slope, elevation, aspect), building density per 1 km2, the number of structures destroyed per fire, and fire severity. A random-forest model was trained only on burnable FM40 categories. The prediction area was limited to 2021 FM40 urban/developed (FM40 class 91) and agricultural (FM40 class 93) land in the WUI intermix and interface. We ran a stratified k-fold cross validation training using 10 folds for each dataset, with the training data split 80−20% in each run. The best model had a k-fold training accuracy of 73.0%, with a mean precision (true negative rate) of 76.4% and a mean recall (true positive rate) of 73.0%. Overall, k-fold training had a mean model accuracy of 71.2% (68.7–73.7% confidence interval). The overall training accuracy was 96.9%, with a training Kappa coefficient of 96.8%. For model testing, 30% of the sampled data was withheld. The independent validation dataset showed 71.7% accuracy, with a testing Kappa coefficient of 73.0%. A framework for documenting the classification process to replace non-burnable FM40 classes with burnable classes in the newly defined WUI is presented in Figure 4, with feature importance highlighted in Figure 5.



Overall, the vegetation, topographic, and weather variables had higher importance than the fire-related or building density-related variables in the model (Figure 5). In general, non-burnable WUI intermix and interface pixels were frequently replaced with grass or grass-shrub fuel types (FM40 classes 101 and 121, and occasionally 103 in the southeast and 183 in the mid-Atlantic). The predicted pixels were replaced in the 2021 FM40 fuel layer to create the final 2021 FM40, with the surface fuel model updated for both disturbances and WUI areas (see Figure 6, for example).




2.1.4. Vegetation Changes and Impacts on Fuels


Changes in the composition and volume of vegetation due to climate change’s impacts have been discussed in depth by a number of researchers, including Westerling et al. [2], Radeloff et al. [7], Krawchuk et al. [28], and their importance to estimates of fire intensity has been discussed more recently in a review article by Bowman et al. [29]. These studies typically examine those vegetative changes over time periods of 75 to 150 years, while the current study is focused on 30 years only. To investigate the size and scope of vegetation changes on a 30-year time period at 30 m horizontal resolution, we originally planned to utilize the Land Use and Carbon Scenario Simulator [30], a Monte-Carlo based state-and-transition simulation model, to project changes to 14 carbon pools from 2021–2051. While we observed statistically significant changes in above ground modeled carbon pool volumes over 30 years across CONUS, we struggled to accurately translate this from those carbon pools to the canopy and surface vegetation classes needed to drive the fire behavior model we employ in this study. While research continues on this and several alternate ways of estimating the vegetation and fuel changes anticipated across CONUS over 30 years in a changing climate, we have elected to hold the fuel constant between the 2022 and 2052 simulations for the purposes of this study. Future wildfire exposure estimated by the model described in this study will then be independent of future vegetation changes, and will depend only on the future weather impacts on the fuel conditions and fire behavior alone.






3. Fire Weather and Climate Change


The primary inputs needed to drive the fire spread model are fuels, topography, and weather. This section details the integration of climate weather into the development of the larger FSF-WFM. The weather that can drive the growth and distribution of wildfire can be separated into the following two categories: (1) the weather before the onset of a wildfire that impacts fuel condition by making the fuels drier or wetter, and (2) the ‘fire weather’ that occurs at ignition, which can increase intensity and drive fire across the landscape. To represent a wide range of possible weather-driven fire conditions across the landscape within the simulations employed here, we used a decade of high spatial and hourly resolution weather data. Wind speed and direction, relative humidity, and temperature inputs were assembled from the Real Time Mesoscale Analysis (RTMA) dataset [5], which provides hourly estimates of sensible weather variables on a 2.5 km grid for CONUS. The RTMA surface weather data reanalysis from 2011–2020 was augmented by Oregon State PRISM (Parameter-elevation Regressions on Independent Slopes Model) [31] precipitation data to fill in gaps in the RTMA data. Ten years was chosen to represent a wide range of weather conditions, while overlapping the time period for which the fuel state is represented (i.e., LANDSFIRE 2016 augmented to 2020). While a 20- or 30-year time series would provide a more complete sampling of the possible meteorological conditions, the 10-year time series does include multiple La Niña and El Niño phases and allows for the computations to be completed in a reasonable span of time, given the available resources. Additionally, since this study does not set out to replicate or predict anomalously large or intense fires (e.g., plume fires) in a deterministic sense, the Monte Carlo approach used will deemphasize those extreme or infrequent conditions and instead emphasizes the much more frequent medium-large fires (i.e., larger than those that are easily suppressed, but smaller than the rare extreme fires).



To represent the 2052 weather, we have considered the 2048–2057 time series, created by scaling the hourly 2022 RTMA time series, to forecast 2052 conditions. To do this, we used the International Panel on Climate Change’s (IPCC) Fifth Coupled Model Intercomparison Project (CMIP5) ensemble results [32] following the Representative Concentration Pathway 4.5 (RCP 4.5), as downscaled within the daily Multivariate Adaptive Constructed Analogs (MACA) v2 product [33] to represent the expected weather conditions in 2052 across CONUS. The RCP 4.5 climate model results were chosen to be relatively conservative in outlook, and to be consistent with previous and similar work conducted for future flood risk authors [34,35].



Surface winds were held constant from the 2022 to the 2052 simulation period to preserve the realistic and high-resolution aspects of the NOAA RMTA time series in the future, to reduce uncertainties in future fire behavior and in recognition that future winds are likely to change far less significantly with climate change than other weather parameters [32,33]. The ELMFIRE fire behavior model is necessarily very sensitive to winds, and downscaled climate model results have difficulty resolving the local and orographic effects in the wind fields to a sufficient fidelity to support such fire models [36]. Even if they captured the spatial variability adequately, the high-resolution winds generated by an atmospheric model driven by boundary conditions generated from the climate model outputs would still require extensive verification and validation to be able to use them for our simulations and justify the results. Since the goal is not to recreate any particular fire event, but to use the weather time series to support a range of conditions suitable for Monte Carlo simulation, we concluded that holding the winds constant from the 2011–2020 time series to drive 2052 fire behavior would be a reasonable approach.



With winds held constant, the other 2022 weather variables underwent scaling to create a 2048–2057 hourly times series used to derive the 2052 wildfire hazards. The MACAv2 downscaled CMIP5 RCP4.5 outputs at daily resolution were used to scale the RTMA hourly time series of air temperature, relative humidity, and precipitation by computing bias adjustments between the present-day 2022 and forecast 2052 conditions (Appendix D). The biases were distributed throughout the day via gamma distribution to maintain the diurnal signal in precipitation and humidity, while allowing for the overall scaling to be representative of the climate change impacts on these variables. Extreme values in biases were adjusted inward (towards the center of the distributions) to allow for consistent statistics, while preserving the general climate variability. Air temperature adjustments at the hourly resolution were likewise adjusted with a simpler gaussian distribution that brought daily average values of the 2011–2020 RTMA hourly time series in line with the future 2048–2057 MACAv2 daily values.



The result for the 2052 weather time series is a 10-year duration, hourly resolution representation of the estimated future weather conditions at 2.5 km horizontal resolution that are characterized predominately by 1.7–2.8 deg C (3–5 deg F) average warmer temperatures across CONUS. This allows the impact of higher air temperatures from climate change on fuel conditions in 2052 to be largely isolated and evaluated, since winds and fuels are both held constant from 2022. The greatest deficiency of this approach is that it is not possible to evaluate the climate impacts of geographically coherent but temporally variable features, such as more severe or longer droughts, or greater incidences or intensities of atmospheric rivers or hurricanes. As such, these estimates are limited almost entirely to the effects caused by higher air temperatures on fuel conditions, and so must be considered an underestimate of the total possible effects of climate change on wildfire probability. Subsequent versions of this model are intended to address these deficiencies.




4. Ignition and Spatial Fire Occurrence Patterns


One of the primary indicators of where future fires will occur is informed through historical fire occurrence data. The spatial component of the fire occurrence model is built from the Fire Occurrence Database (FOD; https://www.fs.usda.gov/rds/archive/Catalog/RDS-2013-0009.5, accessed on 1 June 2022) developed by the USDA Forest Service [37,38]. The FOD includes 27 years (1992–2018) of fire occurrence data, encompassing 2.17 million georeferenced wildfire records that total 165 million acres burned. Following the best practices for annualized burn probability modeling [18], this database was filtered to remove small fires, defined as those that are less than 100 acres (Class A, B, and C fires). We acknowledge the choice of the 100 acre cutoff is somewhat arbitrary, and different thresholds (e.g., 300 acres [18], 247 acres [39]) have been used in other research and models, but was chosen as a convenient approximation of the typical scale of wildfires whose growth are often limited by human fire suppression activities.



A recognized best practice is to develop an ignition density grid using a kernel density tool [18]. The ignition density kernel formula used (see equation below from [40]) was implemented in the wildfire behavior model to generate the ignition density grid for this work, where r is the search radius (bandwidth) and di is the distance from point i to the centroid of a given cell.


  D e n s i t y =  1  r 2      Σ  i = 1  n   3 π    x   ( 1 −   (   d i  r  )  2  )   f o r   d i < r  



(2)







Modeling Temporal Fire Occurrence Patterns


The previous section describes how the spatial fire occurrence is modeled, but it does not address when large fires may occur. One of the strongest predictors of temporal occurrence of both the number of large fires and acres burned is the National Fire Danger Rating System (NFDRS) Energy Release Component (ERC) percentile based on fuel model G, or ERC(G)’ [41] (note ERC(G) refers to raw ERC values (Btu/ft2) and ERC(G)’ refers to ERC percentiles). ERC is 4% of the energy per unit area (Btu/ft2) that would be released during a fire. ERC depends on live and dead fuel loading by size class (as characterized by an NFDRS fuel model), as well as fuel moisture content of live and dead fuels. Although NFDRS fuel model G, which shows the best correlation with fire occurrence and burned area, contains loadings across all dead fuel size classes and live herbaceous/live woody loadings, it has a heavy loading in the 1000-hr size class. For that reason, ERC(G) is primarily a function of weather conditions over the preceding 45 days and can be thought of as a measure of intermediate to long-term dryness and as it is calculated solely from fuel moisture content, ERC is not a function of wind speed, slope, or spread rate.



Fire occurrence is normally assessed in terms of ERC percentile, as opposed to raw ERC (Btu/ft2), because ERC percentile shows better correlation with fire occurrence and size than raw ERC, since the same amount of precipitation that corresponds to wet conditions in one region may correspond to dry conditions in another region.


  l o  g  10     n = 0.02768   ×   E R C    ( G )  ′ − 0.2333  



(3)







Figure 7 shows the number of large fires in the Western US as a function of ERC(G)’. The data in Figure 7 are demonstrably well-fit (R2 = 0.94) by the correlation in the equation above [41], which is used in the wildfire behavior model to calculate fire occurrence from ERC(G)’.





5. Wildfire Behavior Model


In the development of the FSF-WFM, we employed the open-source wildfire behavior model, ELMFIRE, which is a highly parallelized model that was used to both simulate fire spread and quantify the wildland fire hazard via Monte Carlo simulations. ELMFIRE is a Rothermal-based, level set model used to track boundaries across the landscape based on the numerical solutions of [42] and is fully described in Lautenberger [43].



The overall fire hazard and probability modeling methodology, as shown graphically in Figure 8 and described in this section, is based on the work of Finney et al. [44], best practices described by Scott et al. [18], and a relatively recent review of simulation-based burn probability modeling [45]. Consequently, the contribution of this work is not developing new techniques or approaches to fire probability and hazard modeling, but rather implementing computationally efficient and scalable modeling techniques based on existing fire probability and hazard modeling paradigms pioneered by the aforementioned authors. These scalable computing techniques make it possible to conduct CONUS scale fire probability and hazard simulations at 30 m resolution in a reasonable amount of time, using commodity-style computational resources. The CONUS domain was subdivided into 48 km by 48 km tiles, which were likewise surrounded by 8 similar tiles in a 3 × 3 grid pattern, to aid in the distributed compute workflow.



Inputs to ELMFIRE include fuels, weather time series, and ignition locations. The ignition locations were based on historical (1992–2018) fire locations described in the previous section, and limited to fire sizes of greater than 100 acres. This limitation allows the implicit inclusion of the effect of human-driven fire suppression activities in the model output to create a “real world” estimate of fire exposure—i.e., wildfires that are actively prevented from growing large. For example, the State of Rhode Island has exhibited remarkable fire suppression over the past decades and has been able to eliminate all fires over 100 acres during the 1992–2018 time period, driving the effective burn probability in Rhode Island to zero for all properties in our simulations.



For each ignition location, a weather “draw” was randomly selected for that fire that would be carried forward many hours in simulation, and could extend anywhere in the 3 × 3 (144 × 144 km) tile domain. Those simulated fires that grew to sufficient size (100 acres) were tracked and the locations, fire length, and durations were noted. This process was repeated over 100 million times, and resulted in approximately 8–10 million tracked fires of significance per simulation (2022 and 2052). The result is a statistically well-characterized set of simulated wildfires, from which the probabilistic exposure of properties and buildings to wildfire hazard based on likelihood (i.e., burn probability), flame length (i.e., intensity), and ember cast may be derived. The likelihood of a 30 m pixel burning is the number of times that the pixel had ignited over the course of all the simulations. The flame length is a measure of fire intensity, captured as binned flame lengths (see Table 2) over the distribution of all fires within the pixel, and may be expressed as the mean, median, or maximum flame length. The ember cast is a binned measure of the number of times embers, pushed ahead of a simulated fire by the fire weather time series, land in a pixel and results in an ignition of the fuels in that pixel.



5.1. Fire Spread Model


The 2D fire simulator ELMFIRE is used here to drive a stochastic fire spread analysis that is used to generate the CONUS burn probability and hazard estimates. ELMFIRE’s computational engine is similar to other two-dimensional fire simulators, such as FARSITE [46], in that it calculates surface fire spread rate using the Rothermel surface spread model [47,48], assumes that each point along the fire front behaves as an independent elliptical wavelet [49], with length to breadth ratio determined empirically [48,50], simulates transition from surface to crown fire using the Van Wagner criterion [51] (with crown fire spread rates calculated from Cruz et al. [52]), and models ember-driven ignition or “spotting” as a stochastic process with lognormal spotting distance distribution [53,54]. ELMFIRE tracks the fire front using a narrow band level set method [55], a numerical technique for tracking curved surfaces on a regular grid.



To demonstrate how ELMFIRE simulates fire spread, Figure 9 shows 24-h of fire progression from an individual ignition site. The black contour lines in Figure 9a represent the fire front position at 2-h intervals. Figure 9a also shows which parts of the burned area experienced surface fire (blue), passive crown fire (green), or active crown fire (red). Figure 9b similarly shows fire perimeter contours and flame length variation within the fire perimeter. Flame length is highest in the areas that burn as heading fires or that experience crown fire and lowest in the areas that burn as a flanking, backing, or surface fire. In this example, the fire area after 24 h of spread is approximately 560 acres.



The Monte Carlo fire spread analysis conducted here involves running millions of fire spread simulations (similar to that shown in Figure 9) sequentially over many years (2011–2021, and 2048–2057), and across all tiles in the CONUS domain. Each tile is a 144 km by 144 km tile within CONUS, consisting of a 48 km central tile surrounded by its eight neighboring tiles of the same size. For each year and tile, fuel, topography, and yearly weather, fuel moisture, and ERC percentile inputs are assembled. Starting at the beginning of the simulation year, ignition locations are determined using the spatial and temporal fire occurrence modeling techniques described earlier. Fires are ignited only in the central 48 km tile, but are allowed to spread into the adjacent eight tiles within the simulation. The progression of each fire is modeled for a randomized spread duration up to 7 days from the time of ignition, to roughly approximate the varying duration of the observed wildfires. For each pixel within the modeled fire perimeter, the burn incidence is recorded, and the binned distributions of discrete ember count and flame length are also recorded for each pixel. This ignition-burn-record process is repeated for each day in each simulation year, building up the probabilistic estimates of burn probability, flame length, and ember spread. Since fires can start in one tile and spread to adjacent tiles, each tile is post-processed concurrently with its eight neighbors.



The primary outputs after processing are conventional annualized wildfire hazard maps at 30 m resolution within CONUS, composed of the following elements:




	
Burn probability—an estimate of the likelihood that a region on the landscape burns in any single year during the simulation period.



	
Fire intensity—the distribution of conditional (i.e., upon burning) flame lengths for each pixel, within discrete flame length bins.



	
Exposure to embers—similar to fire intensity, a distribution of ember exposure per pixel to characterize the relative intensity of ember exposure from all modeled fires.









5.2. Validation


To validate the results from the fire behavior model, we compared the model fires against historical fires’ intensity and size in aggregate. Example results from a tile-by-tile comparison of modeled and historical fires are generated as each geographic tile is run, as shown below. The modeled fire sizes are larger than in the FOD because (a) there is no fire suppression element applied within ELMFIRE, and the (b) simulation end time was randomized. To partially compensate for these limitations, as stated previously, the ignition layer was limited to sources of historical fires that were a minimum of 100 acres. This assumes that suppression measures would be effective in keeping such fires small, and of short duration. The resulting comparison of the modeled fires’ sizes and intensities (Figure 10) shows that the modeled fires without explicit suppression and with randomized durations up to 7 days are systematically larger than the observed wildfires. The area of non-zero burn probabilities in the resulting hazard layers should, therefore, be considered an overestimate of the likely range of wildfire spread, which creates distributions that err on the side of caution when understanding wildfire exposure (i.e., there are likely fewer false negatives). The introduction of active fire suppression within the model is the subject of further research and may be incorporated into future versions.





6. Results


The construction of a national-scale, property-specific wildfire hazard model using an open-source fire behavior model, driven by openly available inputs, has been proven possible by our development of the FSF-WFM. The ability to extend the wildfire hazard into the WUI by replacing nonburnable LANDFIRE fuel designations with estimates derived from historical fire behavior in WUI areas was also shown to be feasible. Using the model in a Monte Carlo simulation, driven by historical ignition locations across CONUS to provide 30 m-resolution hazards, it was shown to be practical using commodity-scale computing hardware. This same scheme was shown to be applicable to both current (2022) and future (2052) scenarios, given the future estimates of climate-adjusted weather conditions.



The results of the FSF-WFM model implementation are freely and publicly available through riskfactor.com, (accessed on 8 August 2022) and show property-by-property assessments of exposure to wildfire hazard. Figure 11 shows a representative parcel from the over 143 million available, and shows the levels of resolution and discrimination among properties that are available. These results are summarized at the state level in Table 3 and Table 4, and Figure 12A,B, which will be discussed in more detail below.



The spatial variability in the distributions of the hazard at 30 m resolution, including within the WUI and the prevalence of hazard in the Eastern as well the Western U.S., highlight the importance of understanding wildfire risk at a property level across CONUS. While this paper focuses on the methodology and defers a thorough analysis of results to a later study, we present some general results to provide the reader with a sense of feasibility of the FSF-WFM to address current and future wildfire exposure. Overall, the results estimate that 71.8 million properties have a burn probability of >0 in the current environment (2022) and that probability increases by 11% over the next 30 years, and grows to 79.8 million properties in CONUS in 2052. Many of those properties have low, but not zero, burn probabilities from the model so we choose to describe two general levels of wildfire hazard based on a cumulative burn probability of 3% over the 30-year period, which we label “any exposure”, and a cumulative likelihood of 10% over the 30-year period, which we label “major exposure”. When looking at those two categories, we find about 20.2 million properties in the CONUS being subject to “any exposure” and 5.9 million properties being at “major exposure” to wildfire over the 30-year period (2022–2052). These property counts represent about 15% and 5% of all property parcels in the CONUS, which further highlights the large exposure of properties in the US to wildfire exposure. For further context, flooding, which is generally referred to as the most widespread climate peril in the US, impacts about 21.8 million properties at the “any flood” level (equivalent to 6% 30-year aggregate) and about 14.6 million properties at the “significant flood” level (equivalent to 26% 30-year aggregate) [56].




7. Any Exposure


Table 3 and Figure 12A report the results of the model when applied against individual property structures and parcel centroids (on parcels without buildings). The results indicate that the top five states in regards to “any exposure” are Texas, Florida, California, North Carolina, and Alabama. In those 5 states alone, there are nearly 30 million properties with at least a 1% cumulative probability over the next 30 years of being impacted by a wildfire. Figure 12A (upper) further illustrates that the distribution of properties “any exposure” of wildfire are disproportionately located in Texas, California, and the Southeastern US. When taking into account “any exposure” of wildfire relative to the total housing stock in Figure 12A (lower), the Mountain West states of Montana, Idaho, Wyoming, and Utah emerge as a cluster of disproportionate potential impact, along with New Mexico, Oklahoma, Mississippi, and Alabama across the southern tier of the country. The Midwest and Northeast are relatively lower in regards to “any exposure” to wildfire over the next 30 years, which is expected given the climate conditions that generally drive the peril.



7.1. Major Exposure


Table 4 and Figure 12B report the results for only those properties at “major exposure” to wildfire (3% cumulative likelihood over the 30-year period). When only looking at this subset of properties, California stands out as having the most exposure, with over 2.5 million properties in this category. Texas, Florida and Arizona, at 1.7, 1.5, and nearly 1 million properties at “major exposure”, respectively, together with California, account for over 6.5 million properties that meet the threshold of having at least 3% cumulative wildfire exposure over the next 30 years. Figure 12B (upper) highlights the fact that when shifting from “any exposure” to “major exposure”, the majority of that exposure is held in the Western US, with Florida, Mississippi, New Jersey, and North Carolina standing out as states in the eastern half of the country with higher levels of exposure than the surrounding areas. Figure 12B (lower) shifts that impact slightly when accounting for the exposure as a proportion of properties in the state. Using that metric, Arizona, Utah, and Wyoming carry the most exposure to wildfire hazard, followed by their western neighbors, California and Nevada.



The estimated geographic distribution of change in wildfire exposure due to climate change is shown in Figure 13. The percentage increase between the current year and 30 years into the future in the average burn probabilities of properties with at least 0.03% risk is at least 100% in many of the counties across the country. The annual burn probability of 0.03% corresponds to at least a 1% cumulative likelihood over a 30-year period. With higher burn probabilities, a higher incidence of losses is expected over time, as properties are exposed more often to wildfires.



Finally, a fire factor risk assessment was created on a property-level basis across CONUS. Property parcel geometries are provided by the Lightbox public-record property boundaries database. Building footprint geometries are defined by Mapbox. First Street performed a geometric intersection to match parcels to building footprints. Footprints that cross parcel boundaries were subdivided, such that no footprint geometry crosses parcel boundaries. Since some parcels intersect multiple footprint geometries, the building footprint with the largest area was designated the primary footprint.



To evaluate the exposure to wildfire flames and embers, each hazard layer was queried at the geometric centroid of each building footprint and parcel. For scoring purposes, at properties with a building footprint, the statistic at the primary footprint centroid was recorded; for parcels without a building footprint, the parcel centroid was recorded. The assignment of a 30-year, climate-adjusted aggregated wildfire risk score was then computed by calculating the likelihood and nature of exposure through burn probabilities in and belongingness to an ember zone for a building or parcel as representative of the risk for each property for 2022 and then for 2052, and then linearly interpolating this across that 30-year period.



The annual risk, as defined by burn probability in and belongingness to an ember zone for each year, was summed across the 30-year period and was used to derive the total chance of exposure over that 30-year period, which includes climate change effects. The fire factor scoring rubric is included in Table 5.




7.2. Assumptions and Limitations


The wildfire hazard estimates from the methodology described in this research paper offer insights into the current and future wildfire exposure at 30 m resolution across CONUS, using widely accepted input layers from LANDFIRE and using the Rothermal-based ELMFIRE fire behavior model that has already undergone peer-review and validation. The resulting estimates of wildfire hazard exposure provide a first view of national level, high precision, property-level exposure estimates across the US in a framework that takes into account both current and future changing exposure to wildfire. The results identify at least some level of exposure in many places that are generally not thought of as having a wildfire problem, but they also underscore the fact that there is a tremendous amount of “major exposure” in the Western US, and specifically in the WUI areas in California and the Mountain West States. These insights are intended to complement the work carried out by the WRC program by providing a property-level equivalent to the community level tool already in the public domain, using similar but independent Rothermel-based fire behavior modeling. Nevertheless, there are a number of acknowledged limitations in our methodology, many of which have already been noted, but the implications of which are discussed in the following list:




	
Lack of explicit fire suppression: since the fire behavior model ELMFIRE does not explicitly include suppression effects, the model tends to overestimate the size and intensity of wildfires, which leads to an overestimate of the extent of wildfire exposure.



	
Variable length of wildfire burn time: ELMFIRE randomizes the length of the time for each modeled wildfire, leading to overestimates in the size and intensity of wildfires. The amount of time and the number of simulated fires needed to drive the Monte Carlo simulation towards stable statistics varies geographically across the model domain.



	
Extremely large fires: the simulation method does not capture the behavior of extremely large fires, since the fire weather forcing the simulation is not coupled with the fire behavior model.



	
House to house ignition: while the replacement of the non-burnable fuels in the LANDFIRE representation of the WUI with estimates of burnable fuels allows wildfires to propagate through the WUI more accurately, the ignition and subsequent contribution to wildfire by the buildings/houses themselves to the hazard within the WUI is not yet included in FSF-WFM.



	
Vegetation changes: the vegetation between 2022 and 2052 was held constant, although it is anticipated that changes in vegetation composition and density, and thus fuels, will be driven to some degree by climate change. Keeping the 2022 fuels constant for the assessment of 2052 future exposure underestimated the total possible changes due to the climate, but focuses attention on the direct effects of the climate and future weather on the state of those fuels, which has significant implications for wildfire ignitions, intensity, and spread.



	
Future weather approximation: A comprehensive sensitivity analysis to the bias-adjustment techniques used for climate adjustment is warranted. In addition, the high quality of the winds in the 2048–2057 simulations (the same as the 2011–2022 observations) is an advantage over using modeled winds, but is nevertheless an assumption. Most importantly, since the length and severity of droughts captured in the 2011–2020 time series do not change for the 2048–2057 simulation, the possible impact of those droughts, as they increase in frequency and severity, is unresolved.



	
Incomplete fuels/disturbances for fuel updates: disturbances are not evenly reported across the US, and some areas (e.g., private lands in the Eastern US) are not well known.



	
Ignition locations: using only historical fire ignition locations limits the possible impact of climate change on plausible fire locations, and the omission of random lightning strikes leaves some areas under-sampled. Additionally, a nuance of the decision to build the ignition density surface from only >100 acre fire occurrence data is that ignition density will be zero in areas that have not experienced fires >100 acres, even if those areas have experienced fires <100 acres. Dillon et al. [39] noted that in areas where management strategies have previously been successful at limiting large fire occurrence, burn probability modeling based only on large fire occurrence may underestimate burn probability. For that reason, Dillon et al. [39] developed an ignition density surface weighted as 98% large fire occurrence and 2% small fire occurrence, and such an approach could likely be used in future work.



	
No future land use changes: to focus on the impacts of climate change on the existing parcels under future wildfire exposure, we have elected to keep the built environment constant, and to assume no changes in land use or condition. This simplifying assumption is useful for its stated purpose, but we also recognize that changes in land use will also precipitate changes in likely future ignition locations, WUI locations, fuel conditions and types.










8. Discussion and Concluding Points


The methodology presented computes the physical hazard associated with wildfire incidence for the contiguous United States at 30 m resolution, and is expressed through hazards quantifying burn probability, flame length, and ember spread for the years 2022 and 2052, based on 10-year representative Monte Carlo simulations of wildfire behavior. This methodology uses updated fuels estimates that integrate known disturbances, current and estimated future weather characteristics that are useful for understanding aggregate wildfire exposure at a high resolution, and uses a model of wildfire behavior that integrates ignition, time of burn, and spread. This work does not develop new techniques or approaches to fire probability and hazard modeling, but rather integrates several existing methods and implements a computationally efficient and scalable modeling techniques to allow for new high-resolution, CONUS-wide hazard generation—all based on existing data, fire science, and hazard modeling paradigms developed by others in the wildfire science community. We have extended these approaches to estimate not only updated, current wildfire hazards but also extending those to estimate climate change’s future impacts on these hazards.



The methodology for the augmentation of the US Forest Service’s LANDFIRE-based estimates of fuel types, densities, and conditions at a 30 m resolution is presented using an open-source, Rothermel-based wildfire behavior model, ELMFIRE, for computation. The replacement of non-burnable fuel types in LANDFIRE that represent the built environment within the wildland–urban interface (WUI), with fuel inputs from the results of machine-learning estimates trained on data from historical fires, allow the propagation of wildfire through the WUI in a way that more closely resembles the observed conditions, and often results in non-zero burn probabilities for these areas. This serves as a notable improvement and opportunity for future fire models to replicate such an approach to improve their modeling. The wildfire hazard derivation overall is heavily dependent upon the updated LANDFIRE 2016 fuel layers, and significant effort was undertaken to assemble all known disturbances throughout 2020. Combined, this provides a repeatable methodology for future research looking to incorporate current fuel estimates, when annually updated LANDFIRE data are not available.



Other inputs required for ELMFIRE include topography from the USGS National Elevation Database, and weather (winds, air temperatures, humidity, and precipitation), for which the 2011–2020 NOAA RTMA hourly time series was selected. This 10-year time series provided an adequate range of possible weather conditions for the Monte Carlo simulation, where ELMFIRE was run approximately 100 million times to produce an estimate of the 2022 wildfire hazards for CONUS. To enable an estimate of the future hazard, this same hourly time series was bias-adjusted using MACAv2 daily downscaled IPCC CMIP5 RCP4.5 climate model ensemble results. Since accurate winds are crucial to the accurate prediction of wildfire behavior, and winds have a direct and significant influence on ELMFIRE results, we elected to hold winds constant between the 2022 and 2052 simulations, and bias-adjust only air temperature, humidity, and precipitation. This choice reduced the uncertainties introduced into the hazards from the fire behavior model, and instead focuses on the impact of climate change on the condition of the fuels for the 2048–2057 Monte Carlo simulations. Vegetation was likewise held constant between the 2022 and 2052 Monte Carlo simulations, as a reasonable but conservative approximation over 30 years’ time. The differences in wildfire hazards in the 2052 estimates are then based solely upon climate’s impact on the state of the fuels and generally hotter, drier conditions are thought to influence greater burn probabilities in the 2052 estimates. Due to the vegetation being held constant, these 2052 estimates should be considered conservative estimates of future wildfire exposure.



Fire ignition locations for the simulations were kept the same for 2011–2020, as for the 2048–2057 Monte Carlo simulations, and were created from the historical origins of significant fires greater than 100 acres. This lower limit on fire size was used to implicitly account for fire suppression activities that are not currently modeled in ELMFIRE. Over 100 million fires were modeled for each simulation period, and 8–10% of those model fires grew and were tracked at 30 m resolution across the landscape for up to 7 days apiece. Outputs were aggregated to create burn probability, flame length, and ember spread hazard estimates at 30 m horizontal resolution for CONUS. These hazard estimates are conducive to the assessment of the exposure of US properties to wildfire flames and/or embers. Comparisons with historical wildfire intensities and sizes show that the lack of explicit fire suppression effects in the FSF-WFM produces overestimates of fire sizes and intensities, so the resulting wildfire hazards should be considered to be conservative overestimates. Comparisons to historical wildfire losses and the US Forest Service’s WFC products generally show consistency at the state and community levels, but additional validation using historical losses at the building level should be undertaken in the future. The FSF-WFM wildfire hazards will produce fewer false negatives of risk assessments at the property level, and when combined with specific building vulnerability, could be used to provide similarly conservative estimates of climate-adjusted wildfire losses at the building level.



Wildfire hazards are estimated to be non-zero for 71.8 million of the over 140 million properties in CONUS, and will include an additional 11% properties over the next 30 years, due to climate change impacts on fuel conditions. While most of the overall wildfire risk is associated with properties west of 100 degrees W longitude in the American West, much of the change in wildfire exposure is observed east of the Mississippi River in areas not normally associated with large wildfire exposure. Over 5.9 million properties are found to have a “major” aggregate wildfire exposure of 10% over the 30-year analysis period from 2022–2052, which invites further investigation at the hyper-local level to discover ways to mitigate that exposure. Since the fuels and winds have been held the same between 2022 and 2052 in our simulations, the implication is that any increase in wildfire exposure is due to the future weather’s increased impacts on fuel conditions. Thus the influence of climate change on fuel conditions is the primary cause of the estimated increase in wildfire exposure throughout the country.



The FSF-WFM represents the first national-scale, property-level wildfire exposure model that has been developed using a geographically-consistent approach. The ability to consistently assess wildfire exposure, and thus risk for every property across the CONUS, should give local, state, and national government decision makers another data tool to help guide the allocation of resources, allow property owners to better assess their risk and implement meaningful solutions to reduce that risk, and provide financial markets with the opportunity to price risk into the cost of property more effectively through insurance, mortgage, and other financial products.
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Appendix A. Data Sources Used in the Development of the FSF-WFM




	Name
	Subject
	Source



	LANDFIRE
	Fuels
	LandFire.gov (accessed on 1 June 2022)



	USGS NED
	Topography
	https://www.usgs.gov/programs/national-geospatial-program/national-map (accessed on 1 June 2022)



	USDA Forest Service’s Fire Occurrence Database (FOD)
	Ignition Locations
	https://doi.org/10.2737/RDS-2013-0009.5 (accessed on 1 June 2022)



	MTBS, NIFC
	Historical fires
	https://www.mtbs.gov and https://www.nifc.gov (accessed on 1 June 2022)



	NOAA RTMA
	Weather, 2011–2020
	https://mtarchive.geol.iastate.edu/ and https://www.ncei.noaa.gov/has/HAS.FileAppRouter?datasetname=9950_01&subqueryby=STATION&applname=&outdest=FILE (accessed on 1 June 2022)



	MACAv2
	Climate
	MACA data portal (accessed on 1 June 2022)



	Future 2052 Weather
	Weather estimates for 2048-2057; Derived from MACAv2 and NOAA RTMA time series
	derived



	Future 2052 Fuels
	Assumed to be same as 2022 for V1
	Held constant



	Property Boundaries
	Lightbox
	commercial



	Building Footprints
	Mapbox
	commercial



	Building Density
	Derived from Building footprint information
	derived







Appendix B. Treatment Disturbance Inputs




	Dataset Name
	Source Data Link



	Hazardous Fuels Treatments—Fire—USFS
	https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/3 (accessed on 1 June 2022)



	Hazardous Fuels Treatments—Other—USFS
	https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/4 (accessed on 1 June 2022)



	Hazardous Fuels Treatments—Mechanical—USFS
	https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/5 (accessed on 1 June 2022)



	Hazardous Fuels Treatments—All Other Values—USFS
	https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_HazardousFuelsTreatments_01/MapServer/7 (accessed on 1 June 2022)



	Timber Harvest—USFS
	https://apps.fs.usda.gov/arcx/rest/services/EDW/EDW_TimberHarvest_01/MapServer/8 (accessed on 1 June 2022)



	CALMAPPER Treatment Projects
	https://egis.fire.ca.gov/arcgis/rest/services/CalMapper/CalMAPPER_Public/FeatureServer/2 (accessed on 1 June 2022)



	CALFIRE Priority Treatment Projects
	https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/PriorityProjects2019/FeatureServer/0 (accessed on 1 June 2022)



	CALFIRE Timber Harvest
	https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/CAL_FIRE_Timber_Harvesting_Plans_All_WGS84/FeatureServer/0 (accessed on 1 June 2022)



	CALFIRE Fire Perimeters—Prescribed Fire
	https://egis.fire.ca.gov/arcgis/rest/services/FRAP/FirePerimeters_FS/FeatureServer/1 (accessed on 1 June 2022)



	CALFIRE Forest Health CCI Awarded Projects 2017-18
	https://services1.arcgis.com/jUJYIo9tSA7EHvfZ/ArcGIS/rest/services/Forest_Health_CCI_Awards_2017_2018/FeatureServer/0 (accessed on 1 June 2022)



	Treatment areas—National Park Service
	https://mapservices.nps.gov/arcgis/rest/services/WildlandFire/WildlandFire/FeatureServer/5 (accessed on 1 June 2022)



	Treatment areas—ID—BLM
	https://navigator.blm.gov/api/share/e5fb96b234d32c5a (accessed on 1 June 2022)



	Treatment areas & Harvest—OR Dept Forestry
	https://gisapps.odf.oregon.gov/data/FernsNoapsPolygons.Zip (accessed on 1 June 2022)



	Treatment areas—CA—BLM
	https://navigator.blm.gov/api/share/a446b6874c2a37fc (accessed on 1 June 2022)



	Treatment areas—NM—BLM
	https://gis.blm.gov/nmarcgis/rest/services/Range/BLM_NM_Vegetation_Treatments/MapServer/0 (accessed on 1 June 2022)



	Harvest—WA Dept Natural Resources
	https://gis.dnr.wa.gov/site2/rest/services/Public_Forest_Practices/WADNR_PUBLIC_FP_FPA/MapServer/6/ (accessed on 1 June 2022)







Appendix C. Fires Used to Estimate Fuels in WUI Areas




	Incident Name
	State
	Ignition Date
	Lat.
	Long.
	Acres Burned
	Total Structures Damaged
	Total Structures Destroyed
	Total Structures Threatened



	Shockey
	CA
	9/23/2012
	32.618
	−116.335
	2667
	10
	45
	125



	Bastrop County Complex
	TX
	9/4/2011
	30.13
	−97.235
	31,838
	0
	1709
	1160



	Pine Creek
	OR
	7/14/2014
	44.808
	−120.273
	31,033
	0
	0
	16



	Highway 613 Fire
	MS
	10/31/2014
	30.507
	−88.526
	635
	0
	0
	30



	Carlton Complex
	WA
	7/14/2014
	48.248
	−119.96
	276,091
	0
	471
	1103



	Mills Canyon
	WA
	7/8/2014
	47.626
	−120.297
	21,952
	0
	3
	571



	Anaconda
	UT
	7/20/2014
	40.562
	−112.237
	1142
	0
	0
	30



	High Range
	ID
	8/3/2014
	45.743
	−116.493
	5328
	0
	3
	30



	Happy Camp Complex
	CA
	8/14/2014
	41.707
	−123.196
	118,491
	2
	6
	767



	Knf Beaver
	CA
	7/30/2014
	41.89
	−122.871
	34,274
	0
	6
	235



	Snag Canyon
	WA
	8/3/2014
	47.167
	−120.475
	12,508
	1
	22
	279



	Johnson Bar
	ID
	8/3/2014
	46.096
	−115.614
	15,170
	0
	0
	57



	Rain
	ID
	8/3/2014
	45.583
	−115.185
	4772
	0
	0
	4



	Assayii Lake
	NM
	6/13/2014
	36.032
	−108.844
	13,176
	0
	5
	50



	Slide
	AZ
	5/20/2014
	35.009
	−111.802
	22,698
	0
	0
	350



	French
	CA
	7/28/2014
	37.294
	−119.36
	14,534
	0
	0
	106



	Way
	CA
	8/18/2014
	35.735
	−118.461
	3947
	12
	12
	1500



	Eiler
	CA
	7/31/2014
	40.799
	−121.558
	30,967
	0
	30
	755



	Taylor Mountain Road
	UT
	7/5/2014
	40.531
	−109.573
	2965
	3
	3
	50



	Triple G
	FL
	5/9/2015
	26.118
	−81.591
	736
	0
	0
	0



	Grand Lake
	FL
	4/19/2015
	25.75
	−80.455
	1368
	0
	0
	11



	Lime Hill
	OR
	8/5/2015
	44.37
	−117.33
	12,210
	0
	5
	4



	Dry Gulch
	OR
	9/12/2015
	44.829
	−117.139
	18,369
	0
	0
	507



	Mann
	ID
	8/18/2015
	44.263
	−116.84
	1527
	0
	0
	30



	Mm43 Hwy 52
	ID
	6/25/2015
	43.977
	−116.4
	11,022
	2
	0
	10



	Celebration
	ID
	6/6/2015
	43.26
	−116.497
	7281
	0
	0
	0



	Soda
	ID
	8/10/2015
	43.319
	−116.861
	282,888
	1
	1
	145



	Sleepy Hollow
	WA
	6/28/2015
	47.455
	−120.375
	3238
	27
	35
	0



	I-90
	WA
	7/19/2015
	47.013
	−119.959
	1397
	0
	0
	20



	Highway 8
	WA
	8/4/2015
	45.802
	−120.184
	35,296
	0
	0
	350



	Brown Ranch
	TX
	8/11/2015
	29.993
	−100.428
	17,881
	0
	3
	22



	County Line 2
	OR
	8/12/2015
	44.829
	−121.412
	68,189
	0
	7
	1452



	Roosa Gap
	NY
	5/3/2015
	41.638
	−74.421
	2747
	0
	0
	11



	Pipeline 1
	PA
	5/3/2015
	41.123
	−75.677
	666
	0
	0
	0



	North
	CA
	7/17/2015
	34.372
	−117.474
	4366
	5
	23
	700



	Gilmore Gulch
	WA
	7/5/2015
	46.16
	−116.964
	8074
	0
	0
	11



	Tucannon
	WA
	8/29/2015
	46.359
	−117.678
	2809
	0
	0
	140



	Ridge Road
	ND
	4/14/2015
	48.079
	−103.09
	3390
	0
	0
	0



	Powerline
	OK
	1/26/2015
	35.364
	−95.884
	1183
	0
	0
	11



	Highway
	CA
	4/19/2015
	33.907
	−117.624
	1212
	0
	0
	252



	Z Bar 7
	OK
	3/31/2015
	36.664
	−96.149
	5908
	0
	0
	0



	2230 Road
	OK
	4/4/2015
	36.454
	−96.158
	2650
	0
	6
	0



	Wf West End 2015
	TX
	2/13/2015
	29.588
	−94.341
	6590
	0
	0
	0



	Razor Fire
	PA
	4/18/2015
	40.779
	−75.682
	728
	0
	0
	4



	Boars Hammock
	FL
	4/26/2015
	26.885
	−81.253
	790
	0
	0
	0



	Tallgrass East
	KS
	4/14/2015
	38.41
	−96.525
	1745
	0
	0
	0



	Wf Texas Point Northeast
	TX
	10/4/2015
	29.705
	−93.93
	4635
	0
	0
	0



	Greenwood
	OK
	3/23/2015
	36.054
	−96.319
	5774
	0
	0
	0



	West Prong
	OK
	3/24/2015
	36.413
	−96.064
	3676
	0
	1
	500



	Trail 12
	FL
	5/5/2015
	28.788
	−82.366
	1041
	0
	0
	0



	Station
	WY
	10/11/2015
	42.882
	−106.18
	9845
	94
	46
	392



	Big Spring Branch
	WV
	11/17/2015
	37.701
	−81.825
	1044
	0
	0
	0



	Little Horse Creek
	WV
	11/17/2015
	38.132
	−81.851
	1145
	0
	0
	0



	Little Jerrell
	WV
	11/18/2015
	37.985
	−81.646
	1193
	0
	0
	0



	Trace Fork
	WV
	11/14/2015
	37.434
	−81.934
	784
	0
	0
	0



	Kearny River
	AZ
	6/17/2015
	33.068
	−110.92
	1543
	5
	5
	50



	Willow
	AZ
	8/8/2015
	34.837
	−114.544
	6084
	40
	31
	710



	Goodell
	WA
	8/11/2015
	48.683
	−121.227
	6624
	0
	0
	50



	Stouts Creek
	OR
	7/30/2015
	42.859
	−122.985
	27,570
	0
	0
	645



	Route Complex
	CA
	7/31/2015
	40.601
	−123.541
	35,444
	0
	2
	475



	Grenade
	CA
	4/29/2015
	33.404
	−117.514
	1776
	0
	0
	0



	River Complex
	CA
	7/31/2015
	40.914
	−123.364
	78,531
	0
	0
	506



	Solimar
	CA
	12/26/2015
	34.303
	−119.342
	1083
	0
	0
	103



	Cuesta
	CA
	8/17/2015
	35.356
	−120.612
	2415
	0
	1
	339



	Parkhill
	CA
	6/20/2015
	35.367
	−120.424
	1795
	5
	18
	100



	Tassajara
	CA
	9/19/2015
	36.391
	−121.589
	1085
	1
	21
	0



	Lowell
	CA
	7/25/2015
	39.212
	−120.869
	2633
	1
	3
	1800



	Tesla
	CA
	8/19/2015
	37.636
	−121.594
	2508
	0
	1
	0



	Lumpkin
	CA
	9/11/2015
	39.527
	−121.327
	1137
	0
	0
	200



	Wragg
	CA
	7/22/2015
	38.481
	−122.069
	8455
	5
	2
	700



	Rocky
	CA
	7/29/2015
	38.91
	−122.45
	96,125
	8
	96
	6959



	Valley
	CA
	9/12/2015
	38.788
	−122.613
	77,507
	95
	2019
	9150



	Rough
	CA
	7/31/2015
	36.852
	−118.884
	146,369
	0
	4
	1536



	Washington
	CA
	6/19/2015
	38.642
	−119.699
	18,485
	0
	2
	251



	Butte
	CA
	9/9/2015
	38.266
	−120.592
	72,894
	48
	901
	6400



	Corrine
	CA
	6/19/2015
	37.179
	−119.5
	1064
	0
	3
	250



	Willow
	CA
	7/25/2015
	37.282
	−119.479
	5990
	0
	0
	455



	Cape Horn
	ID
	7/5/2015
	47.998
	−116.521
	1505
	1
	14
	309



	Slide
	ID
	8/14/2015
	46.096
	−115.382
	13,509
	0
	0
	29



	I-90 Sprague
	WA
	8/1/2015
	47.314
	−117.934
	1771
	0
	0
	2



	Carpenter Rd.
	WA
	8/15/2015
	48.05
	−118.091
	62,488
	0
	43
	1005



	Lawyer 2
	ID
	8/11/2015
	46.23
	−116.108
	11,378
	0
	0
	25



	Municipal
	ID
	8/15/2015
	46.469
	−116.19
	1969
	5
	11
	302



	Woodrat
	ID
	8/11/2015
	46.167
	−115.771
	6513
	0
	0
	81



	Tepee Springs
	ID
	8/12/2015
	45.318
	−116.116
	94,878
	0
	6
	1410



	Eagle
	OR
	8/11/2015
	45.028
	−117.373
	14,502
	0
	1
	52



	Canyon Creek Complex
	OR
	8/12/2015
	44.301
	−118.85
	109,786
	100
	54
	722



	Black Canyon
	WA
	8/14/2015
	47.976
	−120.053
	61,379
	0
	0
	0



	First Creek
	WA
	8/14/2015
	47.929
	−120.244
	7971
	22
	19
	556



	Chelan Complex
	WA
	8/14/2015
	47.912
	−119.846
	21,774
	1
	55
	2948



	West Fork Fish Creek
	MT
	8/14/2015
	46.909
	−114.804
	14,495
	0
	5
	372



	North Star
	WA
	8/13/2015
	48.415
	−118.94
	218,547
	0
	1
	4225



	Marble Valley
	WA
	8/14/2015
	48.404
	−117.892
	3431
	22
	41
	326



	Renner
	WA
	8/14/2015
	48.758
	−118.193
	13,975
	0
	0
	120



	Blue Creek
	WA
	7/20/2015
	46.037
	−118.08
	5990
	0
	12
	250



	9 Mile
	WA
	8/13/2015
	48.971
	−119.296
	5052
	0
	10
	80



	Limebelt
	WA
	8/14/2015
	48.507
	−119.694
	137,098
	0
	0
	20



	Hidden Pines
	TX
	10/13/2015
	30.081
	−97.183
	3807
	2
	141
	406



	Tunk Block
	WA
	8/14/2015
	48.478
	−119.339
	180,111
	0
	145
	3000



	Liberty Hill
	LA
	10/13/2015
	32.345
	−92.907
	711
	0
	3
	12



	Lake
	CA
	6/17/2015
	34.147
	−116.762
	30,421
	0
	4
	7390



	Sunland
	WA
	5/29/2016
	47.045
	−119.99
	1940
	0
	0
	20



	16 Mile
	PA
	4/20/2016
	41.199
	−75.149
	7896
	9
	11
	287



	Bear Town
	PA
	4/20/2016
	41.181
	−75.222
	649
	0
	0
	0



	Sams Point Fire-Verkeerder Fire
	NY
	4/23/2016
	41.681
	−74.343
	1929
	0
	0
	7



	Road 10
	WA
	8/2/2016
	47.23
	−119.357
	2750
	0
	8
	87



	Elmer City
	WA
	9/11/2016
	47.978
	−118.942
	5619
	0
	1
	140



	Rocky Mtn Fire 2016
	VA
	4/16/2016
	38.31
	−78.665
	9299
	0
	0
	337



	Fifteen Mile
	OR
	7/1/2016
	45.638
	−121.006
	4044
	0
	0
	45



	Range 12
	WA
	7/30/2016
	46.495
	−119.869
	167,604
	0
	0
	250



	County Line Road Fire
	NC
	3/10/2016
	35.011
	−79.513
	1704
	0
	0
	0



	Mcbee Command
	WA
	7/15/2016
	46.249
	−119.519
	1813
	0
	0
	20



	Cellar Mountain
	VA
	3/17/2016
	37.93
	−79.128
	737
	0
	0
	8



	South Ward Gap
	WA
	7/31/2016
	46.177
	−119.825
	4184
	0
	2
	100



	Kahlotus
	WA
	8/22/2016
	46.645
	−118.633
	9386
	0
	4
	30



	Starbuck
	WA
	7/18/2016
	46.527
	−118.087
	2414
	0
	0
	0



	Eades Hollow
	VA
	11/21/2016
	37.775
	−78.851
	1564
	0
	0
	17



	Rattlesnake
	OR
	7/24/2016
	44.835
	−121.118
	9296
	0
	0
	41



	Table Rock
	ID
	6/30/2016
	43.591
	−116.131
	2481
	1
	2
	100



	Cottonwood Ca
	SD
	10/16/2016
	43.905
	−101.862
	41,775
	0
	2
	0



	Clifton
	ID
	8/23/2016
	42.159
	−112.01
	2356
	0
	0
	20



	Henrys Creek
	ID
	8/21/2016
	43.447
	−111.765
	52,988
	0
	8
	125



	Salvage
	ID
	6/24/2016
	42.8
	−114.669
	1847
	1
	0
	11



	Rock
	NV
	7/29/2016
	39.871
	−119.896
	2387
	0
	0
	800



	Metz
	CA
	5/22/2016
	36.387
	−121.217
	3826
	0
	0
	5



	Bug Creek
	AZ
	6/28/2016
	34.294
	−112.117
	1184
	0
	0
	105



	Longview
	AZ
	6/6/2016
	31.633
	−110.548
	1105
	0
	0
	40



	Ridge
	AZ
	5/25/2016
	31.529
	−110.338
	1391
	0
	0
	53



	Crutch
	TX
	3/23/2016
	35.615
	−101.117
	45,052
	0
	4
	0



	Optima
	OK
	12/16/2016
	36.692
	−101.09
	5084
	0
	0
	0



	Poplar
	NC
	3/31/2015
	36.106
	−82.337
	768
	0
	0
	3



	Chestnut Knob
	NC
	11/6/2016
	35.619
	−81.657
	6418
	0
	0
	417



	Horton
	NC
	11/22/2016
	36.146
	−81.568
	1480
	0
	0
	325



	Bench Bluff
	TN
	11/12/2016
	35.594
	−85.242
	1715
	0
	0
	0



	Pinnacle Mountain
	SC
	11/9/2016
	35.055
	−82.721
	7869
	0
	1
	1136



	Rd 80
	KS
	3/17/2016
	38.164
	−96.391
	63,061
	0
	0
	0



	Bar-Dew Lake
	OK
	3/19/2016
	36.828
	−96.039
	14,806
	0
	0
	62



	Bear
	OK
	2/17/2016
	36.309
	−96.17
	5966
	0
	0
	80



	Pawnee Cove
	OK
	2/18/2016
	36.228
	−96.411
	3418
	0
	50
	200



	Pharoah
	OK
	2/18/2016
	35.535
	−96.097
	13,579
	0
	14
	50



	Sand Creek
	OK
	2/18/2016
	35.3
	−96.104
	3839
	0
	0
	170



	Double Header
	OK
	3/6/2016
	35.35
	−96.083
	1413
	0
	0
	15



	Katie
	OK
	3/6/2016
	35.258
	−96.099
	1573
	2
	0
	35



	Mustang
	OK
	3/6/2016
	36.669
	−96.025
	10,060
	0
	0
	82



	Hall Horn
	OK
	3/16/2016
	36.557
	−96.298
	5180
	0
	0
	0



	Walker
	OK
	3/19/2016
	36.354
	−96.235
	2340
	0
	0
	0



	Varsity
	OK
	4/7/2016
	35.728
	−96.439
	1216
	0
	0
	55



	Burmac
	KS
	3/23/2016
	38.087
	−97.668
	10,668
	12
	11
	0



	Burley Hill
	KS
	4/5/2016
	39.016
	−96.645
	16,381
	1
	0
	0



	Quinton Fire
	OK
	2/17/2016
	35.14
	−95.399
	1219
	0
	0
	5



	Mason Fire
	OK
	2/19/2016
	35.261
	−95.473
	1915
	0
	0
	0



	Round Prairie Road Fire
	OK
	2/19/2016
	34.677
	−95.173
	2858
	0
	0
	0



	Cyclops
	AL
	11/5/2016
	33.845
	−87.033
	660
	0
	0
	4



	Mount Pleasant
	VA
	11/19/2016
	37.738
	−79.178
	11,001
	0
	0
	120



	Gap
	CA
	8/27/2016
	41.856
	−123.036
	33,940
	0
	14
	160



	Willard
	CA
	9/11/2016
	40.378
	−120.749
	2828
	0
	7
	625



	Kewa Fire
	WA
	8/2/2016
	48.183
	−118.284
	1985
	0
	5
	90



	Cayuse Mtn
	WA
	8/22/2016
	47.847
	−118.038
	9744
	0
	23
	1535



	Hart
	WA
	8/21/2016
	47.822
	−118.125
	2819
	20
	40
	605



	Whit
	WY
	8/2/2016
	44.409
	−109.361
	12,731
	0
	8
	165



	Cliff Creek
	WY
	7/17/2016
	43.296
	−110.382
	36,131
	0
	1
	135



	Chimney
	CA
	6/1/2016
	35.855
	−118.025
	1477
	0
	0
	24



	Erskine
	CA
	6/23/2016
	35.569
	−118.334
	48,066
	75
	286
	2500



	Cedar
	CA
	8/16/2016
	35.791
	−118.571
	29,191
	0
	12
	2599



	Slate
	CA
	10/4/2016
	36.082
	−118.556
	2121
	0
	0
	0



	Meadow
	CA
	10/30/2016
	35.975
	−118.579
	4346
	0
	0
	0



	Pioneer
	ID
	7/18/2016
	44.139
	−115.585
	189,596
	0
	6
	465



	Roaring Lion
	MT
	7/31/2016
	46.177
	−114.248
	8096
	3
	66
	2347



	Spokane Complex
	WA
	8/22/2016
	47.492
	−117.289
	6839
	2
	17
	303



	Sherpa
	CA
	6/15/2016
	34.497
	−120.033
	7549
	0
	5
	271



	Rey
	CA
	8/18/2016
	34.586
	−119.725
	33,323
	5
	5
	301



	Pilot
	CA
	8/7/2016
	34.308
	−117.247
	8267
	0
	0
	5600



	Blue Cut
	CA
	8/16/2016
	34.324
	−117.506
	36,856
	8
	321
	611



	Bogart
	CA
	8/30/2016
	33.986
	−116.933
	1475
	0
	2
	426



	Fish
	CA
	6/20/2016
	34.181
	−117.939
	4528
	0
	0
	869



	Deer
	CA
	7/1/2016
	35.222
	−118.688
	1885
	0
	0
	300



	Sage
	CA
	7/9/2016
	34.366
	−118.574
	1002
	1
	0
	2500



	Little Valley
	NV
	10/14/2016
	39.266
	−119.839
	2964
	0
	40
	200



	Cold
	CA
	8/3/2016
	38.536
	−122.077
	6289
	0
	2
	52



	Trailhead
	CA
	6/28/2016
	38.963
	−120.83
	5743
	0
	0
	2600



	Soberanes
	CA
	7/22/2016
	36.322
	−121.701
	132,380
	5
	68
	2010



	Sand
	CA
	7/22/2016
	34.391
	−118.35
	41,561
	6
	20
	10,300



	Clayton
	CA
	8/13/2016
	38.915
	−122.587
	3792
	29
	302
	1500



	Loma
	CA
	9/26/2016
	37.116
	−121.818
	4380
	1
	28
	325



	Border 3
	CA
	6/19/2016
	32.611
	−116.572
	7958
	3
	17
	1000



	Mormon
	AZ
	5/15/2016
	34.961
	−111.573
	7897
	0
	0
	0



	Goose
	CA
	7/30/2016
	37.015
	−119.466
	2487
	1
	9
	400



	Tenderfoot
	AZ
	6/8/2016
	34.232
	−112.708
	4363
	0
	3
	300



	Curry
	CA
	7/2/2016
	36.087
	−120.45
	2837
	0
	0
	25



	Chimney
	CA
	8/13/2016
	35.738
	−121.075
	46,950
	24
	70
	1898



	Juniper
	AZ
	5/20/2016
	33.864
	−110.926
	32,293
	1
	0
	141



	Elk
	AZ
	7/21/2016
	34.174
	−109.864
	1965
	0
	0
	0



	Beaver Creek
	CO
	6/19/2016
	40.957
	−106.505
	44,221
	0
	17
	131



	Fulton
	AZ
	9/12/2016
	34.281
	−110.89
	3237
	0
	0
	296



	Beulah Hill
	CO
	10/3/2016
	38.07
	−104.928
	5769
	0
	14
	750



	Junkins
	CO
	10/17/2016
	38.14
	−105.136
	19,023
	0
	26
	745



	Topock
	AZ
	4/6/2016
	34.74
	−114.51
	1422
	1
	0
	12



	I40
	TX
	3/23/2016
	35.244
	−100.355
	14,780
	0
	14
	200



	350 Complex
	OK
	4/5/2016
	36.647
	−99.266
	58,055
	0
	0
	825



	Anderson Creek Fire
	OK
	3/23/2016
	37.107
	−98.835
	374,523
	0
	54
	10,000



	Big Creek
	MO
	2/13/2016
	36.634
	−92.83
	4031
	0
	0
	0



	Bob White
	WV
	4/3/2016
	37.957
	−81.7
	824
	0
	0
	10



	Upper Conley Hollow
	WV
	4/4/2016
	37.889
	−82.095
	1438
	0
	0
	0



	Jimmie Creek Rd
	KY
	10/26/2016
	37.373
	−82.386
	500
	0
	0
	0



	Raven Rock
	VA
	11/2/2016
	37.172
	−82.61
	2273
	1
	2
	104



	Bridge Creek Road
	TN
	10/30/2016
	35.241
	−85.559
	1777
	0
	0
	0



	Spruce Pine Rd St Rt 7
	KY
	4/13/2016
	37.522
	−82.894
	786
	0
	0
	0



	Little Shepherd Trail
	KY
	10/26/2016
	36.951
	−83.113
	6751
	0
	0
	0



	Big Branch
	KY
	11/17/2016
	37.062
	−82.956
	762
	0
	0
	0



	Poe Road
	TN
	11/11/2016
	35.261
	−85.254
	758
	0
	0
	0



	Mowbray
	TN
	11/9/2016
	35.286
	−85.208
	721
	0
	0
	50



	Bolts Br.
	KY
	11/24/2016
	37.087
	−83.656
	1069
	0
	0
	0



	Lake Chinnabee
	AL
	11/28/2016
	33.473
	−85.871
	1254
	2
	0
	35



	Caney Head
	AL
	3/20/2016
	33.391
	−85.843
	957
	0
	0
	0



	Halls Top
	TN
	4/4/2016
	35.875
	−83.142
	2464
	1
	1
	71



	Eagles Nest
	KY
	11/2/2016
	37.53
	−83.392
	2857
	0
	0
	50



	Jetts Creek Fire
	KY
	11/6/2016
	37.508
	−83.563
	3021
	0
	0
	0



	Bowlings Creek
	KY
	11/21/2016
	37.361
	−83.43
	1023
	0
	0
	0



	Moore Peach
	VA
	4/10/2016
	36.625
	−82.986
	1345
	0
	0
	0



	Sr116
	TN
	11/3/2016
	36.169
	−84.318
	2222
	0
	0
	0



	Charles Branch Lane
	TN
	11/8/2016
	36.204
	−84.345
	1071
	0
	0
	0



	Timber Ridge
	GA
	11/12/2016
	34.828
	−83.363
	1002
	0
	0
	400



	Neddy Mountain Road
	TN
	11/11/2016
	35.948
	−83.072
	788
	0
	0
	150



	Silver Mine
	NC
	4/21/2016
	35.908
	−82.791
	6082
	0
	0
	15



	Party Rock
	NC
	11/5/2016
	35.472
	−82.241
	8572
	0
	3
	1050



	State Line
	TN
	4/16/2016
	35.926
	−82.922
	1111
	0
	0
	17



	Sr116-Devonia
	TN
	11/4/2016
	36.116
	−84.41
	3077
	0
	0
	0



	Tellico
	NC
	11/3/2016
	35.299
	−83.589
	14,172
	0
	1
	336



	Maple Springs
	NC
	11/4/2016
	35.392
	−83.932
	7696
	1
	0
	29



	Dick’s Creek
	NC
	10/23/2016
	35.399
	−83.249
	833
	0
	0
	31



	Dobson 3
	NC
	11/8/2016
	35.506
	−83.244
	741
	0
	0
	50



	Hwy 190
	KY
	11/2/2016
	36.74
	−83.724
	957
	0
	0
	0



	Railroad Grade 2016
	TN
	4/18/2016
	36.227
	−82.113
	1790
	0
	0
	25



	Kentucky Ridge
	KY
	11/7/2016
	36.686
	−83.858
	1133
	0
	0
	0



	Old Roughy
	NC
	11/9/2016
	35.371
	−83.85
	534
	0
	0
	44



	East Miller Cove
	TN
	11/17/2016
	35.744
	−83.799
	1331
	0
	0
	100



	Quarry Creek
	TN
	11/16/2016
	35.349
	−84.281
	643
	0
	0
	9



	Cobbly Nob
	TN
	11/28/2016
	35.779
	−83.342
	732
	23
	108
	0



	Stinking Creek
	TN
	11/9/2016
	36.453
	−84.199
	10,768
	0
	0
	0



	Boteler
	NC
	10/25/2016
	35.068
	−83.673
	8626
	0
	0
	314



	Knob
	NC
	11/2/2016
	35.114
	−83.537
	1132
	0
	0
	0



	Camp Branch
	NC
	11/23/2016
	35.179
	−83.558
	3234
	0
	2
	140



	Wild Goose
	LA
	2/9/2016
	31.406
	−92.898
	1260
	0
	3
	20



	Chimney Tops 2
	TN
	11/23/2016
	35.687
	−83.503
	14,998
	257
	2066
	2800



	Knox Bell Line
	KY
	10/29/2016
	36.907
	−83.605
	1272
	0
	0
	0



	Rock Mountain
	GA
	11/9/2016
	34.99
	−83.522
	25,224
	0
	0
	250



	North Peak
	NC
	3/23/2016
	35.753
	−81.986
	680
	0
	0
	2



	Old 50
	FL
	9/27/2016
	28.547
	−80.906
	804
	0
	0
	1



	Island
	FL
	5/5/2016
	29.318
	−81.767
	527
	0
	0
	0



	Skibo
	MN
	5/6/2016
	47.498
	−92.044
	763
	0
	0
	110



	Clear Creek
	NC
	11/20/2016
	35.72
	−82.113
	3493
	0
	0
	392



	Tombstone
	NC
	3/8/2016
	35.545
	−81.725
	1747
	0
	0
	0



	Chetco Bar
	OR
	7/12/2017
	42.238
	−124.049
	194,877
	9
	30
	12,483



	Helena
	CA
	8/31/2017
	40.775
	−123.062
	18,709
	8
	141
	5350



	Canyon
	CA
	9/25/2017
	33.861
	−117.66
	2740
	6
	0
	1910



	Canyon 2
	CA
	10/9/2017
	33.823
	−117.734
	9102
	58
	26
	5000



	Minerva 5
	CA
	7/29/2017
	39.903
	−120.944
	4545
	0
	0
	395



	Detwiler
	CA
	7/16/2017
	37.55
	−120.121
	83,297
	21
	131
	1500



	Gate
	CA
	5/20/2017
	32.654
	−116.829
	2265
	0
	0
	315



	Railroad
	CA
	8/29/2017
	37.441
	−119.613
	12,765
	0
	19
	511



	Lilac 5
	CA
	12/7/2017
	33.299
	−117.203
	4159
	69
	193
	1500



	Mission
	CA
	9/3/2017
	37.236
	−119.466
	1006
	8
	9
	250



	Earthstone
	NV
	7/3/2017
	39.591
	−119.517
	35,299
	0
	1
	131



	Preacher
	NV
	7/24/2017
	38.855
	−119.588
	5330
	0
	0
	800



	Prater
	NV
	8/6/2017
	39.551
	−119.669
	1572
	0
	0
	30



	Long Valley
	CA
	7/11/2017
	39.992
	−119.92
	80,456
	3
	10
	500



	Winnemucca Ranch
	NV
	7/4/2017
	39.756
	−119.644
	4153
	0
	5
	300



	Cold Springs
	NV
	7/14/2017
	39.646
	−119.938
	1557
	0
	0
	100



	Opera
	CA
	4/30/2017
	33.997
	−117.301
	1070
	0
	0
	0



	Cutter
	NV
	10/3/2017
	38.829
	−119.604
	4065
	0
	0
	150



	Roadrunner
	CA
	7/30/2017
	36.015
	−118.933
	2436
	0
	0
	10



	Pier
	CA
	8/29/2017
	36.122
	−118.708
	36,626
	0
	2
	1360



	Winter
	CA
	7/6/2017
	38.526
	−122.054
	2485
	0
	0
	63



	Atlas
	CA
	10/9/2017
	38.364
	−122.237
	51,664
	129
	790
	5000



	Jones
	OR
	8/11/2017
	44.004
	−122.512
	10,260
	0
	1
	5



	Nuns
	CA
	10/9/2017
	38.349
	−122.503
	56,883
	0
	0
	0



	Hatchery
	NV
	7/4/2017
	38.977
	−114.091
	1142
	0
	0
	0



	Creek
	CA
	12/5/2017
	34.294
	−118.352
	15,833
	81
	123
	2500



	East Fork
	MT
	8/27/2017
	48.231
	−109.576
	21,165
	5
	5
	80



	Rye
	CA
	12/5/2017
	34.43
	−118.635
	4895
	3
	6
	5460



	Gibralter Ridge
	MT
	8/8/2017
	48.86
	−114.849
	6299
	0
	1
	145



	Caribou
	MT
	8/11/2017
	48.979
	−115.351
	28,101
	0
	40
	570



	West Fork
	MT
	8/30/2017
	48.519
	−115.606
	21,154
	0
	0
	709



	Canyon Creek
	WA
	7/15/2017
	48.271
	−120.072
	1232
	0
	2
	85



	East Saddle
	WA
	8/12/2017
	46.782
	−119.349
	17,318
	2
	2
	40



	Wall
	CA
	7/7/2017
	39.463
	−121.406
	6488
	12
	91
	5400



	Cascade
	CA
	10/9/2017
	39.359
	−121.375
	16,155
	0
	200
	1000



	Cherokee
	CA
	10/9/2017
	39.591
	−121.585
	8415
	0
	3
	53



	Tubbs
	CA
	10/9/2017
	38.568
	−122.68
	36,981
	14
	576
	29,192



	Sulfur
	CA
	10/9/2017
	38.992
	−122.666
	2591
	70
	205
	1720



	Oil Well
	NV
	7/17/2017
	40.92
	−115.725
	7240
	0
	28
	200



	Redwood Valley Incident
	CA
	10/9/2017
	39.339
	−123.213
	36,545
	0
	90
	100



	Pocket
	CA
	10/9/2017
	38.77
	−122.883
	18,691
	0
	0
	0



	Palmer
	CA
	9/2/2017
	33.991
	−117.121
	4148
	1
	0
	150



	Mecca Fire
	OR
	6/26/2017
	44.781
	−121.231
	2515
	0
	0
	23



	Emerson 0638 Rn
	OR
	7/25/2017
	44.69
	−121.012
	10,683
	0
	1
	25



	Thomas
	CA
	12/4/2017
	34.459
	−119.303
	281,982
	280
	1063
	18,000



	Nena Springs
	OR
	8/9/2017
	44.974
	−121.198
	70,074
	4
	10
	199



	Pilot Valley
	NV
	8/13/2017
	41.106
	−114.095
	2578
	2
	6
	157



	Ana
	OR
	7/8/2017
	43.009
	−120.769
	5801
	2
	4
	55



	Eagle Creek
	OR
	9/2/2017
	45.618
	−121.942
	48,816
	0
	9
	5526



	Sheep Gap
	MT
	8/29/2017
	47.475
	−115.046
	24,702
	0
	0
	80



	Silver Dollar
	WA
	7/2/2017
	46.57
	−119.779
	30,789
	0
	0
	30



	Horn Butte 0594 Rn
	OR
	7/21/2017
	45.682
	−120.069
	9325
	0
	0
	35



	Glade 3
	WA
	7/30/2017
	46.144
	−120.054
	10,582
	0
	1
	20



	Morgan Creek
	OR
	8/3/2017
	44.426
	−117.235
	2329
	0
	0
	0



	Martin Canyon
	ID
	7/23/2017
	43.49
	−114.168
	4053
	0
	0
	0



	Lagoon
	ID
	7/26/2017
	42.955
	−114.438
	1484
	0
	3
	10



	Mammoth Cave
	ID
	8/4/2017
	43.155
	−114.193
	50,391
	0
	3
	50



	Breeze
	ID
	6/26/2017
	43.302
	−115.87
	1863
	0
	0
	40



	North Delphia
	MT
	7/14/2017
	46.548
	−108.278
	3767
	0
	0
	40



	Sage Hills
	MT
	7/20/2017
	45.763
	−108.348
	1197
	0
	0
	100



	Lincoln Beach
	UT
	6/23/2017
	40.071
	−111.842
	2298
	0
	0
	14



	Mulberry
	AZ
	5/6/2017
	31.901
	−110.611
	1846
	0
	4
	20



	Lizard
	AZ
	6/7/2017
	31.986
	−110.006
	15,791
	0
	0
	108



	Encino
	AZ
	6/21/2017
	31.65
	−110.648
	1357
	2
	15
	250



	Cajete
	NM
	6/15/2017
	35.809
	−106.559
	1433
	0
	0
	233



	Sawmill
	AZ
	4/23/2017
	31.822
	−110.687
	47,357
	0
	0
	415



	Alice Creek
	MT
	7/22/2017
	47.142
	−112.438
	29,971
	0
	4
	240



	Sunrise
	MT
	7/17/2017
	47.07
	−114.838
	26,896
	0
	0
	382



	Tarina
	CA
	6/30/2017
	35.385
	−118.793
	1257
	0
	0
	6



	Lolo Peak
	MT
	7/15/2017
	46.666
	−114.242
	62,316
	2
	10
	1962



	Mendenhall
	MT
	8/26/2017
	45.653
	−110.18
	1196
	0
	2
	30



	July
	MT
	7/3/2017
	47.89
	−108.575
	11,409
	0
	6
	101



	Hondito
	NM
	5/15/2017
	36.608
	−106.02
	6949
	0
	0
	0



	Hill
	CA
	6/26/2017
	35.405
	−120.481
	1900
	5
	4
	30



	Wolf
	SD
	3/4/2017
	43.998
	−102.169
	1797
	0
	0
	45



	Hodgeman County
	KS
	3/6/2017
	38.143
	−99.853
	8518
	9
	8
	0



	South Wenas
	WA
	6/27/2017
	46.72
	−120.601
	2956
	0
	0
	175



	Spartan
	WA
	6/26/2017
	47.32
	−120.155
	8775
	0
	0
	91



	Sheep
	WA
	7/24/2017
	46.758
	−120.544
	1564
	0
	0
	0



	Monument Hill
	WA
	8/17/2017
	47.304
	−119.718
	6437
	19
	23
	175



	Meyers
	MT
	7/14/2017
	45.989
	−113.552
	68,711
	0
	1
	344



	Jolly Mountain
	WA
	8/11/2017
	47.341
	−120.978
	38,159
	0
	0
	5624



	Rattlesnake Hills
	WA
	7/6/2017
	46.515
	−120.432
	3553
	0
	0
	30



	Perryton
	TX
	3/6/2017
	35.99
	−100.36
	290,211
	0
	11
	200



	Monitor
	WA
	11/1/2017
	47.503
	−120.4
	1196
	0
	0
	300



	Brianhead
	UT
	6/17/2017
	37.788
	−112.693
	74,276
	5
	26
	1526



	Thirty Seven
	CA
	10/9/2017
	38.155
	−122.474
	1773
	4
	0
	80



	303
	TX
	2/28/2017
	33.401
	−102.535
	9601
	0
	0
	0



	Slinkard
	CA
	8/29/2017
	38.659
	−119.571
	8814
	0
	0
	510



	Keystone
	WY
	7/3/2017
	41.174
	−106.281
	2784
	0
	1
	80



	Tripp
	TX
	2/10/2017
	34.448
	−100.789
	2573
	0
	0
	4



	Dumas Complex
	TX
	3/6/2017
	35.357
	−101.722
	26,155
	0
	0
	150



	Prison
	TX
	2/28/2017
	34.522
	−101.804
	2420
	4
	13
	1143



	2018 North Sargent Wf
	TX
	10/16/2017
	28.813
	−95.62
	3959
	0
	0
	60



	Oks—283
	OK
	3/7/2017
	36.689
	−99.755
	68,558
	0
	0
	300



	Lefors East
	TX
	3/7/2017
	35.365
	−100.524
	68,701
	0
	0
	0



	Beaver Mountain
	OK
	1/31/2017
	35.168
	−95.339
	4754
	0
	0
	0



	Powder Mill
	OK
	2/2/2017
	34.964
	−95.382
	1551
	0
	0
	47



	Highlands
	KS
	3/7/2017
	38.182
	−97.919
	7418
	9
	13
	1100



	Jupiter Hills
	KS
	3/4/2017
	38.109
	−97.848
	1283
	1
	1
	100



	Legion Lake
	SD
	12/11/2017
	43.669
	−103.394
	54,868
	0
	3
	203



	Sugar Cove
	NC
	1/28/2017
	35.75
	−82.143
	638
	0
	0
	14



	Turn Table Fire
	SC
	4/2/2017
	33.312
	−79.878
	1868
	0
	0
	0



	Dobson Knob
	NC
	4/9/2017
	35.812
	−81.993
	1720
	0
	0
	45



	Big Branch Fire
	KY
	4/9/2017
	37.181
	−83.054
	651
	0
	0
	32



	Ne 212th St
	FL
	3/31/2017
	29.469
	−81.956
	610
	0
	0
	40



	Sod Farm 2
	FL
	4/16/2017
	28.913
	−81.453
	901
	0
	0
	0



	Lost Creek
	OK
	3/3/2017
	35.403
	−96.141
	2420
	0
	0
	25



	Spocogee
	OK
	3/1/2017
	36.071
	−96.33
	6318
	0
	0
	45



	Gun Range
	OK
	3/21/2017
	35.646
	−96.063
	1524
	0
	0
	3



	Cod Dr
	FL
	7/8/2017
	28.767
	−82.258
	640
	0
	0
	12



	Conner
	FL
	3/26/2017
	29.252
	−81.918
	676
	0
	0
	10



	310 West Of Como
	MS
	1/29/2017
	34.518
	−90.075
	745
	2
	1
	6



	Cr630 E
	FL
	2/15/2017
	27.782
	−81.315
	5096
	0
	142
	0



	Oks—Starbuck
	OK
	3/7/2017
	37.081
	−99.893
	657,299
	0
	0
	1000



	Bonita
	NM
	6/3/2017
	36.58
	−106.149
	7754
	0
	0
	65



	Garfield Road
	FL
	3/22/2017
	30.418
	−82.022
	721
	14
	21
	3



	West Mims
	GA
	4/6/2017
	30.651
	−82.294
	166,737
	0
	4
	920



	Apple
	CA
	6/9/2018
	39.924
	−122.349
	2849
	0
	9
	0



	Creek
	CA
	6/24/2018
	40.486
	−122.518
	1353
	0
	11
	610



	Middle Ridge
	OK
	3/21/2017
	35.577
	−94.626
	8501
	0
	0
	0



	Persimmon Ridge
	OK
	3/21/2017
	35.653
	−95.088
	5333
	0
	0
	0



	Sun
	CA
	10/7/2018
	40.23
	−122.143
	3921
	0
	0
	70



	Lost Fire
	OK
	3/21/2017
	34.708
	−95.757
	4178
	0
	2
	4



	Potato Hills
	OK
	3/23/2017
	34.694
	−95.226
	2503
	0
	0
	0



	Montecito
	WA
	6/28/2018
	46.175
	−119.762
	1877
	0
	0
	50



	Wagon Wheel
	WA
	9/1/2018
	46.35
	−119.513
	4063
	0
	0
	90



	Milepost Twenty Two
	WA
	6/20/2018
	46.966
	−120.05
	7406
	0
	0
	16



	Boffer
	WA
	8/11/2018
	46.142
	−119.141
	4645
	0
	7
	0



	Conrad
	WA
	7/1/2018
	46.739
	−120.665
	4611
	0
	1
	220



	Milepost 90
	WA
	8/1/2018
	45.681
	−120.937
	10,757
	0
	0
	70



	Lee Williams Rd
	FL
	3/5/2017
	26.133
	−81.637
	7288
	1
	6
	1000



	South Valley Road
	OR
	8/1/2018
	45.371
	−121.161
	20,471
	0
	19
	212



	Jackson Ranch
	OK
	3/23/2017
	35.797
	−96.217
	4243
	0
	0
	40



	Substation 0730 Rn
	OR
	7/17/2018
	45.5
	−120.939
	69,109
	8
	52
	1363



	Mile Marker 44
	WA
	9/1/2018
	46.149
	−120.529
	4063
	0
	0
	0



	Boxcar 0410 Rn
	OR
	6/21/2018
	45.022
	−121.004
	99,874
	0
	0
	55



	Tenino Fire
	OR
	8/16/2018
	44.708
	−121.371
	8821
	0
	0
	0



	Graham 0420 Od
	OR
	6/21/2018
	44.55
	−121.4
	2102
	0
	11
	204



	Angel Springs
	WA
	8/2/2018
	47.775
	−118.029
	4718
	0
	14
	170



	Eagle
	CA
	7/13/2018
	41.268
	−120.105
	2116
	0
	0
	18



	Soap Lake
	WA
	6/11/2018
	47.436
	−119.49
	2158
	0
	0
	35



	Chelan Hills
	WA
	7/27/2018
	47.782
	−119.962
	1850
	4
	8
	100



	Rocky Reach
	WA
	7/13/2018
	47.527
	−120.327
	3346
	0
	0
	313



	Boylston
	WA
	7/19/2018
	46.85
	−120.11
	66,292
	1
	6
	1



	Keithly
	ID
	7/25/2018
	44.464
	−116.843
	17,588
	0
	0
	31



	Silver State
	NV
	7/14/2018
	40.886
	−115.665
	3766
	0
	0
	0



	Rocky
	NV
	6/23/2018
	40.378
	−118.262
	1641
	1
	1
	10



	Owyhee
	NV
	7/21/2018
	41.948
	−116.077
	5347
	0
	0
	60



	South Sugarloaf
	NV
	8/17/2018
	41.716
	−116.019
	241,426
	3
	17
	116



	Goodwin
	AZ
	6/24/2017
	34.381
	−112.299
	28,192
	3
	33
	1400



	La Tuna
	CA
	9/1/2017
	34.23
	−118.316
	7035
	1
	10
	1376



	Powerline
	ID
	8/4/2017
	42.699
	−112.605
	54,378
	0
	1
	35



	White Creek
	NC
	3/16/2017
	35.837
	−81.883
	4166
	0
	0
	7



	Shoestring
	ID
	8/5/2017
	42.878
	−114.574
	35,543
	0
	1
	2



	Penn Swamp Fire
	NJ
	7/20/2017
	39.677
	−74.638
	3587
	0
	0
	0



	Weogufkee
	OK
	3/20/2017
	35.233
	−95.904
	2226
	0
	0
	0



	Holiday
	FL
	4/5/2017
	26.003
	−80.468
	8858
	0
	0
	20



	30th Ave
	FL
	4/20/2017
	26.177
	−81.605
	6463
	18
	14
	3884



	Powerline
	WY
	8/12/2018
	44.461
	−108.926
	1837
	0
	0
	0



	Raintree Blvd
	FL
	5/13/2017
	27.074
	−82.052
	3319
	0
	0
	0



	Flat Rock Fire
	NY
	7/12/2018
	44.87
	−73.637
	658
	0
	0
	2



	Tye River
	VA
	5/3/2018
	37.905
	−79.154
	1761
	0
	0
	29



	Spring Creek
	CO
	6/27/2018
	37.543
	−105.144
	107,108
	119
	225
	2878



	Blaine
	CA
	8/13/2017
	33.984
	−117.29
	1117
	46
	0
	441



	Roosevelt
	WY
	9/15/2018
	43.06
	−110.387
	55,330
	1
	57
	1153



	8 Mile
	ID
	9/22/2018
	42.595
	−111.54
	1001
	0
	5
	95



	Miles
	OR
	7/16/2018
	42.828
	−122.699
	40,343
	0
	2
	1011



	Ramsey Canyon
	OR
	8/22/2018
	42.587
	−122.992
	2127
	0
	1
	540



	Natchez
	CA
	7/15/2018
	41.895
	−123.566
	38,800
	0
	0
	104



	Taylor Creek
	OR
	7/15/2018
	42.488
	−123.619
	57,505
	0
	0
	3292



	Klondike
	OR
	7/16/2018
	42.418
	−123.873
	178,311
	0
	0
	1940



	Ferguson
	CA
	7/13/2018
	37.635
	−119.807
	97,307
	0
	11
	5236



	Kerlin
	CA
	9/4/2018
	40.625
	−123.512
	1775
	0
	5
	100



	Hirz
	CA
	8/9/2018
	40.984
	−122.279
	46,700
	0
	1
	171



	Delta
	CA
	9/5/2018
	41.007
	−122.462
	63,732
	7
	45
	330



	River
	CA
	7/27/2018
	39.055
	−123.019
	48,920
	0
	2
	305



	County
	CA
	6/30/2018
	38.683
	−122.155
	92,450
	4
	31
	1516



	Nelson
	CA
	8/10/2018
	38.312
	−121.999
	2205
	1
	1
	260



	Whaleback
	CA
	7/27/2018
	40.627
	−120.824
	18,640
	0
	0
	460



	Hat
	CA
	8/9/2018
	40.998
	−121.489
	1971
	0
	0
	380



	Boyds
	WA
	8/11/2018
	48.632
	−118.154
	5196
	0
	10
	529



	Crescent Mountain
	WA
	7/29/2018
	48.384
	−120.446
	53,258
	0
	0
	1196



	Camp
	CA
	11/8/2018
	39.748
	−121.565
	153,687
	751
	18,838
	17,500



	Stone
	CA
	8/15/2018
	41.425
	−121.013
	39,455
	0
	2
	119



	Chaves
	NV
	6/3/2018
	39.3
	−119.412
	3652
	1
	0
	98



	Upper Colony
	NV
	6/17/2018
	38.812
	−119.411
	1255
	0
	0
	92



	Donnell
	CA
	8/1/2018
	38.383
	−119.822
	36,151
	0
	136
	305



	Rattlesnake Creek
	ID
	7/23/2018
	45.232
	−116.376
	8461
	0
	0
	618



	Rabbit Foot
	ID
	8/2/2018
	44.848
	−114.23
	33,787
	0
	0
	1446



	Pinery
	AZ
	5/12/2018
	31.982
	−109.353
	1474
	0
	0
	25



	Viewpoint
	AZ
	5/11/2018
	34.693
	−112.343
	5389
	14
	0
	0



	Tinder
	AZ
	4/27/2018
	34.59
	−111.11
	16,083
	0
	96
	1700



	Hub Point
	AZ
	7/27/2018
	34.251
	−110.29
	4674
	0
	0
	0



	Soldier Canyon
	NM
	6/7/2018
	33.185
	−105.759
	1386
	0
	0
	100



	Pierson
	NM
	4/17/2018
	32.499
	−103.418
	1060
	0
	0
	2



	Ute Park
	NM
	5/31/2018
	36.533
	−105.028
	30,177
	3
	15
	2952



	Valley
	CA
	7/6/2018
	34.105
	−116.946
	1250
	0
	0
	500



	Harbor Bay
	TX
	4/13/2018
	35.619
	−101.631
	1428
	0
	8
	50



	Cranston
	CA
	7/25/2018
	33.715
	−116.705
	13,096
	6
	12
	6230



	Holy
	CA
	8/6/2018
	33.704
	−117.468
	22,845
	18
	24
	13,300



	Stone
	CA
	6/4/2018
	34.55
	−118.292
	1659
	0
	0
	150



	Badger Hole
	CO
	4/17/2018
	37.433
	−102.088
	49,146
	1
	24
	0



	Charlie
	CA
	9/22/2018
	34.521
	−118.559
	3367
	0
	0
	100



	Cr 26
	TX
	4/14/2018
	35.256
	−100.084
	1386
	0
	0
	6



	Milliron
	TX
	4/13/2018
	34.913
	−100.011
	20,437
	0
	21
	75



	34 Complex
	OK
	4/12/2018
	36.585
	−99.352
	57,533
	0
	55
	150



	Hill
	CA
	11/8/2018
	34.207
	−118.953
	4427
	2
	4
	437



	Front
	CA
	8/19/2018
	35.119
	−120.097
	1126
	0
	0
	5



	Perry
	NV
	7/27/2018
	39.802
	−119.496
	53,734
	3
	16
	418



	Airline
	CA
	6/4/2018
	36.391
	−120.962
	1477
	0
	0
	1



	Lake Christine
	CO
	7/3/2018
	39.419
	−107.037
	12,506
	9
	6
	1329



	Chateau
	CO
	6/29/2018
	38.815
	−105.3
	1414
	0
	8
	754



	Carson Midway
	CO
	3/16/2018
	38.527
	−104.716
	4773
	0
	2
	0



	Rhea
	OK
	4/12/2018
	36.003
	−99.003
	277,949
	0
	50
	3500



	Organ
	NM
	6/24/2018
	32.454
	−106.527
	4880
	0
	0
	1



	Harman Road
	TX
	7/18/2018
	31.333
	−97.972
	3094
	0
	1
	115



	Owl Creek
	NV
	8/30/2018
	40.658
	−115.526
	1165
	0
	0
	12



	Lime Rock Rd (19)
	FL
	6/24/2018
	29.765
	−84.866
	1190
	4
	36
	400



	Cougar Creek
	WA
	7/28/2018
	47.816
	−120.478
	42,681
	0
	0
	3000



	Rozell
	MO
	2/15/2018
	36.587
	−92.862
	1970
	0
	6
	0



	Bald Mountain
	UT
	8/24/2018
	39.925
	−111.693
	21,016
	0
	1
	2600



	Pole Creek
	UT
	9/6/2018
	39.982
	−111.53
	102,426
	0
	1
	2626



	Hill Top
	UT
	8/6/2018
	39.737
	−111.441
	1784
	2
	4
	320



	Dollar Ridge
	UT
	7/1/2018
	40.111
	−110.877
	69,817
	6
	453
	1023



	Little Shepherds Trail
	KY
	5/1/2018
	36.976
	−83.034
	541
	0
	0
	0



	Keepers Branch Fire
	SC
	3/4/2018
	33.189
	−79.542
	819
	0
	0
	6



	Range Two
	NV
	9/30/2018
	40.669
	−115.448
	9361
	0
	8
	60



	Dog Head
	NM
	6/14/2016
	34.851
	−106.3
	19,816
	0
	73
	1950



	Ranch
	CA
	7/27/2018
	39.269
	−122.775
	427,048
	0
	0
	86



	416
	CO
	6/1/2018
	37.493
	−107.903
	55,123
	0
	0
	3386



	Grass Valley
	WA
	8/11/2018
	47.94
	−119.166
	76,074
	1
	20
	330



	West 60
	OK
	3/7/2018
	36.789
	−96.487
	18,715
	0
	0
	10



	Carr
	CA
	7/23/2018
	40.715
	−122.593
	233,710
	282
	1608
	5013



	Badger Creek
	WY
	6/10/2018
	41.055
	−106.11
	20,752
	4
	3
	553



	Tomahawk
	AR
	4/12/2018
	36.056
	−92.671
	533
	0
	8
	15



	Woolsey
	CA
	11/8/2018
	34.125
	−118.824
	97,962
	365
	1643
	57,000



	Flag Pond (11)
	FL
	3/21/2018
	26.139
	−81.595
	2562
	0
	0
	0



	Buffalo Corral
	AZ
	7/14/2019
	31.573
	−110.377
	1144
	0
	0
	0



	Kincade
	CA
	10/23/2019
	38.672
	−122.776
	77,785
	60
	375
	90,015



	Easy
	CA
	10/30/2019
	34.267
	−118.829
	2105
	1
	1
	2635



	Sandalwood
	CA
	10/10/2019
	33.999
	−117.084
	1048
	16
	76
	0



	Tick
	CA
	10/24/2019
	34.451
	−118.394
	4932
	48
	31
	10,425



	Maria
	CA
	11/1/2019
	34.314
	−119.066
	10,036
	0
	5
	2722



	Saddleridge
	CA
	10/10/2019
	34.318
	−118.515
	9656
	93
	38
	25,760



	Black Bridge
	CO
	4/4/2019
	38.074
	−103.177
	1690
	0
	0
	7



	116th Ave Se (11)
	FL
	3/21/2018
	26.034
	−81.56
	29,262
	0
	3
	0



	335
	TX
	4/13/2018
	32.676
	−99.716
	2481
	0
	15
	100



	Blue Creek #2
	OK
	3/14/2018
	35.052
	−95.594
	2578
	0
	0
	0



	Deerte
	OK
	3/15/2018
	35.367
	−95.871
	1833
	0
	0
	8



	Henry
	OK
	3/20/2018
	35.581
	−96.42
	1160
	0
	0
	17



	Brewster
	OK
	3/16/2018
	35.685
	−96.299
	4049
	0
	0
	20



	Flying G
	OK
	3/12/2018
	36.124
	−96.203
	1886
	0
	0
	184



	Walker
	OK
	3/24/2018
	36.35
	−96.233
	2626
	0
	0
	9



	Drumb
	OK
	3/24/2018
	36.467
	−96.3
	30,419
	0
	0
	9



	Onion Prairie
	OK
	3/6/2018
	36.641
	−96.017
	3911
	0
	0
	20



	New Years Wf
	TX
	1/1/2018
	29.706
	−93.908
	5613
	0
	0
	12



	Farmers Road
	TX
	1/22/2018
	32.738
	−97.596
	2379
	0
	0
	252



	Carbon
	TX
	4/13/2018
	35.214
	−100.068
	12,148
	0
	0
	500



	Pemberton
	AZ
	8/6/2019
	34.731
	−112.676
	1211
	0
	0
	0



	Green Ravine
	UT
	9/3/2019
	40.683
	−112.228
	2260
	0
	0
	3



	Goose Point
	UT
	8/21/2019
	40.076
	−111.832
	9190
	0
	0
	23



	Dove
	AZ
	5/24/2019
	33.799
	−112.429
	1078
	0
	0
	10



	White Wing
	AZ
	5/30/2019
	33.796
	−112.437
	1797
	0
	0
	30



	Tenaja
	CA
	9/4/2019
	33.549
	−117.258
	1820
	2
	0
	1200



	Walker
	CA
	9/4/2019
	40.09
	−120.585
	58,752
	0
	9
	78



	Long Valley
	CA
	8/24/2019
	39.882
	−119.995
	2451
	4
	1
	80



	Briceburg
	CA
	10/6/2019
	37.608
	−119.932
	5555
	0
	1
	160



	Woodbury
	AZ
	6/8/2019
	33.52
	−111.175
	130,243
	0
	0
	1537



	Stuckey Rd Ma
	MT
	9/2/2019
	47.586
	−111.357
	4077
	0
	9
	0



	Matson
	WA
	10/7/2019
	46.619
	−118.93
	8715
	0
	0
	86



	Sand
	CA
	6/8/2019
	38.904
	−122.259
	2473
	0
	7
	125



	Museum
	AZ
	7/21/2019
	35.263
	−111.62
	2011
	0
	0
	0



	Elmer City
	WA
	6/23/2019
	48.064
	−118.943
	1996
	2
	2
	45



	Desert Canyon
	WA
	7/23/2019
	47.711
	−120.148
	1505
	0
	0
	16



	243 Command
	WA
	6/4/2019
	46.855
	−119.785
	18,891
	1
	2
	36



	Cut Across
	MT
	4/7/2019
	45.63
	−106.7
	1858
	0
	0
	130



	Boulder
	CA
	6/5/2019
	35.32
	−119.93
	1199
	0
	0
	0



	Decker
	CO
	9/8/2019
	38.441
	−105.995
	9876
	0
	4
	142



	Boulin
	AZ
	8/6/2019
	35.382
	−112.036
	4094
	0
	0
	12



	Coldwater
	AZ
	5/30/2019
	34.481
	−111.335
	16,824
	0
	0
	14



	Cave
	CA
	11/25/2019
	34.489
	−119.768
	2761
	1
	0
	15,000



	Left Hand
	WA
	7/23/2019
	46.915
	−120.975
	3234
	0
	0
	347



	North Hills
	MT
	7/26/2019
	46.765
	−111.944
	4144
	0
	0
	600



	Tx Point East Christmas Eve
	TX
	12/24/2019
	29.716
	−93.9
	1163
	0
	0
	43



	Williams Flats
	WA
	8/2/2019
	47.977
	−118.498
	44,680
	0
	3
	56



	Pedro Mountain
	WY
	8/24/2019
	42.337
	−106.826
	21,910
	0
	8
	90



	Cove Creek
	ID
	8/4/2019
	45.346
	−114.465
	5273
	0
	0
	39



	Channing
	TX
	2/16/2019
	35.663
	−102.275
	7855
	0
	0
	20



	Burnside
	OK
	3/19/2019
	34.593
	−97.029
	1117
	0
	0
	10



	East Kennedy Creek
	KS
	4/2/2019
	38.29
	−95.815
	1003
	0
	0
	0



	Clark Branch #2
	KY
	9/17/2019
	37.603
	−82.621
	1315
	0
	0
	0



	344 D
	FL
	9/11/2019
	30.356
	−84.632
	2339
	0
	0
	0



	Cr 2297 Allenton (03)
	FL
	3/30/2019
	30.115
	−85.482
	725
	0
	0
	52



	Dry Hollow
	WV
	11/28/2019
	38.831
	−79.308
	1412
	0
	0
	16



	Kennedy Peak
	VA
	11/14/2019
	38.762
	−78.466
	769
	0
	0
	0



	Spring Hill Fire
	NJ
	3/30/2019
	39.79
	−74.451
	8182
	0
	0
	0







Appendix D. 2052 Weather Time Series Estimation


We used these publicly-available online repositories of NOAA RTMA data:




	
Iowa state (Iowa State) [57] covering 2011-current



	
National Centers for Environmental Information (NCEI) National Digital Guidance Database (NDGD) (NOAA NCEI, 2022) covering 2011- current








Since approximately 3% to 4% of hourly records are missing from both the Iowa State and NCEI datasets, we merged these datasets to minimize the amount of missing data.



Mid-century fire weather inputs were generated by scaling or “nudging” 2011–2020 Real Time Mesoscale Analysis (RTMA) temperature, relative humidity, and precipitation by computing distribution changes between 2021 and 2051 ensemble regional model output. While wind is an essential fire weather variable, it was excluded from nudging because the literature does not support a statistically robust climate change signal for it (e.g., Torralba et al., 2017 [58]).



We used the Multivariate Adaptive Constructed Analogs (MACA) version 2 as our source for 2020 and 2050 calibration data because it demonstrates skillful performance for fire weather variables, particularly relative humidity and wind (Abatzoglou and Brown, 2012 [33]). MACA is statistically downscaled Coupled Model Intercomparison Project version 5 (CMIP5; Taylor et al., 2012 [32]) available in a ~4-km grid over the contiguous United States (CONUS). It is available at daily resolution and at temporal ranges for present-day conditions (1950–2005) and future experiments under Representative Concentration Pathways (RCPs) 4.5 and 8.5. RCP4.5, which represents an intermediate scenario, was used for this experiment. Temporal ranges for the “2020” and “2050” calibration data were defined as 2011–2020 and 2048–2057 ensemble means, respectively. Note that the CCSM4 MACA ensemble member was not included in order to maintain consistency across variables, because it was not available for relative humidity at the MACA Data Portal (https://climate.northwestknowledge.net/MACA/data_portal.php, accessed on 8 August 2022).



Nudging was performed independently at each geographic grid point. In order to facilitate this, the 4-km rectilinear MACA data had to be interpolated to the 2.5-km curvilinear RTMA grid. The National Center for Atmospheric Research Command Language (NCL)’s regridding package from the Earth System Modeling Framework was used (https://www.ncl.ucar.edu/Applications/ESMF.shtml, accessed on 8 August 2022). We used bilinear interpolation for temperature and relative humidity, and conservative regridding for precipitation since it does not represent a smoothly varying field.



Nudging code was obtained from the bias_correction Python3 package (https://github.com/pankajkarman/bias_correction, accessed on 8 August 2022). Bias correction techniques like those employed here are used to correct modeled projections by adjusting them with statistical scaling factors derived between historical model output and observations; put another way, they are used to downscale climate change projections to station locations (e.g., Fang et al., 2015 [59], Luo et al., 2018 [60]). Likewise, we use them here to nudge RTMA output with respect to scaling factors computed between 2020 and 2050 MACA output. We summarize the techniques here.



Appendix D.1. Precipitation


RTMA precipitation projections were obtained via gamma distribution mapping, a technique developed by Switanek, et al., 2017 [61]). Gamma distribution mapping is unlike other bias correction methods because it accounts for the frequency of rain days and the likelihood of events (Switanek, et al., 2017 [61]).



After summing hourly RTMA precipitation into daily accumulations to match the temporal resolution of the MACA data, this procedure goes as follows:




	
Define rain days (RDs) as those which feature non-zero precipitation accumulations for each distribution. Then compute the expected number of projected 2050 RTMA rain days (RDP):


  R  D P  = R  D  R T M A   ×   R  D  M A C A F     R  D  M A C A H        



(A1)




where RDRTMA, RDMACAF, and RDMACAH are the number of rain days in RTMA, 2050 MACA, and 2020 MACA data, respectively. In the event MACA 2050 has fewer RDs than MACA 2020, this results in a downward adjustment in RDs in the nudged RTMA distribution. Note that projected RTMA RDs can never increase above original RTMA RDs, an important limitation in this approach.



	
Fit gamma probability density functions (PDFs) to each of the modeled rain-day distributions. Cumulative distribution functions (CDFs) and their inverses (ICDFs) are found from these PDFs.



	
Calculate the relative scaling (SFR) between the fitted RTMA and 2020 MACA distributions at all CDF values corresponding to the precipitation events of the RTMA time series:


  S  F R  =   I C D  F  R T M A    (  C D  F  R T M A    )    I C D  F  M A C A H    (  C D  F  R T M A    )       



(A2)




where SFR is an array of relative scaling factors, ICDFRTMA and ICDFMACAH are the ICDFs for the fitted 2020 RTMA and MACA distributions, respectively, and CDFRTMA is the estimated CDF for RTMA precipitation values. As an example, say the largest value in the RTMA time series is equal to 40 mm and corresponds to a CDF value of 0.997 (in other words, ICDFRTMA(0.997) will yield 40 mm), but ICDFMACAH(0.997) yields only 6 mm (we discuss these systematic magnitude discrepancies in Assumptions and Limitations). The most extreme nudged value will have a relative scaling factor of 6.67 (40/6).



	
Calculate recurrence intervals (RIs) from the three fitted CDFs, then find the adjusted RI for 2020 RTMA:


  R  I  S C   = m a x  (  1 ,   R  I  M A C A F   × R  I  R T M A     R  I  M A C A H      )     



(A3)




where RIMACAF, RIRTMA, and RIMACAH correspond to the RIs for the RTMA and 2050 and 2020 MACA data, respectively. The value is always greater than or equal to 1 to ensure that the subsequent step yields values between 0 and 1. This step adjusts the RI of 2050 MACA events by differences in the extremity of 2020 RTMA and MACA events. For example, if the RI for the most extreme 2020 RTMA value is shorter than that of the most extreme 2020 MACA value, then the RI for the most extreme 2050 MACA value will be shortened accordingly. RISC is then used to find the corresponding scaled CDF values with


  C D  F  S C   = 1 −  1  R  I  S C        



(A4)




where CDFSC reflects the scaling of the change in MACA event likelihoods between 2050 and 2020 with respect to RTMA likelihoods.



	
The initial array of projected RTMA values is:


  R T M  A I  = I C D  F  M A C A F    (  C D  F  S C    )  × S  F R     



(A5)




where ICDFMACAF is the ICDF for the 2050 MACA data. In the event that (A1) adjusted the RDs for the projected time series, RTMAI is linearly interpolated along the adjusted length of RDP.



	
The array of projected values is then placed back into the RTMA time series at the corresponding locations. For example, if the largest annual RTMA value occurred on April 21st, then the largest projected RTMA value will be placed on that same day.



	
Last, the ratio between the projected and original RTMA values for each day is applied to the hourly RTMA precipitation time series.









Appendix D.2. Temperature


RTMA temperature projections were obtained via a normal distribution mapping technique (Switanek, et al., 2017 [61]). After applying cubic spline interpolation to daily minimum and maximum MACA temperatures to obtain hourly distributions (we discuss this further in Assumptions and Limitations), the steps go as follows:




	
All three distributions are linearly detrended to get a more accurate measure of the natural variability. While trends are added back at the end, all subsequent steps use the detrended time series.



	
Gaussian PDFs are fit to each of the annual distributions, then corresponding CDFs and ICDFs are derived from these.



	
An absolute scaling factor is found:


  S  F A  =  [  I C D  F  R T M A    (  C D  F  R T M A    )  − I C D  F  M A C A H    (  C D  F  M A C A H    )   ]  ×  (    σ M A C A F   σ M A C A H    )     



(A6)




where  σ MACAF and  σ MACAH are the standard deviations of the 2050 and 2020 MACA data and all other terms are defined as before.



	
RIs are calculated from the CDFs, scaled with (A3), then used to find the modified CDF with


  C D  F  S C   = 0.5 + s g n  (  C D  F  M A C A F   − 0.5  )  ×  |  0.5 −  1  R  I  S C      |     



(A7)







Equation (A7) differs from (A4) because the normal distribution is two-tailed.



	
The initial array of projected RTMA values is


  R T M  A I  = I C D  F  M A C A F    (  C D  F  S C    )  + S  F A     



(A8)







	
As before, reinsert projected values into the original RTMA time series. Then add the trend of the RTMA time series back into the projected one.









Appendix D.3. Relative Humidity


Mid-century relative humidity projections used a comparatively simpler approach called empirical quantile mapping (Gudmundsson et al., 2012 [62]). Unlike the previous two methods, it makes no assumptions about the underlying distribution of the data. Briefly, it goes as follows:




	
An empirical CDF (ECDF) is approximated for the 2020 MACA distribution.



	
The corresponding percentiles from the ECDF are found in the RTMA data.



	
The difference between the value at each equivalent percentile is computed between the 2050 and 2020 MACA data.



	
This difference is applied to the RTMA data.








In this way, the order of observations in the 2020 record is maintained (i.e., underlying variability) while shifting towards a future climate.
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Figure 1. The modifications of the LANDFIRE v2.0.0 fuels (LF), including use of disturbance data (FVC—fuel vegetation cover; FVH—fuel vegetation height; FVT—fuel vegetation type; BPS—biophysical settings) to modify surface (FM40) and canopy fuel classes (canopy cover—CC; canopy height—CH; canopy base height—CGH; canopy bulk density—CBD), and the replacement of non-burnable fuel classes in the WUI with fuel classes that were found to approximate observed fire behavior in past WUI fires. Computation was performed using Google Earth Engine (EE). This figure represents steps 1 and 2 in the fuel methodology; steps 3 and 4 are included in Figure 4. 
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Figure 2. Disturbances: locations of updated canopy and surface fuels. 
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Figure 3. Modified surface fuel estimates: (left) LANDFIRE 2016 canopy cover (green) and identified disturbances 2017–2020 (gray) are shown. (Right) new canopy cover estimates (green) are reduced in disturbed areas. 
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Figure 4. Random forest model training and classification to replace non-burnable FM40 classes with burnable classes in the newly defined WUI. 
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Figure 5. WUI FM40 random forest importance values. 
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Figure 6. Classification of building structures from unburnable to burnable fuel types. 
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Figure 7. Number of fires in the Western US as a function of ERC(G) percentile (reproduced from Riley et al., 2013 [41]). 
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Figure 8. Wildfire behavior model, process diagram. The “fire factor” result on the right hand side is an expression of wildfire hazard as a function of burn probability, flame length, and ember presence and is available for viewing for every property in the U.S. at riskfactor.com (accessed on 8 August 2022). 
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Figure 9. Example ELMFIRE fire spread simulation for individual fire ignition. (a) Fire type (surface fire, passive crown fire, or active crown fire). (b) Flame length in feet. 
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Figure 10. Historical and modeled fire sizes (in acres) versus intensity (flame length in ft). 
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Figure 11. From riskfactor.com, (accessed on 8 August 2022): (bottom) a representative description of property-level exposure (in Naples, FL), showing the high-resolution, property-specific nature of the estimates that are produced by the FSF-WFM. Colors depict the probability (%) at 30 m resolution of being impacted by wildfire hazard during the year 2022. The likelihood numbers at right are estimates of annual likelihood of wildfire for the property at the red pin (center), and which is predicted to more than double by 2052. (Top) CONUS burn probability at 30 m resolution for 2022; gray areas show areas with negligible exposure. 
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Figure 12. (A) Geographic distribution of “any exposure” to wildfire (>1% cumulative exposure): those individual properties with >1% cumulative exposure over 2022–2052 were counted on a state by state basis, and compared to the total number of all properties. (B). Geographic distribution of “major exposure” to wildfire (>3% cumulative exposure): those individual properties with >3% cumulative exposure over 2022–2052 were counted on a state by state basis, and compared to the total number of all properties. 
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Figure 13. Percent Increase in annual likelihood of wildfire exposure among properties with at least 0.03% annual likelihood of wildfire exposure. 
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Table 1. Distribution of disturbance types and severity.
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	Disturbance Type
	%





	Fire
	92.8%



	Mechanical add
	0.2%



	Mechanical reduce
	5.8%



	Other
	1.2%



	Disturbance Severity
	%



	Low
	65.0%



	Medium
	20.2%



	High
	14.8%
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Table 2. Hazards quantified by the FSF-WFM: following the ELMFIRE simulations for 2022 and 2052, the wildfire hazard for any 30 m pixel within the CONUS domain is represented by the combination of the burn probability, mean or maximum flame length (intensity), and exposure to embers.






Table 2. Hazards quantified by the FSF-WFM: following the ELMFIRE simulations for 2022 and 2052, the wildfire hazard for any 30 m pixel within the CONUS domain is represented by the combination of the burn probability, mean or maximum flame length (intensity), and exposure to embers.





	Measure of Exposure
	Description
	Units





	Burn probability
	Likelihood that a pixel catches fire out of all the simulations normalized by likelihood of ignitions
	%



	Max flame length
	Maximum flame length experienced at a pixel across all simulations
	ft



	Sum of flame length
	Sum of flame length for all simulations that experience fire
	ft



	Mean flame length
	Sum of flame length divided by times burned
	ft



	Binned counts of flame lengths
	(0,2,4,6,8,12,20,+)
	ft



	Ember lux
	Dimensionless number that is a proxy for the count of embers landing in a pixel. Does not reflect mass of embers, whether they are still burning, or distance traveled
	<none>



	Ember likelihood
	Likelihood that an ember falls into a pixel across all simulations, similar to times burned
	%



	Max embers
	Max number of embers
	count
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Table 3. Top 25 state ranking by “any risk” (cumulative burn probability of >1%).
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	State
	Total Properties
	Any Risk
	Pct Any Risk





	Texas
	11,957,707
	9,450,091
	79.03



	Florida
	8,975,280
	7,197,685
	80.19



	California
	11,341,383
	7,131,849
	62.88



	North Carolina
	5,451,278
	3,126,130
	57.35



	Alabama
	3,019,300
	2,727,455
	90.33



	Georgia
	4,413,839
	2,482,091
	56.23



	Arizona
	3,225,763
	2,463,019
	76.35



	Virginia
	3,795,418
	2,265,927
	59.70



	South Carolina
	2,616,091
	2,068,048
	79.05



	Colorado
	2,491,610
	2,000,321
	80.28



	Oklahoma
	2,215,755
	1,901,850
	85.83



	Tennessee
	3,278,739
	1,879,316
	57.32



	New Jersey
	3,449,541
	1,859,395
	53.90



	Mississippi
	1,904,494
	1,695,462
	89.02



	Arkansas
	1,923,556
	1,558,005
	81.00



	Missouri
	3,191,502
	1,503,143
	47.10



	Minnesota
	2,964,708
	1,472,206
	49.66



	New Mexico
	1,495,392
	1,380,736
	92.33



	Louisiana
	2,365,207
	1,254,936
	53.06



	Utah
	1,363,463
	1,153,356
	84.59



	Kansas
	1,633,521
	1,087,988
	66.60



	New York
	5,376,613
	999,217
	18.58



	Washington
	3,031,769
	996,960
	32.88



	Oregon
	1,807,336
	911,745
	50.45



	Idaho
	1,036,925
	878,068
	84.68
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Table 4. Top 25 state ranking by “major risk” (cumulative burn probability of >3%).
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	State
	Total Properties
	Major Risk
	Pct Major Risk





	California
	11,341,383
	2,554,777
	22.53



	Texas
	11,957,707
	1,686,571
	14.10



	Florida
	8,975,280
	1,540,413
	17.16



	Arizona
	3,225,763
	998,241
	30.95



	Oklahoma
	2,215,755
	451,928
	20.40



	Utah
	1,363,463
	425,163
	31.18



	New Mexico
	1,495,392
	409,538
	27.39



	Nevada
	1,209,308
	314,203
	25.98



	Idaho
	1,036,925
	196,014
	18.90



	Washington
	3,031,769
	187,275
	6.18



	Colorado
	2,491,610
	177,081
	7.11



	New Jersey
	3,449,541
	171,568
	4.97



	Montana
	894,052
	167,040
	18.68



	South Dakota
	666,388
	164,702
	24.72



	Mississippi
	1,904,494
	121,367
	6.37



	Wyoming
	339,209
	113,570
	33.48



	North Carolina
	5,451,278
	96,774
	1.78



	Kansas
	1,633,521
	81,309
	4.98



	Oregon
	1,807,336
	70,680
	3.91



	Alabama
	3,019,300
	53,726
	1.78



	Nebraska
	1,138,191
	50,150
	4.41



	South Carolina
	2,616,091
	46,292
	1.77



	North Dakota
	679,023
	33,737
	4.97



	Louisiana
	2,365,207
	23,783
	1.01



	Minnesota
	2,964,708
	19,929
	0.67
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Table 5. Fire factor assignment.






Table 5. Fire factor assignment.





	Fire Factor
	Criteria





	1
	No modeled exposure of being in a wildfire (burn probability) and no modeled exposure to embers (including not being in an ember zone) are considered to have minimal risk.



	2
	Located in areas exposed to embers through the created ember zone or in an area with less than a 1% cumulative chance of burning over 30 years.



	3
	With 1–3% chance of burning over 30 years.



	4
	With a 4–6% chance of burning over 30 years.



	5
	With a 7–9% chance of burning over 30 years.



	6
	With a 10–14% chance of burning over 30 years.



	7
	With a 14–20% chance of burning over 30 years.



	8
	With a 21–26% chance of burning over 30 years.



	9
	With a 27–36% chance of burning over 30 years.



	10
	With more than a 36% chance of burning over 30 years.
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